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I mplementation of multidimensional databases with
document-oriented NoSQL

M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier
Université de Toulouse, IRIT 5505, 118 Route de Narbonne, 31062 Toulouse, France

Abstract. NoSQL (Not Only SQL) systems are becoming populer i known
advantages such as horizontal scalability andieitgstin this paper, we study
the implementation of data warehouses with docurogahted NoSQL sys-
tems. We propose mapping rules that transform thiédimensional data mod-
el to logical document-oriented models. We consitheee different logical
models and we use them to instantiate data wareloWge focus on data load-
ing, model-to-model conversion and OLAP cuboid catapon.

1 Introduction

NoSQL solutions have proven some clear advantaghsrespect to relational data-
base management systems (RDBMS) [14]. Nowadaysrdkearch attention has
moved towards the use of these systems for stdbiigg data and analyzing it. This
work joins our previous work on the use of NoSQlusons for data warehousing [3]
and it joins substantial ongoing works [6][9][15)}. this paper, we focus on one class
of NoSQL stores, namely document-oriented systétps [

Document-oriented systems are one of the most farfarailies of NoSQL systems.
Data is stored in collections, which contain docoteeEach document is composed
of key-value pairs. The value can be composedesfen sub-documents. Document-
oriented stores enable more flexibility in schenesign: they allow the storage of
complex structured data and heterogeneous datadncollection. Although, docu-
ment-oriented databases are declared to be “schessia(no schema needed), most
uses convey to some data model.

When it comes to data warehouses, previous worlshawn that it can be instantiat-
ed with different logical models [10]. We recallthdata warehousing relies mostly
on the multidimensional data model. The latter éi®aceptual mod&land we need to
map it in document-oriented logical models. Mappiing multidimensional model to
relational databases is quite straightforward,umtil now there is no work (except of

The conceptual level consists in describing the data in a generic way regardless the infor-
mation technologies whereas the logical level consists in using a specific technique for im-
plementing the conceptual level.



our previous [3]) that considers the direct mappimgn the multidimensiorl con-
cepual model to NoSQL logical modelFigure ). NoSQL models support mo
complex data structures than relational modelvie.do not only have to descri
data and the relations using atomic attributesyTave a flxible data struwure (e.g.
nested elements). In this context, more than ogi&adb model are candidates 1
mapping the multidimensional model. As well, thelging needs might demand f
switching from one model to another. This is thepgcof our work: NoSQL logic:
models and their use for data warehous

Conceptual Level Multidimensional
OLAP

o
=
Logical Level ) A%
P ).Cz%
Relational | NosQL |&
Legend = = = New transformation

Existing transformation
Figure I Translations of a conceptual multidimensional eladto logical model:

In this paper, we focus on multidimensional datadets for data warehousing. V
compare thredranslations of the conceptual model at logical uheen-oriented
model level. We provide formalism for expressingleaf these models. This enab
us to describe clearly the mapping from the conadptnodel to the logical mode
Then, we show how we n instantiate data warehouses in docunweignted stores
Our studies include the load of data, the convassimode-to-model and the conu-
tation of preaggregate OLAP cub

Our motivations are multiple. The implementation@fAP systems with NoSQ
sydems is a new alternative4][6]. It is justified by the advantages of suclstems
such as more scalability. The increasing scientégearch in this directioremands
for formalization, commc-agreement models and evaluation of different No!
systems.

We can summarize our contribution as follo

e three mapping rules between the multidimensionateptual model to th
documenteriented logical mod;

e the convesions modeto-model at the logical level faranslating logical
structures into other logical structy;

* the computation of the OLAP cube in NoSQL techni@e



The paper is organized as follows. The followingtiem studies the state of the art. In
section 3, we formalize the multidimensional datadel and OLAP cuboids. Then,
we focus on formalisms and definitions of documerieénted models. In section 4,
we show experiments. The last section is aboutlusions and future works.

