
HAL Id: hal-01371794
https://hal.science/hal-01371794v1

Submitted on 26 Sep 2016 (v1), last revised 23 Mar 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development and Analysis of High-Order Vorticity
Confinement Schemes

I. Petropoulos, M. Costes, P. Cinnella

To cite this version:
I. Petropoulos, M. Costes, P. Cinnella. Development and Analysis of High-Order Vorticity Confine-
ment Schemes. ICCFD9, Jul 2016, ISTANBUL, Turkey. �hal-01371794v1�

https://hal.science/hal-01371794v1
https://hal.archives-ouvertes.fr


COMMUNICATION A CONGRES

Development and Analysis of
High-Order Vorticity Confinement

Schemes

 I. Petropoulos (ONERA), M. Costes (ONERA),
             P. Cinnella (DynFluid Laboratory) 

ICCFD9

ISTANBUL, TURQUIE

11-15 juillet 2016

 TP 2016-513

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


 



Ninth International Conference on
Computational Fluid Dynamics (ICCFD9),
Istanbul, Turkey, July 11-15, 2016

ICCFD9-2016-0136

Development and Analysis of High-Order Vorticity
Confinement Schemes

Ilias Petropoulos1, Michel Costes1 and Paola Cinnella2

1 ONERA, The French Aerospace Lab, 8 rue des Vertugadins, 92190 Meudon, France
2 DynFluid Laboratory, Arts et Métiers ParisTech, 151 Bd. de l’Hôpital, 75013 Paris, France

Corresponding author: ilias.petropoulos@onera.fr

Abstract: High-order extensions of the Vorticity Confinement (VC) method are developed for the
accurate computation of vortical flows, following the VC2 conservative formulation of Steinhoff.
The original VC method is extended to 3rd and 5th-order of accuracy while the derivation procedure
can be repeated to obtain even higher orders. The purpose of the study is to develop a VC
formulation that maintains the vorticity preserving capability of the original 1st-order method and
can be applied in high-order computations without compromising the global order of accuracy of
the numerical scheme. Spectral analysis shows that the new method improves both the dispersive
and dissipative properties of the baseline scheme whereas the increased precision of the new VC
scheme and its increased compatibility with high-order methods is validated through numerical
tests.

Keywords: Vortex Flows, Computational Fluid Dynamics, High-Order Schemes, Numerical
Methods, Vorticity Confinement.

1 Introduction
Standard CFD methods have followed a course of steady improvement over the past decades and are adequate
for modelling a large number of applications, but the accurate computation of vortical flows remains a
challenge. The numerical schemes used in the solution of the flow equations need to be dissipative to ensure
stability thus resulting in fast spreading and diffusion of vortex structures in computations. This weakness
concerns both research and industry as the accurate advection of vortices is important in a broad spectrum
of computational fluid dynamics applications such as wakes, separated flows and turbulence.

Lagrangian methods allow for a perfect preservation of vortices, but are usually inviscid and incompress-
ible [1, 2]. Also, they often require special treatment for different applications and can have difficulties in
computing complex flow states (e.g. vortex merging). Such characteristics are hindering for the industry so
these methods are rarely applied out of research for advanced aeronautics computations.

The formulation of Eulerian methods on the other hand is more robust and for this reason they are
widely adopted. To treat the problem of vortex dissipation, the majority of the CFD community usually
resorts to the use of finer meshes or automatic mesh adaptation methods [3, 4, 5] to increase the number
of cells in the vicinity of vortical regions. However, there are drawbacks such as the significant increase of
complexity and computational cost. Alternative hybrid methods to minimize the dissipation of vorticity can
be constructed through domain decomposition by the coupling of structured-unstructured Eulerian [6, 7] or
Eulerian-Lagrangian solvers [8, 9]. Such methods can combine the benefits of the different approaches in
each region but are not always straightforward.

Another possibility is the use of high-order methods in the discretization of the fluid dynamics equations
[10, 11, 12], which result in improved wave propagation properties. In the well-established Finite Volume
method, the implementation of high-order flux derivatives is not simple, especially for non-Cartesian grids.
Additionally, high-order methods are more expensive than standard methods and the dissipation of vortices
still cannot be completely corrected. Furthermore, numerical schemes can be constructed specifically for
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vorticity preservation [13, 14, 15]. However, the implementation of numerical schemes in a solver can be
complicated and poses restrictions, so a more generic alternative method for vorticity preservation remains
interesting.

Such an alternative is the Vorticity Confinement (VC) method proposed by J. Steinhoff [16, 17, 18],
designed to capture small-scale features directly on the computational grid. In the present paper, we are
working with the second (VC2) formulation [19, 20] of the method to ensure discrete momentum conservation.
The capability of VC to preserve vorticity has been verified by extensive application in the aeronautics field
over the past two decades. However, the original method remains 1st-order accurate and vortex structures
are rapidly dominated by the VC source term. This effect is more important when a higher-order baseline
scheme is used, where the lower-order term deteriorates the overall accuracy in vortical flow regions.

