Maeva Biret

Michel Broniatowski
email: michel.broniatowski@upmc.fr

SAFIP: A STREAMING ALGORITHM FOR INVERSE PROBLEMS

Keywords: May level set, chains, inverse problem, convergence 1) Safran Aircraft Engine, Moissy-Cramayel

This paper presents a new algorithm which aims at the resolution of inverse problems of the form f (x) = 0, for x ∈ R d and f an arbitrary function with mild regularity condition. The set of solutions S may be infinite. This algorithm produces a good coverage of S, with a limited number of evaluations of the function f . It is therefore appropriate for complex problems where those evaluations are costly. Various examples are presented, with d varying from 2 to 10. Proofs of convergence and of coverage of S are presented.

Such problems have been extensively handled over the years; see [START_REF] Golub | Matrix computations[END_REF]. The difficulty which we are confronted to lies in three main points :

(1) the set S may contain many points, even be infinite, [START_REF] Golub | Matrix computations[END_REF] the function f might be quite costly for example when defined by a simulation device, (3) the function f may be quite irregular; we will assume mild regularity in the neighborhood of any point in S, only. We also provide a two-fold proof for the convergence of this algorithm, namely we first prove that any resulting sequence of points in D converges to some point in S, and secondly that any point x in S is reached asymptotically by some "good" sequence, which is a sequence starting in a suitable neighborhood of x. As usually done in random search techniques, the starting points will be defined through random sampling in D.

1.2. Bibliographic outlook. Most approaches to Problem (1.1) extensively use analytic properties of the function f ; dichotomy, false position, Newton, conjugate gradient, etc (see [START_REF] Gelfand | Sampling-based approaches to calculating marginal densities[END_REF]) handle so called well-posed problems, when the equation f (x) = 0, for x ∈ R and f a real-valued function, has a unique solution. The case where f is defined as a mapping from R d to R k with d ≤ k is treated by singular value decomposition (see [START_REF] György | Efficient multi-start strategies for local search algorithms[END_REF]), which also solves well-posed problems. The ill-posed problems which we consider, namely the case where Problem (1.1) has multiple solutions, is usually handled through regularization techniques, which aim at transposing (1.1) into a well-posed problem. This procedure produces a partial solution to (1.1) under appropriate knowledge on the function f (see [START_REF] Achibi | Recherche des ensembles de niveaux dune fonction multi variée à valeurs réelles sous conditions de monotonie. I-Revues CNRS[END_REF]). All these techniques are out of the concern of the present work, where all solutions of f are looked for, with minimal assumption on f . We briefly present four methods, which constitute the environment of our proposal.

Local multi-start optimization, a deterministic approach. Looking for the value of x such that f (x) = 0, consider the function |f |; minimizing |f | indeed produces the set S. First we choose a local optimization technique (Newton-Raphson for example). Then consider a design, which is a grid of initial points for the local optimization. From any of those, the sequence of iterations of the local optimization algorithm may produce a limit solution in S. Obviously stationary points not in S may be produced. The initial design is of utmost importance and the method may be unstable in this respect. Furthermore the method may be very costly due to the numerous evaluations of f . A general reference for those methods is [START_REF] Miller | Search for level sets of functions using computer experiments[END_REF]. A grid search, deterministic approach. This method produces a sequence of grids in D. Given an initial regular grid, the function f is evaluated on each of its points. Points where f is close to 0 are selected and the grid is updated and refined in the neighborhood of those points. This method has been proposed by [START_REF] Nakamura | Inverse Modeling[END_REF]. A serious drawback lies in its cost, when the dimension of D corresponds to real life cases. Furthermore, the stopping rule of such algorithms does not guarantee a uniform approximation of S. A Monte Carlo Markov Chain technique. We assume that the function f is written as f (x) = g(x) + . f is then a model for the real function g with an error due to modelling. For example, g is a physical model and f a computer-based formula for g. We estimate S = {x : g(x) = 0}. We choose a prior distribution Π 0 (x) on X and a parametric form for the distribution of , p(|x), for fixed x. By Bayes formula, the a posteriori distribution of x given is given by

(1.2) p(|x)Π 0 (x) p(|x)Π 0 (x)dx .
The maximum probability principle provides stochastic solutions of g(x) = 0 as the maximum of (1.2) upon x, given the prior Π 0 .

