
HAL Id: hal-01371926
https://hal.science/hal-01371926

Preprint submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAFIP: A STREAMING ALGORITHM FOR
INVERSE PROBLEMS
Maeva Biret, Michel Broniatowski

To cite this version:
Maeva Biret, Michel Broniatowski. SAFIP: A STREAMING ALGORITHM FOR INVERSE PROB-
LEMS. 2016. �hal-01371926�

https://hal.science/hal-01371926
https://hal.archives-ouvertes.fr

SAFIP: A STREAMING ALGORITHM FOR INVERSE

PROBLEMS

MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

Abstract. This paper presents a new algorithm which aims at the resolution

of inverse problems of the form f(x) = 0, for x ∈ Rd and f an arbitrary function
with mild regularity condition. The set of solutions S may be infinite. This

algorithm produces a good coverage of S, with a limited number of evaluations

of the function f . It is therefore appropriate for complex problems where those
evaluations are costly. Various examples are presented, with d varying from 2

to 10. Proofs of convergence and of coverage of S are presented.

1. Introduction

1.1. The scope of this paper. Assume that we are given a bounded and closed
domain D ⊂ Rd, and a continuous real-valued function f defined on D.
The aim of this paper is to present an algorithm for the solution of the problem

(1.1) S = {x ∈ D : f(x) = 0},
assuming S 6= ∅.
Such problems have been extensively handled over the years; see [2]. The difficulty
which we are confronted to lies in three main points :

(1) the set S may contain many points, even be infinite,
(2) the function f might be quite costly for example when defined by a simu-

lation device,
(3) the function f may be quite irregular; we will assume mild regularity in the

neighborhood of any point in S, only.

We also provide a two-fold proof for the convergence of this algorithm, namely we
first prove that any resulting sequence of points in D converges to some point in
S, and secondly that any point x in S is reached asymptotically by some ”good”
sequence, which is a sequence starting in a suitable neighborhood of x. As usu-
ally done in random search techniques, the starting points will be defined through
random sampling in D.

1.2. Bibliographic outlook. Most approaches to Problem (1.1) extensively use
analytic properties of the function f ; dichotomy, false position, Newton, conjugate
gradient, etc (see [1]) handle so called well-posed problems, when the equation
f(x) = 0, for x ∈ R and f a real-valued function, has a unique solution. The case
where f is defined as a mapping from Rd to Rk with d ≤ k is treated by singular
value decomposition (see [3]), which also solves well-posed problems.
The ill-posed problems which we consider, namely the case where Problem (1.1) has
multiple solutions, is usually handled through regularization techniques, which aim

Date: May 26th, 2016.
Key words and phrases. level set, chains, inverse problem, convergence.

1

2 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

at transposing (1.1) into a well-posed problem. This procedure produces a partial
solution to (1.1) under appropriate knowledge on the function f (see [4]). All these
techniques are out of the concern of the present work, where all solutions of f are
looked for, with minimal assumption on f . We briefly present four methods, which
constitute the environment of our proposal.
Local multi-start optimization, a deterministic approach. Looking for the value of
x such that f(x) = 0, consider the function |f |; minimizing |f | indeed produces the
set S.
First we choose a local optimization technique (Newton-Raphson for example).
Then consider a design, which is a grid of initial points for the local optimization.
From any of those, the sequence of iterations of the local optimization algorithm
may produce a limit solution in S. Obviously stationary points not in S may be
produced. The initial design is of utmost importance and the method may be
unstable in this respect. Furthermore the method may be very costly due to the
numerous evaluations of f . A general reference for those methods is [5].
A grid search, deterministic approach. This method produces a sequence of grids in
D. Given an initial regular grid, the function f is evaluated on each of its points.
Points where f is close to 0 are selected and the grid is updated and refined in the
neighborhood of those points. This method has been proposed by [6]. A serious
drawback lies in its cost, when the dimension of D corresponds to real life cases.
Furthermore, the stopping rule of such algorithms does not guarantee a uniform
approximation of S.
A Monte Carlo Markov Chain technique. We assume that the function f is written
as f(x) = g(x) + ε. f is then a model for the real function g with an error ε due to
modelling. For example, g is a physical model and f a computer-based formula for
g. We estimate S = {x : g(x) = 0}. We choose a prior distribution Π0(x) on X and
a parametric form for the distribution of ε, p(ε|x), for fixed x. By Bayes formula,
the a posteriori distribution of x given ε is given by

(1.2)
p(ε|x)Π0(x)∫
p(ε|x)Π0(x)dx

.