Due to the growth of high-order methods in both research and industrial applications [21], the construction
of a Vorticity Confinement method that is appropriate for high-order computations shows great interest.
Even more so, since in the vast majority of cases VC can be applied independently of the choice of the
underlying numerical scheme and is not restricted to a specific formulation. High-order extensions of VC were
analyzed for the linear advection equation [22], showing that the asymptotic solution over long distances is the
same for all orders of accuracy, albeit at a lower convergence rate for higher orders. The slower convergence
rate is in accordance with the lower numerical error that is associated with higher-order schemes, indicating
a sound basis for an extension to the Euler/Navier-Stokes equations. First results on the Euler equations
were presented for helicopter applications [23] while the complete method and its consistency with high-order
flux discretizations have been thoroughly validated [24].

This paper consists of the following parts. Section 2 explains the VC formulation and the higher-order
extension methodology for the linear advection case and the Euler/RANS equations. Section 3 presents a
spectral analysis of the VC schemes, comparing analytical theory with a quasi-linear numerical method. In
Section 4, a grid convergence study is performed to validate the order of accuracy and the developed schemes
are applied in the advection of a 2D isentropic vortex over very long distances. Finally, the consistency of
the VC schemes with complex flow dynamics are evaluated in the computation of the viscous Taylor-Green
Vortex and the results are discussed in Section 5.

2 Description of the schemes

2.1 Linear transport equation
In the scalar case of the linear transport equation

ut + aux = 0 with a > 0 (1)

the VC method will be simply referred to as “confinement” since the transported variable does not specifically
correspond to vorticity. The idea of confinement is to include an additional negative dissipation term to the
existing space discretization in order to balance the dissipation of the numerical scheme. Considering a
semi-discrete (continuous in time, discrete in space) approximation of the linear transport equation with
confinement on a uniform grid with spacing h (xj = jh, j ∈ Z), the equation takes the generic form:

ut +R(u) + εRC(h̃(u)) = 0 (2)

where R,RC are space discretization operators and h̃ represents the harmonic mean of the transported
variable between two neighboring points:

h̃(•)j =

{
2(•)j(•)j−1

(•)j+(•)j−1
, if (•)j(•)j−1 > 0

0 , otherwise
(3)

The confinement term is the last term in Eq. (2). The operator R(u) represents the space discretization
of the baseline scheme without confinement. The operator RC(h̃(u)) of the confinement term represents
a space discretization for the harmonic mean of the transported variable between the neighboring cells for
each stencil point, instead of the variable itself. The computational stencil of RC(h̃(u)) is again dependent
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on the choice of the baseline scheme. The term is then multiplied by ε, which is a real constant called the
confinement parameter.

In previous studies confinement was studied mostly on high-order extensions of the Lax-Wendroff and
Warming-Beam schemes. In both of these cases an analysis of the space discretization is not straightforward
due to coupling of the space and time terms. For this reason the present study focuses on a decoupled
family of schemes, based on high-order centered space discretizations. Using the discretization operators
δ(•)j+ 1

2
:= (•)j+1−(•)j and µ(•)j+ 1

2
:= 1

2 ((•)j+1+(•)j) on a Cartesian mesh, the first and second derivatives
can be approximated at 8th-order of accuracy on a 9-point stencil as [25, 26]:

(•)(1) =
1

h
δµ

(
I − 1

6
δ2 +

1

30
δ4 − 1

140
δ6

)
(•) +O(h8)

(•)(2) =
1

h2
δ2

(
I − 1

12
δ2 +

1

90
δ4 − 1

560
δ6

)
(•) +O(h8)

(4)

with I being the identity operator. The 6th, 4th and 2nd-order approximations can be obtained by recursively
suppressing the δ6, δ4 and δ2 terms. The discretization of the first derivative (•)(1) in Eq. (4) is purely
dispersive, so explicit artificial viscosity terms must be added for stability. Both artificial viscosity and the
confinement term are based on higher-order differences of the second derivative of Eq. (4). Using the above
approximations, a pth- (odd) order semi-discrete approximation of the linear transport equation (1) can be
written as a sum of space discretization, artificial viscosity and the confinement term as:

∂u

∂t
+
a

h
δµ

(p−1)/2∑
l=0

bl δ
2l

u− a

h
kp δ

2
(
δp−1

)
u+

a

h
ε δ2

(
δp−1

)
h̃(u) = 0 (5)

These baseline discretizations (without confinement) correspond to the DNC (Directional-Non-Compact)
family of schemes derived by Lerat and Corre in [25] which are related to the MUSCL schemes of Van Leer
based on Flux-Extrapolation without limiters (FE-MUSCL). The artificial viscosity coefficient kp of Eq. (5)
is always equal to the half of the coefficient of the higher-order term from the non-dissipative part of the
scheme (kp = b(p−1)/2/2) providing dissipation equivalent to a non-compact upwind scheme [25].

The scheme of Eq. (5) will be referred to as the pth-order FE-MUSCL scheme with Confinement (FE-
MUSCLp-C). By suppressing the last term, the baseline pth-order FE-MUSCL scheme (FE-MUSCLp) is
obtained.