In turn it can be proved that, whenever Π 0 (x) = N (x 0 , σ 2 0) the Gaussian distribution with mean x 0 and variance σ 2 0 , for some x 0 ∈ D and σ 2 0 > 0, solutions x * of (1.2) can be written as

(1.3) x * := argmin x∈D ||y -g(x)|| + σ 2 σ 2 0 ||x -x 0 || 2 ,
when is assumed to follow N (0, σ 2). In order to find the x * solution of (1.3), MCMC routines are used. This method is described in [START_REF] Süli | An introduction to numerical analysis[END_REF].

The MRM (Monotonous Reliability Method). Assume that f : R d → R is a globally monotone, i. e. is monotone in each of its variables. Assume also that the set S of solutions of the equation f (x) = 0 is a continuous and simply (or one) connected set.

Assume for example that f is increasing on each of its variables. At each step, choose one point x in the unexplored subset of D. When f (x) > 0 then all points y > x (meaning y i > x i for all 1 ≤ i ≤ d) are discarded from the unexplored region.

In the same way, when f (x) < 0, discard all the regions {y : y < x}. Iteration of these steps produces an unexplored domain which shrinks to S. Various ways of choosing x in the unexplored domain define specific algorithms. See [START_REF] Tikhonov | Numerical methods for the solution of ill-posed problems[END_REF].

2. Outlook of the SAFIP algorithm 2.1. Basic features and properties. We start with the iteration of the equivalence

(2.1) (f (x) = 0) ⇐⇒ f (x) + x 2k + x 2k = x k ,
which holds where d = 1, for any k = 0; for sake of convenience state k > 0.

We proceed defining a recurrence in the RHS in (2.1), namely define a sequence (z i) i∈N with z i ∈ D and such that (2.2)

z i+1 = z i + z i-1 -z i 2 + kf (z i). Defining (2.3) R i = |z i -z i-1 |, we obtain from (2.2) (2.4) R i+1 ≤ R i 2 + k|f (z i)|.
When d > 1, we may write

R i = ||z i -z i-1 ||.
Thus, any sequence (z i) which satisfies (2.2) also satisfies (2.4). We define R 0 > 0 arbitrary. We now propose to substitute (2.2) by a random sequence (z i) which satisfies (2.4). Also some additional conditions on (z i) will be imposed. We will thus be able to prove the convergence of the resulting sequence (z i) to some point in S; reciprocally, for any x in S, when z 0 is close enough to x, the limit point of (z i) will coincides with x. Define z 0 and z 1 uniformly in D and

R 1 = ||z 1 -z 0 ||. For i ≥ 1 compare f (z i) and f (z i-1). Let C ∈ [1 2 , 1]. If (2.5) |f (z i)| ≤ C|f (z i-1)|, then obtain z i+1 by (2.6) z i+1 := z i + u i ,
where u i is randomly drawn on B 0, Ri 2 + k|f (z i)| , where B(ω, r) is the ball with center ω and radius r. If (2.5) is not fulfilled then the sequence (z j) j∈N stops. Draw then z 0 and z 1 again. At this point we state Theorem 1. Any infinite sequence (z i) defined as above converges a. s. with limit in S.

We now add a number of conditions on the function f which entail that any point in S is reached asymptotically. Let x ∈ S and set z 0 ∈ B(x, 0) = {z : ||z -x|| ≤ 0 } for some 0 > 0. Define further (2.7)

E 0 := B ∩ {z : ||z -z 0 || > k 1 |f (z 0)|}, with 0 < k 1 < k and such that k 1 |f (z 0)| < 2 0 ;
B is the ball with center z 0 and radius R0 2 + k|f (z 0)|. Therefore, E 0 is an annulus around z 0 . Let (2.8)

A 1 = int{B(x, 0) ∩ B}.
By its very definition, the set A 1 is not void. Assume that f satisfies the following regularity conditions (1) For all x ∈ S, there exists some 0 (x) > 0 such that if z 0 , z 1 ∈ B(x, 0) and

||x -z 1 || ≤ ||x -z 0 || then {z : |f (z)| ≤ |f (z 1)|} {z : |f (z)| ≤ |f (z 0)|}.
(2) There exists 0 < m < 1 4 0 such that for all x ∈ S, for all z 0 ∈ B(x, 0) for all 0

< < k/2, for all z ∈ E 0 ∩ A 1 , |f (z 0)| -|f (z)| ≥ m||z -z 0 ||.
By condition [START_REF] Gelfand | Sampling-based approaches to calculating marginal densities[END_REF], the LHS in this inequality is non negative. We then have Theorem 2. Let x ∈ S and 0 > 0 such that (1) and (2) hold. When z 0 ∈ B(x, 0), the sequence (z i) is infinite and satisfies Theorem 1. Furthermore lim z i = x a. s.