The maximum probability principle provides stochastic solutions of g(x) = 0 as the
maximum of (1.2) upon x, given the prior Π0.
In turn it can be proved that, whenever Π0(x) = N (x0, σ

2
0) the Gaussian distribu-

tion with mean x0 and variance σ2
0 , for some x0 ∈ D and σ2

0 > 0, solutions x∗ of
(1.2) can be written as

(1.3) x∗ := argminx∈D||y − g(x)||+ σ2
ε

σ2
0

||x− x0||2,

when ε is assumed to follow N (0, σ2
ε).

In order to find the x∗ solution of (1.3), MCMC routines are used. This method is
described in [7].
The MRM (Monotonous Reliability Method). Assume that f : Rd → R is a globally
monotone, i. e. is monotone in each of its variables. Assume also that the set S of
solutions of the equation f(x) = 0 is a continuous and simply (or one) connected
set.
Assume for example that f is increasing on each of its variables. At each step,
choose one point x in the unexplored subset of D. When f(x) > 0 then all points
y > x (meaning yi > xi for all 1 ≤ i ≤ d) are discarded from the unexplored region.

SAFIP ALGORITHM 3

In the same way, when f(x) < 0, discard all the regions {y : y < x}.
Iteration of these steps produces an unexplored domain which shrinks to S.
Various ways of choosing x in the unexplored domain define specific algorithms.
See [8].

2. Outlook of the SAFIP algorithm

2.1. Basic features and properties. We start with the iteration of the equiva-
lence

(2.1) (f(x) = 0) ⇐⇒
(
f(x) +

x

2k
+

x

2k
=
x

k

)
,

which holds where d = 1, for any k 6= 0; for sake of convenience state k > 0.
We proceed defining a recurrence in the RHS in (2.1), namely define a sequence
(zi)i∈N with zi ∈ D and such that

(2.2) zi+1 = zi +
zi−1 − zi

2
+ kf(zi).

Defining

(2.3) Ri = |zi − zi−1|,

we obtain from (2.2)

(2.4) Ri+1 ≤
Ri
2

+ k|f(zi)|.

When d > 1, we may write

Ri = ||zi − zi−1||.
Thus, any sequence (zi) which satisfies (2.2) also satisfies (2.4). We define R0 > 0
arbitrary.
We now propose to substitute (2.2) by a random sequence (zi) which satisfies (2.4).
Also some additional conditions on (zi) will be imposed. We will thus be able to
prove the convergence of the resulting sequence (zi) to some point in S; reciprocally,
for any x in S, when z0 is close enough to x, the limit point of (zi) will coincides
with x.
Define z0 and z1 uniformly in D and R1 = ||z1 − z0||.
For i ≥ 1 compare f(zi) and f(zi−1). Let C ∈ [1

2 , 1]. If

(2.5) |f(zi)| ≤ C|f(zi−1)|,

then obtain zi+1 by

(2.6) zi+1 := zi + ui,

where ui is randomly drawn on B
(
0, Ri

2 + k|f(zi)|
)
, where B(ω, r) is the ball with

center ω and radius r.
If (2.5) is not fulfilled then the sequence (zj)j∈N stops. Draw then z0 and z1 again.
At this point we state

Theorem 1. Any infinite sequence (zi) defined as above converges a. s. with limit
in S.

4 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

We now add a number of conditions on the function f which entail that any
point in S is reached asymptotically.
Let x ∈ S and set z0 ∈ B(x, ε0) = {z : ||z − x|| ≤ ε0} for some ε0 > 0. Define
further

(2.7) E0 := B ∩ {z : ||z − z0|| > k1|f(z0)|},
with 0 < k1 < k and such that k1|f(z0)| < 2ε0; B is the ball with center z0 and
radius R0

2 + k|f(z0)|. Therefore, E0 is an annulus around z0.
Let

(2.8) A1 = int{B(x, ε0) ∩B}.
By its very definition, the set A1 is not void.
Assume that f satisfies the following regularity conditions

(1) For all x ∈ S, there exists some ε0(x) > 0 such that if z0, z1 ∈ B(x, ε0) and
||x− z1|| ≤ ||x− z0|| then

{z : |f(z)| ≤ |f(z1)|} {z : |f(z)| ≤ |f(z0)|}.
(2) There exists 0 < m < 1

4ε0
such that for all x ∈ S, for all z0 ∈ B(x, ε0) for

all 0 < ε < k/2, for all z ∈ E0 ∩A1,

|f(z0)| − |f(z)| ≥ m||z − z0||.
By condition (1), the LHS in this inequality is non negative.