2 State of the art

Considerable research has focused on the translatidata warehousing concepts to
relational R-OLAP logical level [2][5]. Multidimeisnal databases are mostly im-
plemented using RDBMS technologies. Mapping rulesused to convert structures
of the conceptual level (facts, dimensions andan@ies) into a logical model based
on relations. Moreover, many researchers [1] haeeded on the implementation of
optimization methods based on pre-computed aggreg@iso called materialized
views, or OLAP cuboids). However, R-OLAP implemdiaias suffer from scaling-
up to very large data volumes (i.e. “Big Data”).sRarch is currently under way for
new solutions such as using NoSQL systems [14]. &oroach aims at revisiting
these processes for automatically implementing idimiensional conceptual models
directly into NoSQL models.

Other studies investigate the process of transfoynrelational databases into a
NoSQL logical model (bottom part of Figure 1). 2], an algorithm is introduced
for mapping a relational schema to a NoSQL schemddngoDB [7], a document-
oriented NoSQL database. However, either theseoappes not consider the concep-
tual model of data warehouses because they aredirto the logical level, i.e. trans-
forming a relational model into a documents-oridnteodel. In [11] Mior proposes
an approach to optimize schema in NoSQL.

There is currently no approach for automatically afirectly transforming a data
warehouse multidimensional conceptual model intblaSQL logical model. It is
possible to transform multidimensional conceptualdels into a logical relational
model, and then to transform this relational madi a logical NoSQL model. How-
ever, this transformation using the relational maae a pivot model has not been
formalized as both transformations were studiecefrhdently of each other. The
work presented here is a continuation of our previavork where we study and for-
malize the implementation of data warehouses wdB@QL systems [3]. Our previous
work considers two NoSQL models (one column-oridraed one document orient-
ed). This article focuses only on document-orierdgstems; we analyze three data
models (with respect to 1); we consider all croggleh mappings; we improve the
formalization and we provide new experiments.



3 MULTIDIMENSIONAL CONCEPTUAL MODEL AND OLAP CUBE

31 Conceptual Multidimensional Model

To ensure robust translation rules we first defiremultidimensional model used at
the conceptual level [8][12].

A multidimensional schema, namely E, is defined by fFDF, Staf) where

= FE={F,..., R} is afinite set of facts,
= Df={D,,..., Dy is a finite set of dimensions,
» Staf: FE — 2PE s a function that associates factsF&fto sets of dimensions

along which it can be analyzecQ[fE is thepower seof DF).
A dimension, denoted;[1DF (abusively noted aB), is defined by P, A°, HP)
where

» NP is the name of the dimension,
= AP ={al,..aP10{idP,all®} is a set of dimension attributes,
= HP={HP,..HP} isasetof hierarchies.

A hierarchy of the dimensiom, denotecH;1H®, is defined by ™, Parant”,
Weak") where

= N"is the name of the hierarchy,

=  Param” =<idP ,vali p\:" ,All® > is an ordered set of+2 attributes which
are called parameters of the relevant graduaticalesof the hierarchy,
OkO[1.v], pg' DA,

. . D_ i i ) ) ) )
= Weak': Parant . 2% 7P s 4 function associating with each parameter
possibly one or more weak attributes.

A fact, FOFF, is defined by ", M) where

= Nfis the name of the fact,
= MF={f(mf)..f,(m)} isa setof measures, each associated with an ag-

gregation functiorf;.

3.2 The OLAP cuboid

The pre-aggregate view or OLAP cuboid corresponds to a subset of aggregated
measures on a subset of analysis dimensions. OlulBids are often pre-computed
to turn frequent analysis of data more efficientpi€ally, we pre-compute aggregate



functions on given interest measures grouping ames@analysis dimensions. The
OLAP cubeO=(F° ,D°) derived fronE is formally composed of

= F°=(N™ M™) afact derived fronfr/FF with N = N* a subset of measures.
= D° = Star(F°) O DF a subset of dimensions.