In order to cover all S by the limiting points of such sequences we also propose to add a step where we randomly select p points uniformly in D. These points are initial points of new sequences; this allows to obtain a good covering of S by the limits of all these sequences. Obviously this latest step does not substitute the entire algorithm; clearly a hudge number of such points will approximate S from the start, the most inefficient Monte-Carlo random search method.

The stopping rule is defined through the definition of an accuracy index call tol. Define N the number of points to be reached in S. We may decide to stop the algorithm when N sequences (z i) are such that the extremities are in S up to the accuracy, denoted tol in the sequel.

Enhanced algorithm.

In order to improve the coverage of S, keeping the same set of points z 0 , we propose to modify the choice of z i+1 as given in (2.5) and (2.6) as follows. From z 0 , . . . , z i we build indeed i chains, each one starting from z j , 1 ≤ j ≤ i. Obviously the sequence starting at z i is as described above; the new i -1 ones spread and develop in all directions. Any of these chains inherit of the properties mentioned in Theorem 1. Also, any x in S is asymptotically reached by one of those sequences, as i increases. The sequences defined by an algorithm may be finite; indeed condition (2.5) may not hold for (z i-1 , z i) and therefore z i+1 cannot be simulated. Thus no point z i+1 will be simulated since his father would be higher than his grandfather. However his grandfather z i-1 is indeed lower than his grand-grandfather; therefore his grandfather may have offspring. This grandfather is the root of a new generation, hence a new z i which may satisfy (2.5). In the same way all ancestors of z i-1 satisfy (2.5) and are eligible for fatherhood. We call a step of the algorithm the generation of all the offspring of the eligible points in the existing population of points. Such a step is followed by the generation of p uniformly distributed points in D as done in the basic algorithm.

In the sequel, we focus on the basic algorithm described in Section 2.2.

2.3.

Reducing the computational cost tuning the parameters. Firstly this algorithm makes use of very few parameters. Furthermore those can be tuned easily according to the complexity of the problem at hand. Indeed these parameters can be interpreted in connection with the computational burden. In some cases the function f is very costly and running an algorithm for a long time, without evaluating f often, may be of great advantage. Sometimes the function f is easy to calculate and the need is to get a quick description of S. Tuning k, C and m, together with the number of initiating points, makes use for those choices.

The following examples illustrate the role of each of the parameters, all the other ones being kept fixed. The number of solutions which we require in the tolerance zone around S is fixed to 1000, but in the last example where the algorithm is evaluated with respect to this number. Examples are presented in dimension 2. Higher dimension examples are presented in Section 2.4. Red points are couples (x 1 , x 2) such that f (x 1 , x 2) > 0. Points with negative values of f are blue. Black points are all blue or red ones whose f value belongs to [-tol, tol]. Each example is summarized by three indicators. The first one is the runtime. The second one is the efficiency coefficient (EC) which is the ratio between the total number of evaluations of f and the number of solutions, which equals 1000 in all but the last example. This indicator is a measure of the number of calls to f which are required in order to obtain one solution to the equation f (x) = 0. The third indicator is of visual nature; in all those examples which are in dimension 2, the quality of the coverage of S can be considered qualitatively.

Remark 1. The most important indicator is EC, since in all industrial applications, what really matters is the cost in evaluating f . The initialization step. Call n the number of initiating points z 0 , randomly selected on D. This is the initial cost of the method since the function f will be evaluated n times. Due to section 2.2, n should not be too large.