We then have

Theorem 2. Let x ∈ S and ε0 > 0 such that (1) and (2) hold. When z0 ∈ B(x, ε0),
the sequence (zi) is infinite and satisfies Theorem 1. Furthermore lim zi = x a. s.

In order to cover all S by the limiting points of such sequences we also propose
to add a step where we randomly select p points uniformly in D. These points are
initial points of new sequences; this allows to obtain a good covering of S by the
limits of all these sequences.
Obviously this latest step does not substitute the entire algorithm; clearly a hudge
number of such points will approximate S from the start, the most inefficient Monte-
Carlo random search method.

The stopping rule is defined through the definition of an accuracy index call tol.
Define N the number of points to be reached in S. We may decide to stop the
algorithm when N sequences (zi) are such that the extremities are in S up to the
accuracy, denoted tol in the sequel.

2.2. Enhanced algorithm. In order to improve the coverage of S, keeping the
same set of points z0, we propose to modify the choice of zi+1 as given in (2.5) and
(2.6) as follows. From z0, . . . , zi we build indeed i chains, each one starting from
zj , 1 ≤ j ≤ i. Obviously the sequence starting at zi is as described above; the new
i − 1 ones spread and develop in all directions. Any of these chains inherit of the
properties mentioned in Theorem 1. Also, any x in S is asymptotically reached by
one of those sequences, as i increases.
The sequences defined by an algorithm may be finite; indeed condition (2.5) may
not hold for (zi−1, zi) and therefore zi+1 cannot be simulated. Thus no point zi+1

will be simulated since his father would be higher than his grandfather.
However his grandfather zi−1 is indeed lower than his grand-grandfather; therefore

SAFIP ALGORITHM 5

his grandfather may have offspring. This grandfather is the root of a new genera-
tion, hence a new zi which may satisfy (2.5). In the same way all ancestors of zi−1

satisfy (2.5) and are eligible for fatherhood.
We call a step of the algorithm the generation of all the offspring of the eligible
points in the existing population of points. Such a step is followed by the generation
of p uniformly distributed points in D as done in the basic algorithm.

In the sequel, we focus on the basic algorithm described in Section 2.2.

2.3. Reducing the computational cost tuning the parameters. Firstly this
algorithm makes use of very few parameters. Furthermore those can be tuned easily
according to the complexity of the problem at hand. Indeed these parameters
can be interpreted in connection with the computational burden. In some cases
the function f is very costly and running an algorithm for a long time, without
evaluating f often, may be of great advantage. Sometimes the function f is easy
to calculate and the need is to get a quick description of S. Tuning k,C and m,
together with the number of initiating points, makes use for those choices.
The following examples illustrate the role of each of the parameters, all the other
ones being kept fixed.
The number of solutions which we require in the tolerance zone around S is fixed
to 1000, but in the last example where the algorithm is evaluated with respect to
this number.
Examples are presented in dimension 2. Higher dimension examples are presented
in Section 2.4. Red points are couples (x1, x2) such that f(x1, x2) > 0. Points with
negative values of f are blue. Black points are all blue or red ones whose f value
belongs to [−tol, tol].
Each example is summarized by three indicators. The first one is the runtime. The
second one is the efficiency coefficient (EC) which is the ratio between the total
number of evaluations of f and the number of solutions, which equals 1000 in all
but the last example. This indicator is a measure of the number of calls to f which
are required in order to obtain one solution to the equation f(x) = 0. The third
indicator is of visual nature; in all those examples which are in dimension 2, the
quality of the coverage of S can be considered qualitatively.

Remark 1. The most important indicator is EC, since in all industrial applica-
tions, what really matters is the cost in evaluating f .

The initialization step. Call n the number of initiating points z0, randomly selected
on D. This is the initial cost of the method since the function f will be evaluated
n times. Due to section 2.2, n should not be too large.

