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ABSTRACT 

It has been proposed that inner speech supports task selection in task switching studies, 

especially when the need for endogenous control is increased. This has been established 

through the suppression of inner speech in cognitive-flexibility tasks that leads to poorer 

performance. The aim of this study is to quantify the role of inner speech in a flexibility task 

by using surface laryngeal electromyography, which, contrary to previous studies, enables 

participants to freely verbalize the tasks. We manipulated endogenous and exogenous 

flexibility in a mathematical switching task paradigm. Experiment 1 shows that inner speech 

acts as a support for switching and is recruited more often when the tasks are of an 

endogenous type. The main result of Experiment 2 that language is recruited more for the 

mixing cost than for the switch cost (regardless of the endogenous factor) extends past 

findings obtained through articulatory suppression. 
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Inner Speech sustains Predictable Task Switching: Direct Evidence in Adults 

Although several models have been developed to account for switching processes (e.g., 

Altmann & Gray, 2008; Gilbert & Shallice, 2002; Meiran, 2000), the specific role of speech 

in switching and more specifically, inner speech, remains to be clarified. Inner speech has 

long been hypothesized to be a vehicle of thought and voluntary control (e.g., Luria, 1969; 

Reed, 1916), and one of the most common techniques used to explore the role of inner speech 

in flexibility tasks is to disrupt speech through the use of articulatory suppression (Baddeley, 

Chincotta, & Adlam, 2001; Bryck & Mayr, 2008; Cinan & Tanor, 2002; Dunbar & Sussman, 

1995; Emerson & Miyake, 2003; Goschke, 2000; Kray, Eber, & Lindenberger, 2004; Miyake, 

Emerson, Padilla, & Ahn, 2004; Saeki & Saito, 2004). From these studies inner speech 

appears to be an important determinant of task switching. For example, the switch cost (i.e., 

the difference in RT between task-switch trials and consecutive same-task trials) was found to 

increase when subjects were unable to use inner speech (e.g. Emerson & Miyake, 2003). One 

interpretation is that inner speech contributes to effectively recode tasks and facilitates 

executive processes, a language function sometimes referred to as extracommunicative 

(Lupyan, 2009). 

Previous studies have shown that verbal self-instructions can be used to support task 

switching (Kirkham, Breeze, & Marí-Beffa, 2012; Kray, Eber, & Karbach, 2008), suggesting 

that encouraging the use of speech rather than denying it can have beneficial effects. 

Following up on these findings we decided to promote its use and directly quantify its 

involvement by adding laryngeal surface electromyography measurements (EMG) to 

behavioral parameters such as response time and switch cost. One advantage of this method is 

to avoid using articulatory suppression, which can be viewed by participants as a non-natural 

process that disrupts task performance. The EMG device, which measures the electrical 

impulses of muscles using electrodes applied to the surface of the skin, makes it possible to 
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observe speech signals even when speech is internalized (Garrity, 1977; Sokolov, 1972). The 

electrical activity of laryngeal muscles can be detected whether or not the face or mouth is 

moving, and whether or not sound is emitted (Betts, Binsted, & Jorgensen, 2006; Jou, 

Schultz, Walliczek, Kraft, & Waibel, 2006). The current view on the relationship between 

inner speech and motor activation is that the recruitment of the motor system will depend on 

the level of inner speech in the task at hand (e.g. Geva et al., 2011; Perrone-Bertolotti, Rapin, 

Lachaux, Baciu & Lœvenbruck, 2014), with time-constrained and/or attention-demanding 

tasks more likely to recruit the motor system. Since the switching tasks used in the current 

study are both rapid and attention-demanding, we expect participants to fully engage in the 

motor production system underlying inner speech, allowing us to detect inner speech 

production with the EMG technique.  