2.2 Euler/RANS equations
Considering the original 1st-order VC2 formulation of Steinhoff, the VC term is added in the momentum
equation as a source term. The conservative differential form of the momentum conservation equation can
then be written:

∂ρ~υ

∂t
+ ~∇ ·

(
ρ~υ ⊗ ~υ + pI − τ

)
= ρ~f (6)

with the Vorticity Confinement term:
~f = −~∇× (µ~ω − ε~w) (7)

The first part is an artificial dissipation term with coefficient µ aligned with the vorticity vector ~ω = ~∇×~υ.
The second part is the negative dissipation confinement term with coefficient ε. This part is based on a vector
~w with magnitude equal to the harmonic mean of vorticity around the neighboring cells and aligned with
vorticity as:

~w =
~ω

‖~ω‖
h̃(ωj) =

~ω

‖~ω‖
N

 N∑
j=1

‖ ~ωj‖−1

−1

(8)

The introduction of a dissipation term in the VC formulation of Eq. (7) may appear counterintuitive,
but is used in order to include explicit artificial dissipation in the order of the VC term that is explicitly
applied in vortical regions and is independent of the dissipation of the numerical scheme.
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The analogy of Eq. (6) with the confinement formulation in the case of the linear transport equation
can be revealed by taking the curl of the momentum equation to derive the vorticity transport equation.
By dividing with density we can obtain the specific vorticity transport equation, which in the case of a 2D
isolated vortex in inviscid flow reduces to:

∂(~ω/ρ)

∂t
+ ~υ · ~∇(~ω/ρ)− 1

ρ
~∇2 (µ~ω − ε~w) = 0 (9)

or
∂(ω/ρ)

∂t
+ ~υ · ~∇(ω/ρ)− 1

ρ
~∇2
(
µω − εh̃(ωj)

)
= 0 (10)

Furthermore, it has been shown that by ignoring the baseline scheme’s dissipation, the asymptotic solu-
tions of Eq. (10) are driven by the VC term and depend on the mesh size for given values of the confinement
parameters, similarly to what is known for the asymptotic solutions of confinement for the linear transport
equation [24].

By analogy with the δ operator in the linear scalar case, the curl operator can be recursively applied on
the VC term of Eq. (7) to increase the order of differencing. By introducing the vector ~α = −(µ~ω − ε~w) to
simplify the equations and applying the curl operator twice on ~f , we can introduce the equivalent of a δ4

difference and obtain:

~∇× ~f = ~∇× ~∇× ~α = ~∇
(
~∇ · ~α

)
− ~∇2~α

~f3 = ~∇× ~∇× ~f = −~∇×
(
~∇2~α

)
= ~∇×

(
~∇2 (µ~ω − ε~w)

) (11)

A 4th-difference extension of VC can therefore be obtained by taking the Laplacian of the original term.
It is important to note that the Laplacian is rotationally invariant similarly to the idea of the original VC
method as proposed by Steinhoff. Furthermore, the alternate sign of higher-order derivatives is naturally
introduced by the recursive applications of the curl operator. Since the higher difference alone does not
suffice, the use of undivided differences in the computation of the Laplacian will ensure consistency with the
original partial differential equation and provide increased order of accuracy. Similarly, the 5th-order VC
term is obtained by taking the bi-Laplacian of the VC term of Eq. (7). Note also that both the original VC
and the higher-order extensions are independent from the choice of space discretization or time integration
scheme.

The analogy of Eq. (11) with Eq. (7), can be investigated by taking the curl of the developed scheme,
which corresponds to the vorticity transport equation (10). In the case of an isolated 2D vortex in inviscid
flow:

~∇× ~f3 = −~∇×
(
~∇× ~∇2~α

)
= −~∇~∇ ·

(
~∇2~α

)
+ ~∇2

(
~∇2~α

)
= −~∇~∇ ·

(
~∇2 (µ~ω − ε~w)

)
+ ~∇2

(
~∇2 (µ~ω − ε~w)

)
= −~∇~∇ ·

(
~∇
(
~∇ · µ~ω − ~∇ · ε~w

)
− ~∇× ~∇× (µ~ω − ε~w)

)
+ ~∇2

(
~∇2 (µ~ω − ε~w)

)
= ~∇2

(
~∇2 (µ~ω − ε~w)

)
(12)

since vorticity is perpendicular to the gradient of the harmonic mean of vorticity modulus for a 2D vortex.
The new term is therefore analogous to the VC term of Eq. (9), expressed as the sum of a dissipation and
a confinement term.

The confinement parameters are always multiplied by the mesh size for consistency. In the presentation
of results it has been chosen to express the confinement parameters as ε, µ/ε as the first is a measure of the
intensity of the confinement part and the second represents the ratio between explicit artificial dissipation
and confinement within the VC term. The flow regions, where VC is applied, are selected based on a cut-off
value of the Q-criterion.
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3 Spectral analysis for the scalar case
The dispersive and dissipative properties of confinement schemes are evaluated for the scalar formulation of
confinement presented in Subsection 2.1. Spectral analysis is performed analytically based on linear theory
and using a quasi-linear numerical method.