Example 1. Let f be a bivariate function defined by

(x1, x2) 7→ f(x1, x2) = x2
1 + x2

2 − 0.5

The aim is to find N = 1000 pairs (x1, x2) such that |f(x1, x2)| ≤ tol where tol is
the accuracy. All parameters but n are fixed. The tolerance is 0.01; the value of
C is fixed being 0.75; the value of k is 1; the number p of supplementary points at
each step of the algorithm is 1.
The solutions are close to S = {(x1, x2), f(x1, x2) = 0}, the circle with center (0, 0)

and radius
√

0.5. In Figure 1(a), the function f is intersected by the horizontal

6 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

n tol N C k p Time EC Coverage
5 0.01 1000 0.75 1 1 0.32s 4.33 -

100 0.01 1000 0.75 1 1 0.60s 6.32 +
300 0.01 1000 0.75 1 1 1.54s 9.14 ++

Table 1. Results for Example 1 with different values of n

plane z = 0. The Figure 1(b) represents the intersection in the variables frame.
The circle is then clearly visible. In Figures 2 (a), (b), (c), we have considered

Figure 1. Representations of the quadratic function

respectively n = 5, n = 100 and n = 300. Clearly the more numerous the initial

Figure 2. Solving quadratic equation using SAFIP for three val-
ues of n

points, the more the number of chains, and therefore the more numerous the points
where the function f is evaluated; so the algorithm is costly as n increases. At the
contrary, the better the coverage of S. Results are gathered in Table 1.

The rate of convergence. The value of C pertains to the rate of convergence of the
algorithm. Assume C small (C close to 1/2); thus condition (2.5) is rarely satisfied.
The selected points will define chains with a fast convergence to S. However in
order to satisfy (2.5), many simulations in the ball B are required, leading to an
increased runtime.

SAFIP ALGORITHM 7

Example 2. Let f be a bivariate function defined by

(x1, x2) 7→ f(x1, x2) = x4
1 + x3

2 − 0.5

The aim is to find N = 1000 pairs (x1, x2) such that |f(x1, x2)| ≤ tol where tol is
the accuracy. All parameters but C are fixed. The number of initial points is 10;
the tolerance is 0.015; the value of k is 1; the number p of supplementary points at
each step of the algorithm is 1.
In Figure 3(a), the function f is intersected by the horizontal plane z = 0. The
Figure 3(b) represents the intersection in the variables frame. In Figures 4 (a), (b),

Figure 3. Representations of the function with a chair shape

(c), we have considered respectively C = 0.55, C = 0.75 and C = 0.95. The greater

Figure 4. Solving equation for the function with a chair shape
using SAFIP for three values of C

C, the less the number of evaluations of f ; furthermore the runtime decreases as C
increases. Results are gathered in Table 2.

The role of k. The parameter k is crucial for the simulation around zi. In order to
give some insight on the value of k, suppose that z belongs to [−1, 1]2, and that
the mean value of |f(z)| is f̄ = 10. The current radius of the ball B is R

2 + k|f(z)|,
with R the distance between two points in the chain. Thus k should be at most of
order 1

f̄
; in this way the ball B lays in [−1, 1]2, roughly.

This appears clearly in Example 3.

8 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

n tol N C k p Time EC Coverage
10 0.015 1000 0.55 1 1 0.62s 8.36 +
10 0.015 1000 0.75 1 1 0.44s 5.33 +
10 0.015 1000 0.95 1 1 0.42s 5.05 +

Table 2. Results for Example 2 with different values of C

Example 3. Let f be a bivariate function defined by

(x1, x2) 7→ f(x1, x2) = (1− x1)2 + 100(x2 − x2
1)2 − 50

The aim is to find N = 1000 pairs (x1, x2) such that |f(x1, x2)| ≤ tol where tol is
the accuracy. All parameters but k are fixed. The number of initial points is 10;
the tolerance is 3; the value of C is 0.75; the number p of supplementary points at
each step of the algorithm is 1.
In Figure 5(a), the function f is intersected by the horizontal plane z = 0. Figure
5(b) represents the intersection in the variables frame. The mean value of f is

Figure 5. Representations of the Rosenbrock function

200 and its variations belong to [−50, 350]. In Figures 6 (a), (b), (c), we have
considered respectively k = 1/200, k = 10/200 and k = 50/200. As k increases, the

Figure 6. Solving equation for the Rosenbrock function using
SAFIP for three values of k

runtime also increases as does the number of evaluations of f in order to obtain

SAFIP ALGORITHM 9

n tol N C k p Time EC Coverage
10 3 1000 0.75 0.005 1 0.76s 10.69 +
10 3 1000 0.75 0.05 1 2.76s 18.71 +
10 3 1000 0.75 0.25 1 4.16s 48.49 ++

Table 3. Results for Example 3 with different values of k

one solution, and also the coverage of S improves. When f is costly, k should be
chosen small. Results are gathered in Table 3.