 

 To examine how the use of inner speech varies as a function of switching conditions, 

participants were administered a predictable mathematical switching task that included both 

cued and non cued trials to directly contrast the effects of exogenous and endogenous control 

on inner speech in a within-subject design. Endogenous control is required when there is no 

available external cue that signals the next task to be performed, for instance when one has to 

remember an alternation pattern to switch from one task to another (ABAB, etc), while 

exogenous control is made possible by cuing the upcoming task (for instance, using an 

arithmetic symbol to indicate which operation to be performed next). Having to memorize a 

sequence to carry out tasks (ABAB, etc.) as in endogenous tasks usually slows down the 

alternation of the tasks in comparison to exogenous tasks because the participant is required to 

update the alternation process on the fly. In contrast, the presence of external cues as in 

exogenous tasks is supposed to alleviate the need for internal-self cuing, which has been 

hypothesized to be associated with the presence of covert self-instructions (Emerson & 
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Miyake, 2003; Miyake, Emerson, Padilla, & Ahn, 2004). If task-switching costs reflect in part 

the amount of inner speech produced to recall which task needs to be performed next, we 

predict a greater reliance on inner speech in endogenous tasks than in exogenous tasks.  

Although it is recommended to use different task-switching paradigms to clearly determine 

the role of verbal strategies in task-switching designs (Kirkham, Breeze, & Marí-Beffa, 2012), 

in our first experiment we chose to rely on a previous study by Emerson and Miyake (2003) 

that evaluated the impact of articulatory suppression in task-switching using list design 

(AAAA..., BBBB..., and ABAB...). However, instead of disrupting speech, we quantified the 

quantity of inner speech produced during the response delays. A specific hypothesis was that 

more covert vocalizations measured by electrophysiological measures can be found when 

longer response times are expected, and particularly in the non-cued conditions of the mixed 

blocks in which switches are required. Because switch costs were confounded with mixed 

costs in the first experiment, a second experiment tested an AABB mixed list design to better 

examine the relative effects of mixed costs and switch costs when the participants alternated 

between the tasks without having to switch tasks systematically.  

 
Experiment 1 

 
The current experimental design is similar to that of Emerson and Miyake (2003) in which the 

participants had to alternate between additions and subtractions in a mathematical task-

switching paradigm, with cued (exogenous) and non-cued (endogenous) conditions. They 

showed that disrupting inner speech particularly increased switch costs, and specifically so in 

the absence of cues. However, instead of disrupting speech via articulatory suppression to 

show its disruptive effect on switch costs (Emerson & Miyake, 2003), laryngeal EMG 

recordings were used in the present experiment to detect motor activity related to the use of 

inner speech. Our first goal was to quantify the amount of inner speech generated during the 
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response time period, and to examine how it would vary as a function of the difficulty of the 

task (exogenous vs. endogenous) and the degree of switching involved (repeated vs. 

alternated). Our second and central aim was to examine whether the amount of inner speech 

as measured by the EMG would match the pattern of response times (RTs). In other words, if 

inner speech scaffolds the cognitive processes engaged in this time-pressured and attention-

demanding tasks, we expected a direct correspondence between the amount of inner speech 

and response times.  

 

Participants 

Thirty-two psychology students at the University of Franche-Comté (M = 22.2 years; 

SD = 2.9; 10 males and 22 females) volunteered to participate in this study in exchange for 

course credits.  

 

Procedure 

The mathematical task-switching paradigm used two conditions: an endogenous 

flexibility condition (referred to as Non-Cued; no cue was provided, which required the 

participant to keep track of the alternation of the tasks) and an exogenous flexibility condition 

(referred to as Cued; the symbols + and – were used to indicate the next task). Instead of the 

paper-and-pencil version of the original authors, we used a computerized version of the task 

to allow synchronization with EMG recordings and precise RT measurements. Another main 

difference with the original study was the use of symbol cues only (instead of using both 

color cues and symbol cues as in Emerson & Miyake, 2003), because the symbol cues more 

strongly reduced the effect of articulatory suppression. All participants were tested in the two 

conditions, Cued and Non-Cued and the total duration of the experiment was about 20 

minutes, including instructions and breaks. Each of the conditions included three blocks 
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(Figure 1), one block in which the participants had to subtract the number 3 from each 

number, one block in which they had to add 3, and a third block in which they had to alternate 

between addition and subtraction (type of alternation ABABAB). Each condition consisted of 

a series of 84 two-digit numbers (13-96) with 28 numbers randomly assigned without 

repetition to each of the three blocks Addition, Subtraction and Alternation, so that no number 

appeared twice within the same condition. In all, each participant did 2 conditions × 3 blocks 