3.1 Linear theory
A spectral analysis of confinement schemes is not straightforward because the confinement term of Eq. (2)
is intrinsically non-linear. However, confinement schemes can be linearized using exponent functions, which
behave like eigenfunctions for the harmonic mean on a uniform grid. This property becomes apparent when
we consider a single harmonic unj = ûneijξ with assigned reduced wavenumber ξ = kh for the linear transport
equation. Then, for a uniform grid with spacing h (xj = jh, j ∈ Z) and a time step ∆t (t = n∆t, n ∈ Z):

h̃(u)j = 2
(

(uj)
−1

+ (uj−1)
−1
)−1

= 2
(
1 + eiξ

)−1
unj (13)

where the factor of uj in the above expression is independent of the position on the computational grid.
Considering a single harmonic and taking advantage of Eq. (13), a semi-discrete approximation can be
written in the form of the exact solution of Eq. (1), which is a travelling wave:

uj(t) = u0e
ijξe−i(at/h)ξ (14)

If η are the coefficients of the expanded centered difference operators of Eq. (5), it is:

δµ (δm(•)j) =

1+(m/2)∑
q=1

ηq(•)j+q − ηq(•)j−q (15)

Then, after some algebraic developments, the modified wavenumber of the pth-(odd) order FE-MUSCL space
discretization of Eq. (5) with confinement (FE-MUSCLp-C) can be expressed with the recurrence relation:

ξ∗p =

(p−1)/2∑
l=0

bl

(
l+1∑
q=1

ηq sin(qξ)

)
+ i 2(p+1)/2(−1)(p+3)/2kp (cos ξ − 1)

(p+1)/2

+2(p+1)/2(−1)(p+1)/2 ε sin ξ
(cos ξ − 1)

(p+1)/2

cos ξ + 1
+ i 2(p+1)/2(−1)(p+1)/2 ε (cos ξ − 1)

(p+1)/2 (16)

where the first term corresponds to the centered space discretization, the second to the explicit artificial
viscosity and the last two correspond to confinement. By suppressing the terms associated with ε in Eq.
(16), the expression for the pth-order baseline FE-MUSCL scheme is obtained.

For the exact solution of the linear transport equation (Eq. (14)) it is ξ∗ = ξ, therefore |Re(ξ∗)− ξ| /π
can be used as a measure of dispersion or phase approximation error and Im(ξ∗) can be used as a measure
of dissipation error of the schemes (5) compared to the exact solution. Note that in Eq. (16), dissipation
derives only from the artificial dissipation and confinement terms.

Fig. 1 compares the dispersive properties of FE-MUSCL-C confinement schemes with the corresponding
baseline FE-MUSCL schemes up to 7th-order of accuracy. The confinement parameter is ε = 1.14 kp for all
cases. As illustrated in the analytical expression of Eq. (16), even though confinement is originally based on
an even difference, its non-linear character introduces modifications both in the dispersive and dissipative
properties of the scheme. Fig. 1 shows that confinement decreases the phase approximation error of FE-
MUSCL schemes at least up to the grid resolvability limit ξ = π/2 for all orders. On the other hand, Eq. (16)
shows that Im(ξ∗) > 0 (i.e. instability) for confinement schemes since ε > kp to ensure that the numerical
scheme is globally anti-dissipative. This however is not in agreement with extensive numerical experiments,
which have verified the stability of confinement schemes [22, 27, 28]. The inconsistency of analytical theory
is explained from the linearization considered in Eq. (13), which permits the application of linear stability
theory, but can in no case express the complete non-linearity of the confinement term.
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Figure 1: Dispersion error of FE-MUSCL schemes up to 7th-order with and without confinement for ε =
1.14 kp

3.2 Numerical evaluation
Given the inability of analytical theory to represent the non-linear confinement schemes, the aim of this
section is to evaluate their spectral properties using a numerical approach proposed by Pirozzoli [29] for the
study of non-linear shock capturing schemes. This method was shown to produce an improved prediction
compared to conventional analyses, providing results in general agreement with observations on the properties
of these schemes after their application in numerical experiments.

Again, we consider sinusoidal monochromatic initial conditions with assigned reduced wavenumber ξ for
Eq. (1) on a uniform grid with spacing h (xj = jh, j ∈ Z):

u0
j = û0eijξ (17)

For all wavenumbers in the range [0 − π] that result in periodic initial conditions of the type (17) on the
finite computational grid, the numerical scheme is used to advance the initial signal to a very small time τ.
The time τ must be sufficiently small in order to exclude time integration error and in turn ensure that the
initial conditions remain monochromatic at the end of the computation.

The modified wavenumber can then be derived from the Discrete Fourier Transform of the initial and
computed signal for each supported wavenumber ξ in the range [0− π]:

ξ∗(ξ) = − 1

iσ
log

(
û(ξ; τ)

û(ξ; 0)

)
(18)

The numerical method is first validated through comparison with analytical results of Subsection 3.1.
Fig. 2 shows that the numerical method is in excellent agreement with analytical results for linear schemes,
for which linear theory is exact, in the complete wavenumber spectrum. Similar results were obtained
for the confinement schemes based on high-order extensions of the Lax-Wendroff scheme of [22], since the
time-coupled terms of these schemes disappear for a very small value of the CFL number.