If we generate OLAP cuboids on all combination mfiehsion attributes, we have an
OLAP cubelattice.

Illustration: Let's consider an excerpt of the star schema beadhft2]. It consists
in a monitoring of a sales system. Orders are pglagecustomers and the lines of the
orders are analyzed. A line consists in a parrddyrct) bought from a supplier and
sold to a customer at a specific date. The coneéptinema of this case study is pre-
sented irFig. 2. .

— The factF-"9""js defined by [(ineOrder, {SUMQuantity), SUM(Discoun},
SUMRevenug SUMTax)}) and it is analyzed according to four dimensiosasch
consisting of several hierarchical levels (callethd levels or parameters):

— The Customer dimensio®f"s°™ with parameter€ustomeralong with the
weak attributeNamg, City, RegionandNation,

— The Part dimensiorDf®") with parameter®artkey(with weak attributeSizeand
Prod_Namg, Category BrandandType organized using two hierarchiedrand
andHCateg

— The Date dimensiorDC®®) with parameter®ate, Month (with a weak attribute,
MonthNamg andYeatr,

— The Supplier dimensioDf"*""*) with parameterSupplier(with weak attributes
Namg, City, RegionandNation

From this schema, callégP>® we can define cuboids, for instance:

— (Ft?nezrjer, {Dzustome,r Dzate, DSuppIier}),
t t
_ (F ine rer' {D usome'r D ae})_
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Fig. 2. Graphical notations of the multidimensional conceptual model

4 Document-oriented modeling of multidimensional data
warehouses

4.1  Formalism for document-oriented data models

In the documenbriented model, data is stored in collections aalections qoup
documentsThe structure of documents is defil by attributesWe distinguistsim-
ple attributes whose values are atomic frccompound attributes whose values at
documents calledested documents or sub-documents. Thestructure of documen
is described as a set of paths from the documee!

A documenis definec by:

K: all keys of a docume

- C: the collection where the document belongs. We use the notation Cfid] to
indicate a document/ of a collection C with identifier id.

- id: a unique identifier (explicit or internal to the system);

- K: all keys of a documd

- V:all atomic values of the docume

- A:all simple attributes (key, atomic vali



P: all paths in the tree of the docurmr. A path pLP is described a
p=Clkey]{ki.ko. k..a} wherek,, k;, ... k EK are keys within the same path end
at the leaf nodea L] A (simple attribute)C[id] is a document.

The following example illustrates the above formiali Considethe document tree
Figure 3 describinga documenr of the collectionC with identifierid.

; Path

id v
! _—— Customerkey ——— Cn2265 Cfid]/customer:Customerkey: C02265)
! T —— Name ———————— M. Smith Clidf{customer:Name:M. Smith}

/
/ /Cuutomgr === City ———— TJoulouse Clid]{customer:Cirv: Toulouse/

P \\:“ Region —————— Mudi Pyrénées  Cfid]{customer:Region: Midi Pyrénées]
/ / = Nation = France Clidf{customer:Nation: France!
i o Parkey — ——— PO9A7S Chid]{Part:Partkey: PU9S 78}
/ i e P r od_Name Coppervalve c3 - Cfid]{Part. Prod_Name.Copper valve 3}
L ST S I0xdsx) Clid]{Part:Size: 10x15%10}
s \:--:‘_:_:-‘_____ Brand — B3 Clidf{Purt:Brand- B3}
[y ~_ Type = Connector C[i?{Part:Tv,r)e.'Cmmecmr’
s = Category — Plumbing Clid]{Part: Category. Plumbing/
F/, e date —— (3-31-2015 Q[id],’Dare.-Daw:()S-j1-2015}
T Date —_——— month ———— 03-2015 Cfid[{Date:Month:03-2015
A ‘_—“‘:_: month_name —— March Cfid{{Date. Month-Nante: March]
N = year 2015 Clid]{Date:Year:2015}
\ \\\ Supplicrkey ——— SP0I3678 Clidf{Supplier.Supplierkev: CPOI5678]
Yoo ) ﬁ yamc — (PR Clidf{Supplier-Name:CPR int}
' Supplier === , Madrid Clidl{SupplierCity:-Madrid!
| T~ Region T Cenler Spuin A pauppliet -y s M
| Nation = Spain Cfid]{Supplier: Nation:Spain}
\ " Quantity — [0 Clidf{LineCQrder:Quantity: 10}
| LineOrder === Discom 0o Cfid]{LineQrder:Discount:0}
T Revenue 7 45789 Clid]{LineOrder:Reveiue:3,578%)
Tax 2332 Clidl{LincOrder-Tax:2.352}