= 6 blocks, which represented a total of 6 blocks × 28 trials = 168 trials. The order of the first 

two blocks (one block of subtractions followed by a block of additions) was counterbalanced 

between the participants, but the third block was systematically the Alternation block across 

participants. The order of the two conditions (Cued and Non-Cued ) was also counterbalanced 

across participants. In the Cued condition, the mathematical symbols + or – appeared to the 

right of each number, whereas no symbol were presented in the Non-cued condition.  

 

 

Figure 1. Design of the two conditions in the switching task. Note that the => symbol 
indicates the expected answer (i.e., the green number on the right side), but this symbol was 

not displayed during the tasks. 

 

The general instructions to add or subtract 3 to the stimuli, or to alternate in a given 

order, were presented visually before each block. During the task, each number appeared in 

the center of the screen and a response box was located in the lower part of the screen. In 
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order to answer, the participants had to use a numeric keyboard and had no possibility to 

correct their answer. Each answer consisted of two digits and the next number appeared 

immediately after the second digit was typed. The participants were given a two-minute break 

between the two tasks.  

 

Behavioural and electrophysiological measures 

The E-Prime software that controlled stimulus presentation and RTs collection was 

synchronized with an electromyograph (EMG 100 C, Biopac®) monitored by the 

AcqKnowledge 4.1 software. The electrodes used in this experiment (EL503, Biopac®) were 

silver chloride (Ag-AgCl) reference electrodes, measuring one centimeter in diameter (3.5 cm 

including the adhesive skin surface). Two pairs of electrodes were positioned one above the 

other with 4-cm vertical and horizontal gaps (2 cm on either side of the vertical medial line) 

and placed on the laryngeal muscles in order to record voice signals. The ground electrode 

was attached to the right wrist of each participant. Participants were instructed to refrain from 

coughing and to avoid the use of covert speech during the tasks. 

To analyze the EMG data (first sampled at 1000 Hz), we calculated the integral of the 

speech signals recorded during each stimulus-response interval. First, comb band stop 

filtering (frequency = 50 Hz) was used to process the EMG data in order to remove power 

line noise from the raw signal data recorded during the entire experiment for one participant, 

and a root mean square (RMS) function fully corrected the signal (using a time interval of 30 

ms) after removing the baseline that was computed across the entire task. After integrating the 

two RMS-EMG signals using the trapezoidal rule, we averaged our data from the different 

electrodes to obtain a single integrated EMG value. We then used this signal to reflect the 

quantity of inner speech produced. In other words, we defined the quantity of speech (QL) as 

the amount of EMG signal during a given period, obtained by integrating the signal 
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(expressed in mV.ms). QL was used to indicate both the intensity and the duration of inner 

speech. The mean amplitude (expressed in mV) during a given period was computed by 

dividing the integral by the time interval. 

 In parallel to electromyography we also recorded RTs in milliseconds (excluding 

incorrect responses from our analyses). Following the terminology used by Meiran (2000, p. 

236), we computed alternation costs, which are based on the difference between single task 

RT (i.e., participants repeat the same task before the mixing block occurs; e.g., AAAA…) and 

switch task RT (i.e., participants switch between two tasks during the alternating block; e.g., 

AB). In addition to the analysis of RTs and alternation costs as in Emerson and Miyake 

(2003), we also report the quantity of inner speech produced during the response delays 

across the different blocks and conditions. ANOVAs were conducted for each dependent 

variable (RT, alternation cost, QL integrals and QL amplitudes), with Cues (Cued vs. Non-

cued) and Block (Repeated task versus Alternated task blocks) as within factors. 