It can be seen in Fig. 2 that numerical method results for confinement schemes are not smooth everywhere
in the wavenumber space. Specifically, “spikes” can be observed for ξ ∈ S = {π/2, 3π/4, 4π/5, 9π/10},
wavenumbers equal or greater than the grid resolvability limit π/2 posed by the Nyquist-Shannon theorem.
At these points, confinement appears to have no effect and the result matches exactly the curves of the
baseline FE-MUSCL scheme. This behaviour is related to the harmonic mean function of Eq. (3), which
is only defined for numbers of the same sign and therefore is set to zero otherwise. For frequencies of the
set S, the initial condition is such that h(uj , uj−1) = 0 ∀j ∈ {0, 1, ..., N} and the total contribution of
confinement is exactly zero. This weakness of confinement however refers to single harmonics and was not
observed in general problems, since frequencies higher than π/2 are under-resolved and should in any case
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Figure 2: Comparison of the numerical spectral analysis method with linear theory. Baseline FE-MUSCL3
scheme and with confinement (ε = 1.14 kp).

be damped by filters or the numerical scheme’s inherent dissipation.
Results of the numerical method are shown in Fig. 3 for high-order FE-MUSCL schemes with and without

confinement up to 7th-order of accuracy. As expected, higher-order schemes provide a good approximation
of the exact solution for a longer range of wavenumbers. Fig. 3 also shows that the developed confinement
schemes are stable and have improved dispersive and dissipative properties compared to their linear counter-
parts with the exception of wavenumbers ξ ∈ S where their properties are reduced to those of the baseline
scheme. Confinement can also achieve the preservation of waves over arbitrarily long distances [22, 24], a
non-linear property which is not taken in account by the present analysis but cannot be achieved even for
high-order baseline schemes. The improvement in terms of dispersion is not obvious, since the confinement
term of Eq. (5) is originally based on a dissipative operator, but is associated to the non-linear properties
of the term. Additionally, confinement acts in a rate that matches the order of the baseline scheme since its
effect is smaller as the order increases, or equivalently when numerical error is reduced. Finally, the negative
dissipation introduced by confinement does not affect the damping of the shortest wavelength ξ = π, which
is associated to grid-to-grid oscillations.
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Figure 3: Spectral properties of FE-MUSCL schemes up to 7th-order. Baseline schemes (dashed lines) and
with confinement (solid lines), ε = 1.14 kp.

The accuracy of numerical schemes can be quantified by comparing their resolvability limit in the
wavenumber space, or equivalently by computing the maximum wavenumber ξn for which the scheme approx-
imates the exact solution under a defined error threshold E. In turn, this reduced wavenumber is equivalent
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to a minimum number of grid points per wavelength λn/h to ensure the accurate computation of the ad-
vection. Tables 1-2 show the effect of confinement on the resolvability limit of FE-MUSCL schemes due to
dispersion and due to dissipation. The FE-MUSCL schemes of Eq. (5) are odd-order accurate and therefore
have a leading truncation error term of dissipative nature, the accuracy limit being in turn defined by their
dissipation error, rather than dispersion. Confinement is shown to achieve a considerable improvement of this
limit due to dissipation, halving the minimum number of points per wavelength for the FE-MUSCL3 scheme
and extending the well-resolved wavenumber range even for the more precise FE-MUSCL5/FE-MUSCL7.
Furthermore, confinement is shown to improve phase errors by an amount comparable to the improvement
in terms of dissipation, even though the method had not been designed for this purpose.

Table 1: Resolvability limit due to dispersion for FE-MUSCL schemes (E = 10−3)
baseline confinement

ξn λn/h ξn λn/h

FE-MUSCL3 0.471 13.33 0.974 6.45
FE-MUSCL5 0.754 8.33 1.005 6.25
FE-MUSCL7 0.974 6.45 1.131 5.56

Table 2: Resolvability limit due to dissipation for FE-MUSCL schemes (E = 10−3)
baseline confinement

ξn λn/h ξn λn/h

FE-MUSCL3 0.314 20.00 0.660 9.52
FE-MUSCL5 0.628 10.00 0.848 7.41
FE-MUSCL7 0.880 7.14 1.037 6.06

It can be argued that, having a higher cut-off wavenumber both in terms of dispersion and dissipation,
the FE-MUSCL3-C scheme with confinement is a preferable choice over the baseline FE-MUSCL5 scheme.
This is true for ξ < ξn, but not representative of the complete wavenumber range, where the FE-MUSCL5
shows overall superior properties (Fig. 3). Furthermore, spectral analysis represents only wave propagation
properties and not the improved approximation of the convective derivative provided by the FE-MUSCL5
scheme. Confinement is not equivalent to a correction of the leading truncation error term but represents
a conservative correction to the baseline scheme allowing the accurate calculation of wave advection over
arbitrarily long distances. This makes confinement an interesting approach for diffusion-dominated problems,
but it is not capable of preserving structures not captured by the baseline scheme.