The role of p. The number of intermediate points is important since it allows to
explore new points of D in quest for S. This number should be chosen small with
respect to the number n of initializing points. The following example shows that
very small values of p may be good choices.

Example 4. Let f be a bivariate function defined by

(x1, x2) 7→ f(x1, x2) = (x1 − 0.5)2 + 3x1x2 − x3
2 − 2.25

The aim is to find N = 1000 pairs (x1, x2) such that |f(x1, x2)| ≤ tol where tol is
the accuracy. All parameters but p are fixed. The number of initial points is 10;
the tolerance is 0.04; the value of C is 0.75; the number k is 0.25.
In Figure 7(a), the function f is intersected by the horizontal plane z = 0. Figure
7(b) represents the intersection in the variables frame. p is chosen as 1, 3 and

Figure 7. Representations of the polynomial function

5. In Figures 8 (a), (b), (c), we see that the algorithm has produced some insight
to elements in S at the north-east region; however, the 1000 solutions have been
obtained on the south-west component of S. Having asked for more solutions, we
would have obtained the north-east component. Increasing p to 3 or 5, the coefficient
EC increases noticeably and the coverage of S clearly increases. Results are gathered
in Table 4.

10 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

Figure 8. Solving equation for the polynomial function using
SAFIP for three values of p

n tol N C k p Time EC Coverage
10 0.04 1000 0.75 0.25 1 2.12s 15.94 +
10 0.04 1000 0.75 0.25 3 3.24s 14.58 +
10 0.04 1000 0.75 0.25 5 4.96s 17.01 ++

Table 4. Results for Example 4 with different values of p

n tol N C k p Time EC Coverage
10 0.15 1000 0.75 0.25 1 2.6s 43.47 -
10 0.75 1000 0.75 0.25 1 1.68s 32.2 -
10 1.5 1000 0.75 0.25 1 1.3s 22.85 -

Table 5. Results for Example 5 with different values of p

The tolerance factor tol. The strongest the tolerance (i. e. when tol is small), the
highest the number of evaluations of f , and the longest the runtime.

Example 5. Let f be a bivariate function defined by

(x1, x2) 7→ f(x1, x2) = 8 sin(7(x1 − 0.9)2)2) + 6 sin((14(x1 − 0.9)2)2) + (x1 − 0.9)2

+ 8 sin((7(x2 − 0.9)2)2) + 6 sin((14(x2 − 0.9)2)2)

+ (x2 − 0.9)2 − 15

The aim is to find N = 1000 pairs (x1, x2) such that |f(x1, x2)| ≤ tol where tol is
the accuracy. All parameters but tol are fixed. The number of initial points is 10;
the value of C is 0.75; the number k is 0.08; the number p of supplementary points
at each step of the algorithm is 1.
In Figure 9(a), the function f is intersected by the horizontal plane z = 0. Figure
9(b) represents the intersection in the variables frame. The function oscillates
between -15 and 15. In Figures 10 (a), (b), (c), algorithm results are illustrated
for three values of tol : 0.15, 0.75 and 1.5 . When tol varies from 0.15 to 1.5, the
coefficient EC gets divided by 2. Results are gathered in Table 5.

Due to the complexity of the function and of the set S, coverage is mild whatever
tol; it depends upon the required number of solutions only.

SAFIP ALGORITHM 11

Figure 9. Representations of the trigonometric function

Figure 10. Solving equation for the trigonometric function using
SAFIP for three values of tol

The role of N , the required number of solutions. The same function as in Example
4 is used in order to focus on the role of the number of solutions. When we ask for
15000 points in S, then the runtime remains quite satisfactory; the EC coefficient
is 76, due to a choice of n = 1000. The coverage of S is quite fair. Clearly the
quality of the solutions improves with the required number of solutions. Not only
do we get more solutions, but the coverage of S improves noticeably.

Example 6. Let f be a bivariate function defined by

(x1, x2) 7→ f(x1, x2) = 20 + x2
1 − 10 cos(2πx1) + x2

2 − 10 cos(2πx2)− 60

The aim is to find N pairs (x1, x2) such that |f(x1, x2)| ≤ tol where tol is the
accuracy. All parameters but N are fixed. The number of initial points is 10; tol
is fixed to 0.4; the value of C is 0.75; the number k is 0.025; the number p of
supplementary points at each step of the algorithm is 1.
In Figure 12(a), the function f is intersected by the horizontal plane z = 0. Figure
12(b) represents the intersection in the variables frame. In Figures 13 (a), (b),
(c), algorithm results are illustrated for three values of N : 100, 1000 and 2000.
When N is small, the important feature of the result is that S is covered equally. So
no cluster of solutions seems to appear; this is important for exploratory analysis.
Results are gathered in Table 6.