 

Results and Discussion 

Trials with RTs diverting more than 3 standard deviations from the individual mean 

RT or below 200 ms were considered outliers and were excluded from the analysis (following 

Goschke, 2000, p. 337), which corresponded to 1.6 % of the data.  

Following Emerson and Miyake’s results, we expected longer RTs in the Non-cued 

condition as compared to the Cued condition, as well as longer RTs in Alternated task blocks 

than in Repeated task blocks. We also expected larger switch costs overall in the Non-cued 

condition than in the Cued condition. ANOVA on response times (Figure 2A) showed a 

significant effect of the factor Block, F(1,31) = 98, p < .001, ηp² = .76, due to longer response 

times in the Alternated task blocks than in the Repeated task blocks. There was no main effect 

of the factor Cues, F(1,31) = .8, p = .40. Although descriptively the non-cued condition led to 
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longer RTs than the cued condition for the alternated task block and not in the repeated task 

block, the Cues  Block interaction was no significant1, F(1,31) = 1.6, p = .22. Note that 

significance was however reached when the extreme values were not removed prior to 

analyses (F(1,31) = 4.7, p = .04, ηp² = .13), as this was done in the study by Emerson and 

Miyake.  

Interestingly, when similar analyses were performed on the mean integral of the EMG 

signal during the RT interval, this interaction effect was significant (Figure 2B). Indeed, an 

ANOVA on the mean integral of the EMG showed a significant effect of the factor Block, 

F(1,31) = 44.5, p < .001, ηp² = .59, due to larger integrals in the Alternated task condition than 

in the Repeated task condition. Again, there was no main effect of the factor Cues, F(1,31) = 

.6, p = .43, but this time we observed a significant interaction between the Cues and Blocks, 

F(1,31) = 4.5, p = .04, ηp² = .13, due to a larger difference between the Cued vs. Non-cued 

conditions in the Alternated task blocks only. This interaction represents the slopes of Figure 

2B, with significant higher switching costs in the Non-cued condition (M = 2.20 mV.ms; SD 

= 2.16) than in the Cued condition (M = 1.07 mV.ms; SD = 1.90).  

 

                                                        
1 The RT measures cannot however be easily compared because completion times were recorded by the 
experimenter with a stopwatch in this previous study. 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Figure 2. Mean response times and mean EMG integral in Exp. 1 (A, B) and Exp. 2 (C, D) as 
a function of switch type (Cued vs Non-cued) in the Repeated vs. Alternated task blocks. 

Exp. 2 further distinguishes Switch trials and No Switch trials.  
Note. Error bars are +/- oneSE. 

 

 One issue with the current experiment is that switch costs are confounded with mixed 

costs because the tasks alternated systematically (Bryck & Mayr, 2005; Lien, Ruthruff, & 

Kuhns, 2008; Monsell, 2003), meaning that the differences in EMG between the repeated and 

the alternated tasks cannot be attributed solely to the cost of switching. This is particularly the 

case when the next task is not cued. A solution adopted in the next experiment was to use a 

mixed-task in which a task was either repeated from the previous trial or changed. 

 
 
 

Experiment 2 
 
To better characterize the effect of alternating tasks on inner speech, Experiment 2 was 

carried out to divide the alternation cost into a mixed cost and a switch cost (Meiran, 2000). 
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When participants alternate using an ABAB pattern, it is impossible to tell whether a longer 

RT reflects a difficulty to operate the new task (switch cost) or a difficulty to maintain the 

pattern of task rules (mixed cost), or both. When participants are subjected to an AABB 

pattern, a same-task transition (hereafter called the no-switch condition) only involves a 

mixed cost, while a different-task transition (hereafter called a switch condition) implies both 

a mixed cost and a switch cost . 