4 Numerical results
The Vorticity Confinement schemes presented in Subsection 2.2 were integrated into the DynHoLab Finite
Volume solver of DynFluid laboratory [30] up to 5th-order of accuracy. In the following these schemes
are applied in the calculation of compressible vortical flows and evaluated based on their numerical error,
vorticity-preserving capabilities and non-linear dynamics.

4.1 Grid convergence
The first validation case is a grid convergence study of a static 2D vortex, using the isentropic vortex model
of Yee et al. [31]. The isentropic vortex is initialized on a flow at rest and its evolution is computed based
on the Euler equations, meaning that any spreading and diffusion are attributed to the dissipation of the
numerical scheme. The velocity and vorticity vectors in Crocco’s form of Euler’s momentum equation are
perpendicular, meaning that the flow cannot remain fully isentropic. However, the entropy gradient remains
small, thus allowing an analysis with a reasonable approximation of the isentropic case [24].
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Computations are performed on a square Cartesian mesh −5 < x < 5, −5 < y < 5 and the vortex is
initialized at the center of the computational domain at x = y = 0. Different meshes of varying density
were considered, ranging from ∆x = 0.4 (625 cells) for the coarsest mesh to ∆x = 0.025 (160000 cells) for
the finest mesh with ∆x being halved between two successive cases. Periodicity conditions were imposed on
each side of the computational domain. Computations were run from t = 0 to t = 1 using a small fixed ratio
of ∆t

∆x = 2 · 10−4 for all cases, to minimize any error introduced by time integration. Space discretization is
performed using FE-MUSCL schemes [25] of order ranging from 1st to 5th and time integration is performed
using a classical 4-step Runge-Kutta algorithm. For cases where VC is applied, the confinement parameters
are set to µ/ε = 0.6, ε = 0.02. Last, the cut-off value of the Q-criterion is set to 0.1 for all presented cases.
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Figure 4: Error convergence for FE-MUSCL schemes with and without VC.
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The final solution is compared to the initial isentropic field and the L2 norm of entropy error is computed
based on the cell-averaged solution at cell centers:

L2 error =


n∑
i=1

|s̄i − s̄i,exact|2voli
n∑
i=1

voli


1/2

(19)

Fig. 4(a) shows the L2 norm of entropy error for FE-MUSCL schemes of 1st, 3rd and 5th-order of
accuracy. The nominal convergence slope is correctly obtained, but a slope decrease can be observed for the
5th-order FE-MUSCL scheme for very fine grids. A similar behaviour has been observed in previous studies
[24] for fine enough resolution and is probably due to the isentropic vortex not being an exact solution of
the Euler equations, as is assumed during the error analysis.

Fig. 4(b) underlines the incompatibility of the original VC method with higher-order schemes, as the
numerical error of the VC term dominates the solution, resulting in a 1st-order convergence slope regardless
of the underlying scheme. Furthermore, Figs. 4(c) and 4(d) show that with the developed higher-order VC
extensions, the nominal order of accuracy is recovered. The decrease in convergence slope is observed for
the 5th-order FE-MUSCL scheme with 5th-order VC as for the baseline case.

4.2 Diagonal vortex advection
The FE-MUSCL schemes used in the present work, as well as the majority of numerical schemes in general,
are directional, meaning that numerical error is increased when the grid is not aligned with the direction of
advection. The second test case considers the advection of a 2D vortex in an inviscid uniform flow inclined
by 45◦ with respect to the grid, so as to underline the effect of numerical error of both the baseline and the
VC method.

The advection is studied on a square computational domain extending from x = y = −15 to x = y = +15.
The nondimensional flow velocity components are u = ν = 1 so that U =

√
2 in the diagonal direction and

the fluid variables are γ = 1.4, pinf = 1/γ, ρinf = 1. The isentropic vortex is initialized at x0 = y0 = −10
using the isentropic model of Yee et al. [31] as for the previous case. The problem is solved on a coarse
100 × 100 Cartesian grid with approximately 4 cells across the vortex core and periodicity conditions are
imposed in each side of the domain. Time integration is performed with a 4-step explicit Runge-Kutta
algorithm and a time step ∆t = 0.025 for all cases, meaning an approximate CFL ≈ 0.083. Note that a full
advection is completed in time T = 30.

The case was studied using both 3rd- and 5th-order FE-MUSCL baseline schemes and the advection was
computed over a distance of 30 and 300 passages across the computational domain respectively for each
case. For the cases where VC was applied, the value of the confinement parameters is defined empirically
depending on the numerical error of the baseline scheme, corresponding to stronger VC for a baseline scheme
of lower order. The values, independently of the order of the VC term, were set to µ/ε = 0.2, ε = 0.16 for
FE-MUSCL3 and µ/ε = 0.4, ε = 0.02 for FE-MUSCL5.