Example 1. Let f be a bivariate function defined by

(x 1 , x 2) → f (x 1 , x 2) = x 2 1 + x 2 2 -0.5
The aim is to find N = 1000 pairs (x 1 , x 2) such that |f (x 1 , x 2)| ≤ tol where tol is the accuracy. All parameters but n are fixed. The tolerance is 0.01; the value of C is fixed being 0.75; the value of k is 1; the number p of supplementary points at each step of the algorithm is 1. The solutions are close to S = {(x 1 , x 2), f (x 1 , x 2) = 0}, the circle with center (0, 0) and radius √ 0.5. In Figure 1 points, the more the number of chains, and therefore the more numerous the points where the function f is evaluated; so the algorithm is costly as n increases. At the contrary, the better the coverage of S. Results are gathered in Table 1.

The rate of convergence. The value of C pertains to the rate of convergence of the algorithm. Assume C small (C close to 1/2); thus condition (2.5) is rarely satisfied.

The selected points will define chains with a fast convergence to S. However in order to satisfy (2.5), many simulations in the ball B are required, leading to an increased runtime.

Example 2. Let f be a bivariate function defined by

(x 1 , x 2) → f (x 1 , x 2) = x 4 1 + x 3 2 -0.5
The aim is to find N = 1000 pairs (x 1 , x 2) such that |f (x 1 , x 2)| ≤ tol where tol is the accuracy. All parameters but C are fixed. The number of initial points is 10; the tolerance is 0.015; the value of k is 1; the number p of supplementary points at each step of the algorithm is 1. In Figure 3

(x 1 , x 2) → f (x 1 , x 2) = (1 -x 1) 2 + 100(x 2 -x 2 1) 2 -50
The aim is to find N = 1000 pairs (x 1 , x 2) such that |f (x 1 , x 2)| ≤ tol where tol is the accuracy. All parameters but k are fixed. The number of initial points is 10; the tolerance is 3; the value of C is 0.75; the number p of supplementary points at each step of the algorithm is 1. In Figure 5(a), the function f is intersected by the horizontal plane z = 0. one solution, and also the coverage of S improves. When f is costly, k should be chosen small. Results are gathered in Table 3.

The role of p. The number of intermediate points is important since it allows to explore new points of D in quest for S. This number should be chosen small with respect to the number n of initializing points. The following example shows that very small values of p may be good choices.

Example 4. Let f be a bivariate function defined by

(x 1 , x 2) → f (x 1 , x 2) = (x 1 -0.5) 2 + 3x 1 x 2 -x 3 2 -2.

25

The aim is to find N = 1000 pairs (x 1 , x 2) such that |f (x 1 , x 2)| ≤ tol where tol is the accuracy. All parameters but p are fixed. The number of initial points is 10; the tolerance is 0.04; the value of C is 0.75; the number k is 0.25. In Figure 7(a), the function f is intersected by the horizontal plane z = 0. The tolerance factor tol. The strongest the tolerance (i. e. when tol is small), the highest the number of evaluations of f , and the longest the runtime.

Example 5. Let f be a bivariate function defined by

(x 1 , x 2) → f (x 1 ,
x 2) = 8 sin(7(x 1 -0.9) 2) 2) + 6 sin((14(x 1 -0.9) 2) 2) + (x 1 -0.9) 2 + 8 sin((7(x 2 -0.9) 2) 2) + 6 sin((14(x 2 -0.9)

2) 2) + (x 2 -0.9) 2 -15
The aim is to find N = 1000 pairs (x 1 , x 2) such that |f (x 1 , x 2)| ≤ tol where tol is the accuracy. All parameters but tol are fixed. The number of initial points is 10; the value of C is 0.75; the number k is 0.08; the number p of supplementary points at each step of the algorithm is 1.

In Figure 9(a), the function f is intersected by the horizontal plane z = 0. 5.