Figure 3: Treelikerepresentation of documents

4.2 Document-oriented models for data warehousing

In documentriented stores, the data model is determined niyt loy its attributes
and values, but also by the path to the data. latioeal database models, the p-
ping from conceptual to logical is more straightfard. In documetr-oriented stores
there are multiple candidate modthat differ on the collections and scture. No
model has been proven better than the others anadapping rules are widely acd-
ed. In this section, we present thrapproaches of logical documemrientedmod-
eling. These models correspond to a broad classificatignossible approaches f
modelng multidimensional cuboid (one fact and its stam) the first approach, w
store all cuboiddata in one collectic in a flat format (without sulblocumer). In the
secondcase, we make use of nesting (embedde-documents) within one coc-
tion (richer expressivity). In the third case, vemsider distributing the cuboid data
more than one collectioThese approaches are described below.



MLDO: For a given fact, all related dimensions attrisud@d all measures are com-
bined in one document at depth 0 (no sub-documewts) call this the flat model
noted MLDO.

MLD21: For a given fact, all dimension attributes arete@sinder the respective at-
tribute name and all measures are nested in a subdmt with key “measures”. This
model is inspired from [3]. Note that there ardatiént ways to nest data, this is just
one of them.

MLD2: For a given fact and its dimensions, we store blatkedicated collections one

per dimension and one for the fact. Each colledtadkept simple: no sub-documents.
The fact documents will have references to the dsimn documents. We call this

model MLD2 or shattered. This model has known athges such as less memory
usage and data integrity, but it can slow downringgation.

4.3  Mapping from the conceptual model

The formalism that we have defined earlier allowsaidefine a mapping from the
conceptual multidimensional model to each of tiggdal models defined above. Let
O=(F°, D°) be a cuboid for a multidimensional model for thetF® (M is a set of
measures) with dimensionsn N° andNP stand for fact and dimension names.

Table 1 Mapping rules from the conceptual modd to thelogical models

Logical

Conceptual
MLDO MLD1 MLD2

0DODC, DadAP | a— Clid]{a} a— C[id]{N " :a} a— C[id]{a}
id® — Cid |{a} ©

OmOM" m— C[id}{m} | m— C[id]{N":m} m— C[id Jm

(*) the two identifiers CT[id ] and C°[id] are different from each other because the
document collections are not same C° et C". The dimensions identifiers id°will play
the foreign key role.

The above mappings are detailed below:



Let C be a generic collectio;® a collection for the dimensidh andC" a collection
for a factF°. The Table 1 shows how we can map any measuref F° and any di-
mension oD into any of the models: MLDO, MLD1, MLD2.

Conceptual Model to MLDO: To instantiate this model from the conceptual mpdel
these rules are applied:

= Each cuboid (F° and its dimensionB®) is translated in a collectid®.