It should be noted that this case is not expected to display significant difference between VC schemes of
different order. This is because the difference in the error convergence of high-order VC for such a coarse
mesh (∆x = 0.3) is not significant with respect to the 1st-order one (see Figs. 4(a)-4(d)). The purpose of
this study is therefore to demonstrate the vorticity preserving capability of all orders of VC at very coarse
meshes. For more refined cases it is known that the negative dissipation of the 1st-order VC term does not
decrease according to the order of the baseline scheme, resulting in a rapid amplification of the advected
structure [24] and making the use of high-order VC mandatory.

Fig. 5 shows iso-density contours during the advection of the vortex for the 3rd-order FE-MUSCL case.
The effect of dissipative error is severe for the baseline scheme leading to a complete diffusion of the vortex
after 30 passages across the computational domain. The 1st-order VC method achieves a good preservation
of vortex intensity, but introduces significant dispersion error along the vertical direction. The 3rd-order
VC scheme has similar vorticity preserving capabilities with a more accurate trajectory prediction than the
1st-order one.
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(b) FE-MUSCL3 and 1st-order VC
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(c) FE-MUSCL3 and 3rd-order VC

Figure 5: Iso-density contours during the diagonal vortex advection using the FE-MUSCL3 scheme. The
approximate number of completed passages at each moment is indicated next to the corresponding contour.

Horizontal extractions of tangential velocity profiles at the end of the computation are shown in Fig. 6
and are used as a measure of the schemes’ vorticity preserving properties. All curves have been centered
at x = 0 for the sake of comparison. Computed profiles show some spreading with respect to the exact
solution, especially for FE-MUSCL3. However, VC clearly improves the vorticity preserving capabilities of
both 3rd-order and 5th-order FE-MUSCL schemes and produces satisfactory results especially considering
the coarse mesh resolution and the length of the computed distance.

The trajectory error with respect to the exact solution, which is the passive advection of the vortex
along the diagonal, is shown in Fig. 7 as a measure of the schemes’ phase approximation. For both FE-
MUSCL3 and FE-MUSCL5 cases, the 1st-order VC term exhibits a significant dispersion error in the vertical
direction since the early stages of the advection. High-order VC schemes show overall decreased error in
vortex trajectory compared to the baseline one even though no clear conclusion can be made regarding the
order of accuracy of VC in this case.

It is clear in this study that schemes with VC have significantly improved vorticity preservation properties
compared to baseline ones for all orders of the VC term. On very coarse meshes, high-order VC is not
significantly closer to the exact solution compared to the original 1st-order one, the difference appearing
mostly in terms of dispersion error. However, for finer meshes, the use of VC of the same order as the
baseline scheme is important to guarantee consistency in terms of convergence towards the exact solution
and to ensure that VC acts at a rate that matches the numerical error of the baseline scheme.
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Figure 6: Comparison of tangential velocity profiles at the end of the computation. FE-MUSCL schemes
with and without VC.
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Figure 7: Error in trajectory calculation for FE-MUSCL schemes and VC.
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4.3 Viscous Taylor-Green Vortex
The final case is the study of the Taylor-Green Vortex (TGV) [32] at Re = 1600 which has been considered
a benchmark test case for recent high-order CFD workshops [21] and high-precision numerical methods
[33, 34]. The TGV flow is an unsteady problem with an analytical initial condition that consists of energy
transfer from large to smaller scales through viscous, stretching and tilting mechanisms. For the viscous
case, kinetic energy cascade occurs due to fluid viscosity and numerical dissipation as well as interaction and
decay mechanisms that are characteristic of homogeneous turbulence.

It is therefore chosen as the last case to assess the robustness and performance of high-order Vorticity
Confinement. The objective of this assessment is twofold. Having already proved the capabilities of VC
to overcome numerical dissipation and allow the advection of vortical structures over long distances, the
primary objective is the investigation of the effect of VC in the dynamics of a complex and multi-scale flow,
representative of a broad range of Large Eddy Simulation (LES) applications. The secondary objective is the
evaluation of the improvement introduced by VC in the prediction of the TGV flow, compared to baseline
upwind FE-MUSCL schemes.

The compressible Navier-Stokes equations are solved on a cubic computational domain [2π]3 on Cartesian
meshes of varying density with a total number of cells 323, 643, 1283, 2563. Convective fluxes are discretized
using the same FE-MUSCL schemes as for the previous studies [25]. Time integration is performed using an
explicit 6-stage Runge-Kutta algorithm, formally accurate to 2nd-order, with optimized coefficients to ensure
minimal dispersive and dissipative error [35]. The time step is set equal to 0.01/0.005/0.0025/0.00125 for the
coarser to the finer mesh respectively, so that the CFL number is kept constant for all cases. The VC term is
always of the same order as the baseline scheme and the confinement parameters are µ/ε = 0.4, ε = 0.02 as
for the diagonal vortex advection case. Results are compared against the reference case of the International
Workshop of High-Order CFD Methods, which is a converged DNS computation using a dealiased pseudo-
spectral method on a 5123 mesh.