Due to the complexity of the function and of the set S, coverage is mild whatever tol; it depends upon the required number of solutions only. The role of N , the required number of solutions. The same function as in Example 4 is used in order to focus on the role of the number of solutions. When we ask for 15000 points in S, then the runtime remains quite satisfactory; the EC coefficient is 76, due to a choice of n = 1000. The coverage of S is quite fair. Clearly the quality of the solutions improves with the required number of solutions. Not only do we get more solutions, but the coverage of S improves noticeably. Example 6. Let f be a bivariate function defined by

(x 1 , x 2) → f (x 1 , x 2) = 20 + x 2 1 -10 cos(2πx 1) + x 2 2 -10 cos(2πx 2) -60 The aim is to find N pairs (x 1 , x 2) such that |f (x 1 , x 2)| ≤ tol
where tol is the accuracy. All parameters but N are fixed. The number of initial points is 10; tol is fixed to 0.4; the value of C is 0.75; the number k is 0.025; the number p of supplementary points at each step of the algorithm is 1. In Figure 12(a), the function f is intersected by the horizontal plane z = 0. When N is small, the important feature of the result is that S is covered equally. So no cluster of solutions seems to appear; this is important for exploratory analysis. Results are gathered in Table 6. We firstly consider the case in dimension 3, namely we look at points situated in (2.9)

S := {(x 1 , x 2 , x 3) : x 2 1 + x 2 2 + x 2 3 -0.5 = 0}, with -1 ≤ x i ≤ 1 for i = 1, 2, 3
. The result appears in Figure 14. We also have 9. The number of initializing points has been chosen accordingly: n = 75 for d = 4, and n = 1000 for d = 10; a coherent choice for n would have been n = 5 9 for d = 10, an impracticable choice.

Obviously the indicator EC increases with n. However, choosing n = 5 9 and N = 500, the value of EC exceeds 2000, which proves that n should be kept low, growing slowly with respect to d.

Simultaneous inverse problems

3.1. Algorithm. Let f and g denote two functions defined on D; each of these functions f and g is assumes to satisfy hypothesis (2.5) together with conditions (1) and (2). We will make use of constants C, k, n and p defined in Section 2.2; these constants will play a similar role in the present on f and g. The number of common solutions to the system

(3.1) f (x) = 0 g(x) = 0 is denoted N .
Also the present section considers simultaneous inverse problems pertaining to two functions; quantization to a given number of functions is straightforward.

The algorithm is as follows with similar notation as in Section 2.2, it holds

(3.2) f (x) = 0 g(x) = 0 ⇔ f (x) + x 2k + x 2k = x 2 g(x) + x 2k + x 2k = x 2
which yields to define

(3.3) z i+1 = z i + z i-1 -z i 2 + k max(|f (z i)|, |g(z i)|).
Inequality (2.4) is substituted by

(3.4) R i+1 ≤ R i 2 + kmax(|f (z i)|, |g(z i)|).
Similarly as in (2.6), the choice of z i+1 follows the rule (3.5)

z i+1 = z i + u i
where u i is drawn randomly on B(0, Ri 2 + kmax(|f (z i)|, |g(x i)|). With those changes, denoting S = {x : f (x) = 0, g(x) = 0}, it holds Theorem 3. Any sequence (z i) defined as above converges a. s. with limit in S. and Theorem 4. For any x ∈ S and 0 > 0 such that (1) and (2) hold simultaneously for f and g, and when z 0 ∈ B(x, 0), thus the sequence (z n) is infinite and converges to x. 18(a) shows the two function, and Figure 18(b) provides the set S, which is defined as the intersection of the frontier points of the red domains (the solutions to g(x) = 0) wt=ith the frontier points of the blue domains (the solutions to g(x) = 0). There are 29 points in S. The algorithm provides solutions as shown in Figure 19, with runtime 14s and efficiency coefficient 375.

Appendix

Proof of Theorem 1.

Step 1 . We prove that the sequence (R i) i∈N converges to 0 a. s. Denote a := |f (z 0)| > 0. By (2.5),

|f (z i)| ≤ aC i , hence R i+1 ≤ Ri 2 + akC i . The sequence (R i) i∈N is now compared to the sequence (x i) i∈N defined by x i+1 = x i 2 + akC i .
It holds

x n = x 0 2 n + ak 2 n-1 + akC 2 n-2 + akC 2 2 n-3 + . . . + akC n-2 2 1 + akC n-1 = x 0 2 n + akC n-1 n-1 j=0 1 2C j . (4.1)
When C > 1/2, it follows that x n given in (4.1) tends to 0 as n → ∞. Since the generic term of (R n) n∈N satisfies (4.2)

R n ≤ R 0 2 n + akC n-1 n-1 j=0 1 2C j ,
where the RHS is x n , it follows that R n tends to 0 as n → ∞.