* Each measurm 7M" is translated into a simple attribute (iGfid]{m})

= For all dimensiorD 00 D°, each attribute [0 A® of the dimensiom is convert-
ed into a simple attribute & (i.e. C[id]{a})

Conceptual Model to MLD1: To instantiate this model from the conceptual mpdel
these rules are applied:

» Each cuboid (F° and its dimensionB®) is translated in a collectid®.
= The attributes of the fadt® will be nested in a dedicated nested document
C[id){NF}. Each measuren 7 M" is translated into a simple attribute
CI[id]{N ":m}.
= For any dimensio 0 D°, its attributes will be nested in a dedicated ewst
documentCJid]{N°}. Every attributea O A° of the dimensionD will be
mapped into a simple attribu@id]{N °:a}.
Conceptual Model to MLD2: To instantiate this model from the conceptual eipd
thesaules are applied:

= Each cuboid (F° and its dimensionB®), the fact F° is translated in a collec-
tion C™ and each dimensidd 0 D into a collectiorC®.

* Each measuren 7 M™ is translated withinC"™ as a simple attribute (i.e.
CTid}{m})

* For all dimensiorD 0O D°, each attribute O AP of the dimensioD is mapped
into C° as a simple attributg.e CP[id]{a} ), and ifa=id® the documen€’ is
completed by a simple attribu@Tid]{a} (the value reference of the linked di-
mension)

5 Experiments

Our experimental goal is to validate the instaigiatof data warehouses with the
three approaches mentioned earlier. Then, we ocengidnverting data from one
model to the other. In the end, we generate OLABbItls and we compare the effort
needed by model. We rely on t88B+ benchmark that is popular for generating data
for decision support systems. As data store, we aalM ongoDB one of the most
popular document-oriented system. The details ef éRperimental setup are as
follows.



51 Protocol

Data: We generate data using the SSB+ [4] benchmark.bBEmehmark models a
simple product retail reality. It contains one ftadle “LineOrder” and 4 dimensions
“Customer”, “Supplier”, “Part” and “Date”. This carsponds to a star-schema. The
dimensions are hierearchic e.g. “Date” has theahidry of attributes d_date,
d_month, d_yedrWe have extended it to generate raw data spdoifour models in
JSON file format. This is convenient for our expagntal purposes. JSON is the best
file format for Mongo data loading. We use diffarestale factors namely sf=1,
sf=10, sf=25 and sf=100 in our experiments. Thdesfactor sf=1 generates approxi-
mately 1Glines for the LineOrder fact, for sf=10 we have apimately 18 lines and

so on. In theM L D2model we will have f x 10) lines for LineOrder and quite less
for the dimensions.

Data loading: Data is loaded into MongoDB using native instructio These are
supposed to load data faster when loading froms.filEhe current version of
MongoDB would not load data with our logical moff@m CSV file, thus we had to
use JSON files.

Lattice computation: To compute the pre-aggregate lattice, we use tgeeggtion
pipeline suggested as the most performing alter@dty Mongo itself. Four levels of
pre-aggregates are computed on top of the benchgerkrated data. Precisely, at
each level we aggregate data respectively on: dmebmation of 4 dimensions all
combinations of 3 dimensions, all combinations afi®ensions, all combinations of
1 dimension, 0 dimensions (all data). At each agtien level, we apply aggregation
functions:max, min, surandcounton all dimensions.

Hardware. The experiments are done on a cluster composed RES (4 core-i5,
8GB RAM, 2TB disks, 1Gb/s network), each being ak&o node and one node acts
also as dispatcher.

52 Reaults

In Table 2, we summarize data loading times by ehadd scale factor. We can ob-
serve at scale factor SF1, we havé lir@s on each line order collections for a 4.2 GB
disk memory usage for MLD2 (15GB for MLDO and MLD Bt scale factors SF10
and SF100 we have respectively lifies and 10lines and 42GB (150GB MLDO and
MLD1) and 420GB (1.5TB MLDO and MLD1) for of diskemory usage. We ob-
serve that memory usage is lower in the MLD2 modais is explained by the ab-
sence of redundancy in the dimensions. The catlesti“Customers”, “Supplier”,
“Part” and “Date” have respectively 50000 recor8333 records, 3333333 records
and 2556 records.