12 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

Figure 11. Solving equation for the trigonometric function using
SAFIP for a bigger number of required final points and a tolerance
of 0.15

Figure 12. Representations of the Rastrigin function

n tol N C k p Time EC Coverage
10 0.4 1000 0.75 0.025 1 0.48s 55.33 -
10 0.4 1000 0.75 0.025 1 3.96s 60.64 -
10 0.4 1000 0.75 0.025 1 8.6s 83.82 -

Table 6. Results for Example 6 with different values of N

2.4. Increasing the dimension. We consider a collection of functions which mim-
ick Example 1, increasing the dimension. The required number of solutions is kept
as N = 500 in all cases.

SAFIP ALGORITHM 13

Figure 13. Solving equation for the Rastrigin function using
SAFIP for three values of N

We firstly consider the case in dimension 3, namely we look at points situated in

(2.9) S := {(x1, x2, x3) : x2
1 + x2

2 + x2
3 − 0.5 = 0},

with −1 ≤ xi ≤ 1 for i = 1, 2, 3. The result appears in Figure 14. We also have

Figure 14. Results for spheres in dimension 3

considered the set

(2.10) S := {(x1, x2, x3) : max(x1, x2, x3)− 0.5 = 0};

See Figure 15.
Looking at similar examples as (2.9), we consider d = 4 and d = 10; the results

Figure 15. Results for cubes in dimension 3

14 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

Dim n tol N C k p Time EC
2 5 0.1 500 0.75 1 1 0.22s 4.81
3 25 0.1 500 0.75 1 1 4.72s 6.64
4 75 0.1 500 0.75 1 1 0.4s 9.7
10 1000 0.1 500 0.75 1 1 53s 449

Table 7. Results for spheres in different dimensions

Dim n tol N C k p Time EC
2 5 0.1 500 0.75 1 1 0.16s 4
3 25 0.1 500 0.75 1 1 4.2s 5.04
4 75 0.1 500 0.75 1 1 0.72s 8
10 1000 0.1 500 0.75 1 1 51s 614

Table 8. Results for cubes in different dimensions

comparing three dimensions are in Table 7. The same is available for (2.10) in
Table 9. The number of initializing points has been chosen accordingly: n = 75 for
d = 4, and n = 1000 for d = 10; a coherent choice for n would have been n = 59

for d = 10, an impracticable choice.
Obviously the indicator EC increases with n. However, choosing n = 59 and N =
500, the value of EC exceeds 2000, which proves that n should be kept low, growing
slowly with respect to d.

3. Simultaneous inverse problems

3.1. Algorithm. Let f and g denote two functions defined on D; each of these
functions f and g is assumes to satisfy hypothesis (2.5) together with conditions
(1) and (2). We will make use of constants C, k, n and p defined in Section 2.2;
these constants will play a similar role in the present on f and g. The number of
common solutions to the system

(3.1)

{
f(x) = 0
g(x) = 0

is denoted N .
Also the present section considers simultaneous inverse problems pertaining to two
functions; quantization to a given number of functions is straightforward.
The algorithm is as follows with similar notation as in Section 2.2, it holds

(3.2)

{
f(x) = 0
g(x) = 0

⇔
{
f(x) + x

2k + x
2k = x

2
g(x) + x

2k + x
2k = x

2

which yields to define

(3.3) zi+1 = zi +
zi−1 − zi

2
+ kmax(|f(zi)|, |g(zi)|).

Inequality (2.4) is substituted by

(3.4) Ri+1 ≤
Ri
2

+ kmax(|f(zi)|, |g(zi)|).

SAFIP ALGORITHM 15

Similarly as in (2.6), the choice of zi+1 follows the rule

(3.5) zi+1 = zi + ui

where ui is drawn randomly on B(0, Ri

2 + kmax(|f(zi)|, |g(xi)|).
With those changes, denoting S = {x : f(x) = 0, g(x) = 0}, it holds

Theorem 3. Any sequence (zi) defined as above converges a. s. with limit in S.

and

Theorem 4. For any x ∈ S and ε0 > 0 such that (1) and (2) hold simultaneously
for f and g, and when z0 ∈ B(x, ε0), thus the sequence (zn) is infinite and converges
to x.