Step 2 . Assume at present that (z n) n∈N is an a. s. convergent sequence, and denote l its limit. We prove that l belongs to S. Indeed by (2.2), writing u n = v n (Rn 2 +k |f (z n)|) for v n uniformly distributed on B(0, 1), the unit ball in R d . Going to the limit in (2.2), l = l + lim Proof of Theorem 2. By (2.7), we have E 0 = {z : k 1 |f (z 0)| ≤ ||z -z 0 || ≤ R0 2 + k|f (z 0)|{, with 0 = ||x -z 0 ||. We have to prove that E 0 ∩ A 1 = ∅. By (2.8) and since E 0 ⊂ B, this is equivalent to prove that B(x, 0) ∩ E 0 = ∅. By the definition of E 0 which is an annulus centred on z 0 with a minimal radius of 2 0 and since z 0 ∈ ∂B(x, 0) according to the definition of 0 , B(x, 0) ∩ E 0 = ∅ and so E 0 ∩ E 1 = ∅. Let z 1 ∈ A 1 ∩ E 0 . we prove that z 1 satisfies (2. Iterating the above argument we can construct a sequence of balls B(x, i) with lower bounded and decreasing sequence of radius. Thus this sequence converges to some limit. By Theorem 1, lim i→∞ zi = x * ∈ S.

1 . Introduction 1 . 1 .

 111 The scope of this paper. Assume that we are given a bounded and closed domain D ⊂ R d , and a continuous real-valued function f defined on D. The aim of this paper is to present an algorithm for the solution of the problem (1.1) S = {x ∈ D : f (x) = 0}, assuming S = ∅.

Figure 1 .Figure 2 .

 12 Figure 1. Representations of the quadratic function respectively n = 5, n = 100 and n = 300. Clearly the more numerous the initial

Figure 3 .

 3 Figure 3. Representations of the function with a chair shape (c), we have considered respectively C = 0.55, C = 0.75 and C = 0.95. The greater

Figure 4 .

 4 Figure 4. Solving equation for the function with a chair shape using SAFIP for three values of C C, the less the number of evaluations of f ; furthermore the runtime decreases as C increases. Results are gathered in Table2.

Figure 5 (Figure 5 .

 55 Figure 5. Representations of the Rosenbrock function 200 and its variations belong to [-50, 350]. In Figures 6 (a), (b), (c), we have considered respectively k = 1/200, k = 10/200 and k = 50/200. As k increases, the

Figure 6 .Table 3 .

 63 Figure 6. Solving equation for the Rosenbrock function using SAFIP for three values of k runtime also increases as does the number of evaluations of f in order to obtain

Figure 7 (

 7 b) represents the intersection in the variables frame. p is chosen as 1, 3 and

Figure 7 .

 7 Figure 7. Representations of the polynomial function

Figure 8 .

 8 Figure 8. Solving equation for the polynomial function using SAFIP for three values of p

Figure 9 (

 9 b) represents the intersection in the variables frame. The function oscillates between -15 and 15. In Figures 10 (a), (b), (c), algorithm results are illustrated for three values of tol : 0.15, 0.75 and 1.5 . When tol varies from 0.15 to 1.5, the coefficient EC gets divided by 2. Results are gathered in Table

Figure 9 .

 9 Figure 9. Representations of the trigonometric function

 Figure 12(b) represents the intersection in the variables frame. In Figures 13 (a), (b), (c), algorithm results are illustrated for three values of N : 100, 1000 and 2000.

Figure 11 .Figure 12 .Table 6 . 2 . 4 .

 1112624 Figure 11. Solving equation for the trigonometric function using SAFIP for a bigger number of required final points and a tolerance of 0.15

Figure 13 .

 13 Figure 13. Solving equation for the Rastrigin function using SAFIP for three values of N

Figure 14 .

 14 Figure 14. Results for spheres in dimension 3

3. 2 .

 2 Examples. Due to (3.5), the point z i+1 is randomly chosen in a ball B centerd at z i when both |f (z i)| and |g(z i)| share a common measural order of magnitude. The best case is when B has a moderate radius; it is therefore useful to normalize f and g on D; this preliminary procedure obviously does not modify the set S. We present three examples of simultaneous inversion, based on the functions presented on Section 2.2. In all examples the parameters are n = 20, p = 1, tol = 0.01, C = 0.75, k = 1. N equals 10 in Example 7, it equals 100 in Example 8 and Example 9.