Fig. 8 shows a grid convergence study for the baseline FE-MUSCL5 scheme. The dissipation rate (i.e. the
time derivative of the integrated kinetic energy K over the computational domain) converges fast towards
the DNS results, that are well matched already on the 2563 mesh, except at the end of the turbulence
decay phase. The evolution of integrated enstrophy E over the domain is more difficult to match, since it
contains the accumulated error in the computation of conservative variables and velocity gradients over the
computational domain. It is thus often used as a criterion for the convergence of results for the TGV flow.
For an incompressible flow without numerical dissipation the kinetic energy dissipation rate is related to
enstrophy via −dKdt = 2 µ

ρ0
E.
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Figure 8: Grid convergence for enstrophy and kinetic energy dissipation rate −dKdt using the 5th-order FE-
MUSCL scheme.
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The TGV problem is initially dominated by vortex stretching and tilting mechanisms, generating smaller
and smaller vortical structures up to the time at which the dissipation rate peaks (t ≈ 9). The flow then
transitions to fully developed non-isotropic turbulence and finally decays due to the dissipation acting at the
smaller scales (snapshots of the flow computed with VC are shown in Fig. 9).

(a) t = 0 (b) t = 4 (c) t = 8

(d) t = 12 (e) t = 16

Figure 9: Iso-surface of Q = 0 colored by kinetic energy computed with FE-MUSCL5 and 5th-order Vorticity
Confinement on the 2563 mesh.

The left column of Fig. 10 shows the difference of the time evolution of the kinetic energy dissipation
rate between the baseline case and the FE-MUSCL5 scheme with VC. For the 643 and 2563 meshes, VC is
consistent with the vorticity dynamics of the flow, reducing dissipation during the vortex stretching phase
and later on increasing the dissipation peak since it improves the preservation of small structures that
largely contribute to this dissipation. For the 1283 case VC is constantly reducing dissipation, being in
better agreement with the reference computation than the baseline FE-MUSCL5 scheme during the vortex
stretching phase, but does not increase the dissipation peak. Furthermore, the effect of VC is smaller when
the mesh is refined, or equivalently when numerical dissipation is reduced, displaying consistent behaviour
with the baseline 5th-order scheme for the vortex stretching phase and up to the development of turbulence.
Regarding this last stage, VC increases dissipation compared to the baseline scheme due to the improved
preservation of eddies in the inertial range, even when the baseline case is quite well-converged towards the
reference results.

The time evolution of enstrophy is shown in the right column of Fig. 10 for the same cases. Results
are straightforward meaning that VC acts in vortical regions by introducing negative dissipation in the
vorticity transport equation and therefore increases the integral value of enstrophy, in a sense accelerating
the convergence towards the DNS solution. Compared to the time evolution of the dissipation rate, the effect
of VC on enstrophy does not decrease with mesh refinement: this is a result of the improved resolution of
vortical structures (i.e. a VC term that is better aligned with local vorticity and therefore more efficient)
and does not represent an inconsistency with respect to the convergence order of the baseline discretization.

This is further demonstrated by the iso-contours of the dimensionless vorticity norm on a periodic face
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Figure 10: Effect of VC on the kinetic energy dissipation rate and the evolution of enstrophy for varying
mesh density. FE-MUSCL5 and 5th-order Vorticity Confinement.

of the computational domain at t = 8, presented in Fig. 11. Results of the VC and baseline FE-MUSCL5
scheme are compared to the reference spectral results and provide a good approximation of the main flow
structures. VC improves the preservation of vortices without introducing unphysical changes in the structure
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Figure 11: Iso-contours of the dimensionless vorticity norm |ω| on the periodic face x/L = −π at nondimen-
sional time t = 8.

shape.
This preliminary study shows that schemes with VC are consistent with the dynamics of the complex

TGV flow without the need for a special treatment or a more sophisticated choice of confinement parame-
ters compared to a simple isolated 2D vortex case. Furthermore, the developed VC schemes introduce an
improvement to the baseline scheme over the vortex stretching phase where the treatment of large structures
is involved. However, VC increases the life-span of vortices during the turbulence decay phase, eventually
producing more dissipation at the smallest scales, a behaviour which will be further investigated in future
studies.

5 Conclusions
This paper presents high-order extensions of Vorticity Confinement for the accurate calculation of compress-
ible vortical flows. In the scalar advection case, a quasi-linear numerical spectral analysis shows that the
developed non-linear schemes have improved dispersive and dissipative properties compared to their linear
counterparts. For the Navier-Stokes equations, the original Vorticity Confinement method is extended up
to 5th-order of accuracy with a formulation that remains independent of the choice of baseline numerical
scheme. Results in the inviscid framework show that VC allows the calculation of the advection of vortices
over very long distances with small dissipation. Furthermore, a preliminary study shows that it improves the
prediction of large structures in the Taylor-Green Vortex flow compared to baseline FE-MUSCL schemes,
but seems to reduce the dissipation of intermediate structures in the decay of turbulence even for cases
where the baseline case is well-resolved. Overall, the proposed high-order VC schemes maintain the vorticity
preserving capability of the original method and introduce negative dissipation according to the reduced
numerical error corresponding to the increased order, enabling the use of VC in high-order simulations while
preserving the accuracy order of the baseline method.
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