3.2. Examples. Due to (3.5), the point zi+1 is randomly chosen in a ball B centerd
at zi when both |f(zi)| and |g(zi)| share a common measural order of magnitude.
The best case is when B has a moderate radius; it is therefore useful to normalize
f and g on D; this preliminary procedure obviously does not modify the set S.
We present three examples of simultaneous inversion, based on the functions pre-
sented on Section 2.2. In all examples the parameters are n = 20, p = 1, tol = 0.01,
C = 0.75, k = 1. N equals 10 in Example 7, it equals 100 in Example 8 and
Example 9.

Example 7 (A regular case). We choose f as in Example 2 and g(x) = f(x−a), a =
(0.2,−0.2). Therefore f(x) = 0 is as in Example 2 and g(x) = 0 is a circle with
same radius and center a.
Figures 16(a) and (b) show the graphs of f and g together with the intersection of
the plane z = 0. The set S consists in the two points shown in Figure 16(b). Those

Figure 16. Representations of f , g and S

points are indeed well estimated by the present algorithm, as seen in Figure 17. The
runtime is 0.62s and the efficiency coefficient is 516.

16 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

Figure 17. Solutions obtained with SAFIP algorithm

C EC Temps
0.55 905 4.72s
0.75 469 1.66s
0.95 311 1.24s
k EC Temps
1 546 5.02s
10 1963 8.8s
50 6372 32.04s
n EC Temps
10 577 2.54s
100 622 3.36s
300 708 3.36s

Table 9. Results for cubes in different dimensions

Example 8 (Mixing a regular function and an irregular one). We choose f(x) as
defined in Example 6, a regular function, and g(x) the Rastrigin function of Example
13. The Figure 18(a) shows the two function, and Figure 18(b) provides the set S,
which is defined as the intersection of the frontier points of the red domains (the
solutions to g(x) = 0) wt=ith the frontier points of the blue domains (the solutions
to g(x) = 0). There are 29 points in S. The algorithm provides solutions as shown
in Figure 19, with runtime 14s and efficiency coefficient 375. Table ?? provides
results for different values of C, k and n.
As C increases, EC decreases; as k or n increases, EC increases too.

SAFIP ALGORITHM 17

Figure 18. Representations of f , g and S

Figure 19. Solutions obtained with SAFIP algorithm

A clear feature in Figure 19 is that all the 29 points in S are obtained a limiting
points of SAFIP.

18 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

Example 9 (A last example). We choose f(x) as in Example 2 and g(x) the
trigonometric function of Example 10. Figure 20(a) shows the functions f and g;
Figure 20 (b) shows the intersection set S which contains 33 points. We asked for

Figure 20. Representations of f , g and S

N = 100 solutions; the set S is not totally covered (we obtain 26 points in S as
it can be seen on Figure 21); a larger value of N would provide all solutions The

Figure 21. Solutions obtained with SAFIP algorithm

runtime is 4.1s and EC is 1102.

SAFIP ALGORITHM 19

4. Appendix

Proof of Theorem 1.
Step 1 . We prove that the sequence (Ri)i∈N converges to 0 a. s.
Denote a := |f(z0)| > 0. By (2.5),

|f(zi)| ≤ aCi,

hence Ri+1 ≤ Ri

2 + akCi.
The sequence (Ri)i∈N is now compared to the sequence (xi)i∈N defined by

xi+1 =
xi
2

+ akCi.

It holds

xn =
x0

2n
+

ak

2n−1
+
akC

2n−2
+
akC2

2n−3
+ . . .+

akCn−2

21
+ akCn−1

=
x0

2n
+ akCn−1

n−1∑
j=0

(
1

2C

)j
.(4.1)

When C > 1/2, it follows that xn given in (4.1) tends to 0 as n→∞.
Since the generic term of (Rn)n∈N satisfies

(4.2) Rn ≤
R0

2n
+ akCn−1

n−1∑
j=0

(
1

2C

)j
,

where the RHS is xn, it follows that Rn tends to 0 as n→∞.

Step 2 . Assume at present that (zn)n∈N is an a. s. convergent sequence, and
denote l its limit. We prove that l belongs to S. Indeed by (2.2), writing un =
vn(Rn

2 +k |f(zn)|) for vn uniformly distributed on B(0, 1), the unit ball in Rd. Going

to the limit in (2.2), l = l + lim
n→∞

un. It follows that lim
n→∞

Rn

2 + k|f(zn)| = 0. Since

lim
n→∞

Rn = 0, it holds

lim
n→∞

|f(zn)| = 0 a. s.