Example 7 (

 7 A regular case). We choose f as in Example 2 and g(x) = f (x-a), a = (0.2, -0.2). Therefore f (x) = 0 is as in Example 2 and g(x) = 0 is a circle with same radius and center a. Figures16(a) and (b) show the graphs of f and g together with the intersection of the plane z = 0. The set S consists in the two points shown in Figure 16(b). Those

Figure 16 .

 16 Figure 16. Representations of f , g and S

Figure

 Figure 17. Solutions obtained with SAFIP algorithm

Figure 18 .Figure 19 .Figure 20 .

 181920 Figure 18. Representations of f , g and S

 n→∞ u n . It follows that lim n→∞ Rn 2 + k|f (z n)| = 0. Since lim n→∞ R n = 0, it holds lim n→∞ |f (z n)| = 0 a. s. By continuity of f , it follows that lim n→∞ |f (z n)| = f (l) and then f (l) = 0. We have proved that l ∈ S. It remains to prove that (z n) n∈N converges, showing that it is a Cauchy sequence. Let (m, n) ∈ N 2 , m > n. Then sup m>n ||z m -z n || ≤ sup 2C -1 < 1. Since m > n and C < 1 sup m>n ||z m -z n || ≤ m -z n || = 0, which proves the claim.

 5).By condition 2, it follows|f (z 0)| -|f (z 1)| ≥ mk 1 |f (z 0)|, since z 1 ∈ E 0 . This is equivalent to |f (z 1)| ≤ (1 -mk 1)|f (z 0)| With an arbitrary k 1 close to 0 such that 0 < mk 1 < 1 2 . Getting C = (1 -mk 1) ∈ [1 2 , 1], we have |f (z 1)| ≤ C|f (z 0)| for z 1 ∈ E 0 . Thus z 1 ∈ A 1 ∩ {z 1 , |f (z 1)| ≤ C|f (z 0)|}and z 0 can have an offspring.

Table 2 .

 2 Results for Example 2 with different values of C Example 3. Let f be a bivariate function defined by

	n	tol	N	C	k p Time EC Coverage
	10 0.015 1000 0.55 1 1 0.62s 8.36	+
	10 0.015 1000 0.75 1 1 0.44s 5.33	+
	10 0.015 1000 0.95 1 1 0.42s 5.05	+

2

, roughly. This appears clearly in Example 3.

Table 4 .

 4 Results for Example 4 with different values of p

	n tol	N	C	k	p Time EC Coverage
	10 0.15 1000 0.75 0.25 1 2.6s 43.47	-
	10 0.75 1000 0.75 0.25 1 1.68s 32.2	-
	10 1.5 1000 0.75 0.25 1 1.3s 22.85	-

Table 5 .

 5 Results for Example 5 with different values of p

Table 7 .

 7 Results for spheres in different dimensions

	Dim	n	tol N	C k p Time EC
	2	5	0.1 500 0.75 1 1 0.16s	4
	3	25	0.1 500 0.75 1 1	4.2s 5.04
	4	75	0.1 500 0.75 1 1 0.72s	8
	10	1000 0.1 500 0.75 1 1	51s	614

Table 8 .

 8 Results for cubes in different dimensions comparing three dimensions are in Table7. The same is available for (2.10) in Table

Table 9 .

 9 17. Solutions obtained with SAFIP algorithm Results for cubes in different dimensions

	C	EC Temps
	0.55 905	4.72s
	0.75 469	1.66s
	0.95 311	1.24s
	k	EC Temps
	1	546	5.02s
	10 1963	8.8s
	50 6372 32.04s
	n	EC Temps
	10	577	2.54s
	100 622	3.36s
	300 708	3.36s
	Example 8 (Mixing a regular function and an irregular one). We choose f (x) as
	defined in Example 6, a regular function, and g(x) the Rastrigin function of Example
	13. The Figure		

We show that x * = x by contradiction. If x * = x, thus there exists i ∈ N such that x ∈ B(x * , ||x * -z i ||). But z is simulated around x with decreasing radius to 0. Hence is the contradiction. Thus x * = x and we have proved Theorem 2.