Participants 

Twenty-three psychology graduate students at the University Nice Sophia-Antipolis 

(M= 24.5 years; SD = 5.2; 9 males) volunteered to participate in this study. The experiment 

was run with a total of 30 participants, but due to technical issues, data for seven participants 

were corrupted and had to be dismissed.  

 

Procedure 

The experimental design was similar to Experiment 1, except that an AABB pattern of 

alternating runs of two tasks was used instead of the ABAB pattern when participants 

alternated.  

Results and Discussion 

As in Experiment 1, trials with RTs diverting more than 3 standard deviations from the 

individual mean RT or below 200 ms were considered outliers and were excluded from the 

analysis, which corresponded to 5.3 % of the data. For each participant, we computed the 

mean integral EMG and the mean RT, as a function of the three task conditions: Single task, 

No-switch during the alternation block (this refers to the AA or BB cases) and Switch during 

the alternation block (referring to either of the AB and BA cases), referring later to the Task 

factor. Then, Mixed costs were computed by subtracting No-switch to Single, and Switch 

costs were computed by subtracting Switch to No-switch.  
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We performed for the two dependent variables (RT, integral EMG) separate repeated-

measures ANOVAs, which showed a systematic main effect of the three task conditions 

(Fs(2,44) > 19, ps < .001; ηp² (RT) = .53, ηp² (EMG) = .47), but no effect of the factor Cues 

and no interaction (see Fig. 2C, D). The respective average RTs for the three conditions 

(Single task, No-switch and Switch) were 2167 ms (SD = 130), 2498 (140), and 2662 (156), 

with pairwise Bonferroni comparisons showing a significant difference between the Single 

task condition and the two other conditions of the Task factor. The respective average integral 

for EMG for the three conditions were 10.0 mV.ms (SD = 1.00), 11.6 (.99), and 11.9 (1.00), 

with pairwise significant differences similar to what was observed in RTs.  

 

Another two separate repeated-measures ANOVAs were run using the factor Cues and 

the factor Cost (Mixed vs. Switch cost; effects are visible on the two slopes between the three 

conditions on the x axis of Fig. 2C, D). We did not reach any significant effect with RTs, but 

analysis of the EMG signal showed more power. The ANOVA was significant for the factor 

Cost (F(1,22) = 4.7, p = .04; ηp² = .18, due to a large difference between the integral for the 

No-Switch condition (M = 1.64, SE = .30) and the Switch condition (M = .30, SE = .39). 

There was no other significant effect, including when testing simple effects. This result tends 

to indicate that language is recruited more for maintaining the task-set AABB or updating the 

next task (A or B)  than for switching  (AB or BA)  per se (the General Discussion is more 

specific about whether this large mixed cost on verbalization can be  related to a task 

preparation effect that is present for both repeat and switch trials or switch trials only). 
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General Discussion 

The first aim of this study was to establish whether the use of inner speech could be 

detected online during the execution of switching tasks. Our results clearly demonstrate that 

participants generate inner speech in these situations, confirming the proposal that the 

recruitment of the motor system for the production of inner speech is likely to be observed 

with attention-demanding tasks as those used in the current study (e.g. Geva et al., 2011).  

Our second goal was to investigate alternation costs (comparing Repeated task blocks 

and Alternated task blocks) as a function of the availability of cues (endogenous versus 

exogenous conditions), and test whether typical RT effects as obtained for example by 

Emerson and Miyake (2003) would be similarly found in the inner speech measurement 

patterns. First, we showed that in the absence of an external cue, that is, in the endogenous 

condition, participants in Exp. 1 presented a slight increase in the production of inner speech 

as compared to the exogenous condition, showing that they resorted more to inner speech 

when alternating between the tasks. Figures 2A and 2B and the statistical outcomes clearly 

illustrate the close correspondence between response delays in the different conditions and the 

amount of inner speech generated during these periods. Our result fits nicely to the ideas 

suggested by Mayr, Kleffner, Kikumoto, and Redford (2014) that speech onset latencies and 

response times are highly synchronized when performing task sequences, probably because 

aloud verbalization helped with sequence updating.  