By continuity of f , it follows that lim
n→∞

|f(zn)| = f(l) and then f(l) = 0. We have

proved that l ∈ S.
It remains to prove that (zn)n∈N converges, showing that it is a Cauchy sequence.
Let (m,n) ∈ N2,m > n. Then

sup
m>n
||zm − zn|| ≤ sup

m>n

m∑
j=n+1

||zj − zj−1||

≤ sup
m>n

m∑
j=n+1

rj .

20 MAEVA BIRET(1) AND MICHEL BRONIATOWSKI(2,∗)

By (4.2),

sup
m>n
||zm − zn|| ≤ sup

m>n

m∑
j=n+1

(
r0

2j
+ akCj−1

(
2C −

(
1

2C

)j−1

2C − 1

))

≤ sup
m>n

r0

(
1−

(
1
2

)m−n)
2n

+
2akCn+1

2C − 1
× 1− Cm−n

1− C
− ak

(2C − 1)2n
×

1−
(

1
2

)m−n
1
2

 ,

with 0 < 2C − 1 < 1. Since m > n and C < 1

sup
m>n
||zm − zn|| ≤

r0

2n+1
+

2akCn+1

(2C − 1)(1− C)
− ak

(2C − 1)2n−1

and therefore

(4.3) lim
n→∞

sup
m>n
||zm − zn|| = 0,

which proves the claim.
�

Proof of Theorem 2. By (2.7), we have E0 = {z : k1|f(z0)| ≤ ||z − z0|| ≤ R0

2 +
k|f(z0)|{, with ε0 = ||x− z0||. We have to prove that E0 ∩A1 6= ∅.
By (2.8) and since E0 ⊂ B, this is equivalent to prove that B(x, ε0) ∩ E0 6= ∅. By
the definition of E0 which is an annulus centred on z0 with a minimal radius of 2ε0
and since z0 ∈ ∂B(x, ε0) according to the definition of ε0, B(x, ε0) ∩ E0 6= ∅ and so
E0 ∩ E1 6= ∅.
Let z1 ∈ A1 ∩ E0. we prove that z1 satisfies (2.5).
By condition 2, it follows

|f(z0)| − |f(z1)| ≥ mk1|f(z0)|,
since z1 ∈ E0. This is equivalent to

|f(z1)| ≤ (1−mk1)|f(z0)|
With an arbitrary k1 close to 0 such that 0 < mk1 <

1
2 . Getting C = (1−mk1) ∈

[1
2 , 1], we have |f(z1)| ≤ C|f(z0)| for z1 ∈ E0. Thus z1 ∈ A1 ∩ {z1, |f(z1)| ≤
C|f(z0)|} and z0 can have an offspring.
Iterating the above argument we can construct a sequence of balls B(x, εi) with
lower bounded and decreasing sequence of radius. Thus this sequence converges to
some limit. By Theorem 1, lim

i→∞
zi = x∗ ∈ S.

We show that x∗ = x by contradiction.
If x∗ 6= x, thus there exists i ∈ N such that x 6∈ B(x∗, ||x∗−zi||). But z is simulated
around x with decreasing radius to 0. Hence is the contradiction. Thus x∗ = x and
we have proved Theorem 2. �

References

[1] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American statistical association, 85(410):398–409, 1990.

[2] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.
[3] András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms.

Journal of Artificial Intelligence Research, pages 407–444, 2011.

[4] Mohamed Achibi Maëva Biret and Michel Broniatowski. Recherche des ensembles de niveaux
dune fonction multi variée à valeurs réelles sous conditions de monotonie. I-Revues CNRS,

Actes du Congrs Lambda-Mu 19, 2014.

SAFIP ALGORITHM 21

[5] Curtis Miller. Search for level sets of functions using computer experiments. 2005.

[6] Gen Nakamura and Roland Potthast. Inverse Modeling. 2053-2563. IOP Publishing, 2015.

[7] Endre Süli and David F. Mayers. An introduction to numerical analysis. Cambridge university
press, 2003.

[8] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and Anatoly G. Yagola. Numerical meth-

ods for the solution of ill-posed problems, volume 328. Springer Science & Business Media,
2013.

Current address: (1)Safran Aircraft Engine, Moissy-Cramayel

Current address: (2)Université Pierre et Marie Curie, Paris
E-mail address: (∗) Corresponding author: michel.broniatowski@upmc.fr