Table2 Loading timesby model into MongoDB

MLDO MLD1 MLD2

SF=1

7 .
10" lines 13065/15GB 12355/15GB 126154.2GB
SF=10
10°lines | 1 oannsocs 160805150GB 4320542GB
= 109805105GB

25.10 lines| 467045375GB 442205/375GB

In Figure 4 we show the time needed to convdata of one model to data of anot
model with SF1When we convert data from MLDO to MLD1 and \-versa convr-
sion times are comparable. To transform data fronb®to MLD1 we just introduct
a depth of 1 in the document. On the other sendeD@to MLDOQ), we reduce th
depth by oneThe conversion is more complicated when we consMEDO and
MLD2. To convert MLDO data into MLD2 we need split data in multiple table:
we have to apply 5 projections on original data aelkct only distinct keys fori-
mensions.Although, we produce less data (in memory usage),need more o-
cessing time than whewe convert data to MLDIConverting from MLD2 to MLDC
is the slowest process by far. This is due to doe that most NoS( systems (incld-
ing MongoDB do not support joins (natively). We had to te$fiedent optimizatior
techniques handeded. The loang times fall between 5h to 125h for Slit might
be possible to optimize this conversion further the results are illustrativof the
jointure issues in Mon(DB.

550s 870s

MLD1! MLDO 'MLD2

720s 5h-125h

Figure 4: Inter-model conversion times

In Figure 5 we sumarizeexperimental observations concernittg computation c
the OLAP cuboids at different levels of the OLARite for SF1using data from th
model MLDQ We report the time needed to compute the cuboddthe number ¢



records it contains. V" compute the cuboids from one of the “uppier’hierarchy
cuboids with less records, which makes computdteter.

We observe as expected that the number of recard®ases from one level to 1
lower level. The same is true for computation tiWe reed between 300 and 5
seconds to compute the cuboids at the first I¥elihensions)We need between {
seconds and 250 seconds at the second layer (Dhslons).We need less than o
second to compute the cuboids at the third aurth level (1 ad 0 dimensions

OLAP computation using the model MLD1 provides $amresults. The performan
is significantly lower with the MLD2 model due toifs. These differences invol
only the layer 1 (depth one) of the OLAP latticause the other layers can
computed from the latteWe do not report this results for space constra

10000000 docurments *
Loading time only {no processing time}

ps documents
<l

‘_._______._.-- Record count
I.ldocument — Computationtime
<ls

Figure5: Computation time and records by OLAP cuboid
Observations: We observe that we need comparable times to lotdidane mode
with the conversion times (except of MLD2 to MLD@®)e also observe reasona
times for computing OLAP cuboids. These observatiare important. At one har
we show that we can instantiate data warehouses inndec-oriented data systerr
On the other, we can think of pivot models or niatzed views thacan be compt-
ed in parallel with a chosen data mc.

6 Conclusion

In this paper, we have stud the instantiation of data warehouses with docu-
oriented systemsWe propose thre@pproaches at the documemiented logical



model. Using a simple formalism, we describe thepireg from the multidimension-
al conceptual data model to the logical level.

Our experimental work illustrates the instantiatimindata warehouses with each of
the three approaches. Each model has its weaknassestrengths. The shattered
model (MLD2) uses less disk memory, but it is quitefficient when it comes to
answering queries with joins. The simple models ML&nd MLD1 do not show
significant performance differences. Passing frate model to another is shown to
be easy and comparable in time to “data loadinghfezratch”. One conversion is
significantly non-performing; it corresponds to tim@pping from multiple collections
(MLD2) to one collection. Interesting results atsoamet in the computation of the
OLAP lattice with document-oriented models. The patation times are reasonable
enough.

For future work, we will consider logical models @olumn-oriented models and
graph-oriented models. After exploring data waredgoinstantiation across different
NoSQL systems, we need to generalize across logiodel. We need a simple for-
malism to express model differences and we neetbtopare models within each
paradigm and across paradigms (document versusioplu
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