Interestingly, the factor Cue did not have a strong effect in Exp. 1, particularly on RTs, 

regardless of our small sample size, and a similar result was obtained in Exp. 2. Participant 

debriefing suggest that they felt able to plan the tasks efficiently regardless of the presence of 

cues, and that because their planning was often taking place ahead of the cues, these cues 

turned out to be sometimes counter-productive. Therefore, cued or not cued, our tasks were 

predictable, and this makes it difficult to conclude exactly to what extent the recruitment of 
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inner speech in the cued condition relative to the non-cued condition was genuinely due to the 

recall of the task needed to be performed next. Further experiments need to provide much 

stronger evidence that inner speech is recruited more often when the tasks are of an 

endogenous type, especially because we did not find an effect of the endogenous/exogenous 

factor for the second experiment in our EMG measures. However, one main result in Exp. 2 

tends to show that verbalization was more critical for maintaining the task rules AABB or 

updating the next task A or B (rather than for the actual switching processes AB or BA), 

because inner speech was recruited more for mixed costs than for switch costs. Indeed, the 

slope in Fig. 2 D was steeper between the Repeated task and the Alternated task No-Switch 

conditions than between the No-switch and Switch conditions of the Alternated tasks. This 

result fits with the conclusion of Mayr et al. (2014) that inner speech may be recruited as a 

tool for retrieving and activating the relevant task goal. However, preparing for the tasks at 

hand is a complex process that has generated some debate over whether the mixing cost is 

simply reflecting the ability to maintain instructions for all current tasks or the ability to both 

maintain instructions and to activate the appropriate task for the next trial (see Kieffaber, 

Kruschke, Cho, Walker, & Hetrick, 2013, p. 701). Some models assume that there is no need 

to activate the next task when the task is repeated. 

The conclusion we favor, which is that verbalization is more critical for maintaining 

and updating the task rules, assumes that the preparation process is present for both no-switch 

conditions (when the trial n + 1 involves the same task as trial n) and switch conditions (when 

the trial n + 1 involves a different task) of the mixed tasks. Effectively, following Meiran 

(2000) - and we concur in our analysis - the mixed-cost is computed from substracting the 

No-switch conditions from the Single task conditions, and computation of the alternation cost 

subsequently assumes that the preceding mixed-cost (deducted in that case) combines with an 
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extra switch cost when the task is being switched. Our analysis did not consider that the 

mixed-cost could be of a different nature when associated with a switch cost.  

Also, the mixed-cost effect was larger on verbalization than on response times: 

participants took longer to initiate a task switch, but they benefited only minimally from task-

repetition. In addition, this effect was stronger when measuring the inner speech signal than 

for the response times (the slope in Fig. 2 D was lower than in Fig. 2 C, between the No-

switch and Switch conditions; conversely, the slope was steeper between the Repeated task 

and the Alternated task No-Switch conditions). Whether related to the repeated trials only or 

to both repeated trials and switch trials (Kieffaber et al., 2013), our results shows that pro-

active control seems to generate more verbalization to maintain and update tasks than when 

specifically switching to a different task. This dissociation between RT and EMG measures 

seems to indicate that EMG measures provide a better way of quantifying inner speech in 

cognitive processes compared to response times. However to stay on the safe side it would be 

more cautious to conclude that electromyography analysis seems more precise than RTs but 

that feature extraction methods need to be developed to decompose the signal into different 

components and reduce the noise to support such a strong conclusion. 

At this point, these findings confirm that surface electromyography provides a means 

of quantifying inner speech in cognitive-flexibility processes, in conjunction with more 

traditional behavioral variables such as response time. Previous studies on the use of inner 

speech have only gone as far as showing that the suppression of inner speech leads to a 

decline in task-switching performance. Our study adds to these results by establishing a more 

direct relationship between decision times and inner speech without disrupting task 

performance, with results indicating that inner speech might play a predominant role when 

more endogenous control is required for the task at hand, but mostly when maintaining or 

updating is required.  
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