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It has been recently shown that compressive sampling is an interesting perspective for fast ultrasound imaging. This paper addresses the problem of compressive deconvolution for ultrasound imaging systems using an assumption of generalized Gaussian distributed tissue reflectivity function. The benefit of compressive deconvolution is the joint volume reduction of the acquired data and the image resolution improvement. The main contribution of this work is to apply the framework of compressive deconvolution on ultrasound imaging and to propose a novel ℓ p -norm (1 ≤ p ≤ 2) algorithm based on Alternating Direction Method of Multipliers. The performance of the proposed algorithm is tested on simulated data and compared with those obtained by a more intuitive sequential compressive deconvolution method.

INTRODUCTION

Ultrasound (US) medical imaging has the advantages of being noninvasive, harmless, cost-effective and portable over many other imaging modalities such as X-ray Computed Tomography or Magnetic Resonance Imaging [START_REF] Szabo | Diagnostic ultrasound imaging: inside out[END_REF]. US images have a textural appearance caused by the presence of a speckle noise resulting from the interferences between the US waves backscattered by the randomly-located scatterers of the tissue being imaged. However, the limited bandwidth of the imaging transducer, the characteristics of the US propagation such as the diffraction and the imaging system tend to degrade the resolution of the US images. Thus, one of the research tracks extensively explored in the litterature is the deconvolution of US images [START_REF] Taxt | Two-dimensional noise-robust blind deconvolution of ultrasound images[END_REF][START_REF] Michailovich | Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach[END_REF][START_REF] Morin | Semi-blind deconvolution for resolution enhancement in ultrasound imaging[END_REF][START_REF] Zhao | Restoration of ultrasound images using a hierarchical bayesian model with a generalized gaussian prior[END_REF][START_REF] Alessandrini | A restoration framework for ultrasonic tissue characterization[END_REF]. Based on the first order Born approximation, these methods assume that the US radiofrequency (RF) images follow a 2D convolution model between the point spread function (PSF) and the tissue reflectivity function to be recovered [START_REF] Jensen | Deconvolution of in vivo ultrasound b-mode images[END_REF].

More recently, a few research teams (e.g. [START_REF] Achim | Compressive sensing for ultrasound rf echoes using a-stable distributions[END_REF][START_REF] Quinsac | Frequency domain compressive sampling for ultrasound imaging[END_REF][START_REF] Chernyakova | Fourier-domain beamforming: the path to compressed ultrasound imaging[END_REF][START_REF] Liebgott | Compressive sensing in medical ultrasound[END_REF][START_REF] Liebgott | Pre-beamformed rf signal reconstruction in medical ultrasound using compressive sensing[END_REF][START_REF] Schiffner | Pulse-echo ultrasound imaging combining compressed sensing and the fast multipole method[END_REF]) evaluated the application of compressive sampling (CS) in the context of 2D and 3D US imaging. CS [START_REF] Donoho | Compressed sensing[END_REF][START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete fre-quency information[END_REF] routines, an image from few linear measurements (below the limit imposed by the Shannon-Nyquist theorem). For this, two conditions must be fulfilled: the image must have a sparse representation in a known basis or frame and the measurement and sparifying basis must be incoherent [START_REF] Candès | An introduction to compressive sampling[END_REF]. The benefits of CS in US imaging reported by the existing approaches are the reduction of the acquired data (very useful for instance in 3D or in Doppler imaging) or/and of the acquisition time.

The direct models of both deconvolution and CS are linear models leading to ill-posed inverse problems. Thus, combining these two frameworks, leading to the so-called compressive deconvolution problem [START_REF] Amizic | Compressive blind image deconvolution[END_REF][START_REF] Spinoulas | Simultaneous bayesian compressive sensing and blind deconvolution[END_REF], is a very interesting and recent research track. The benefit of compressive deconvolution is the joint volume reduction of the acquired data and the image quality improvement.

In this paper, we propose a novel scheme of compressive deconvolution and its application to US imaging. The resulting acquisition model is as follows:

y = ΦHx + n (1) 
where Φ ∈ R M ×N corresponds to the CS acquisition matrix composed for example by M random Gaussian vectors with (M << N ), H ∈ R N ×N is a block circulant with circulant block (BCCB) matrix related to the 2D PSF of the system, x ∈ R N and n ∈ R M represent the lexicographically ordered tissue reflectivity function and the zero-mean additive white Gaussian noise, respectively. y ∈ R M corresponds to the M compressed measurements of one US RF image.

The aim of this work is to estimate the tissue reflectivity function x from the compressed and blurred measurements y. The solution proposed herein is based on the alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Zhao | Alternating direction method of multipliers for nonlinear image restoration problems[END_REF] and uses two constraints. The first one is related to CS and imposes via an l 1 -norm the sparsity of the RF images in the 2D Fourier domain [START_REF] Quinsac | Frequency domain compressive sampling for ultrasound imaging[END_REF]. The second one is related to an l p -norm [START_REF] Antoniadis | Wavelet thresholding for some classes of non-Gaussian noise[END_REF]. Based on the assumption of Generalized Gaussian Distributed (GGD) x, we employ the minimization of an l p -norm of the tissue reflectivity function [START_REF] Zhao | Restoration of ultrasound images using a hierarchical bayesian model with a generalized gaussian prior[END_REF][START_REF] Alessandrini | A restoration framework for ultrasonic tissue characterization[END_REF]. The simulation results show that our method outperforms a more intuitive sequential scheme estimating firstly the blurred image and processing the deconvolution in a second step.

The remainder of the paper is organized as follows. In section 2 we formulate the compressive deconvolution problem. Section 3 details our proposed compressive deconvo-lution algorithm based on ADMM. Simulation results are shown in section 4 before drawing the conclusions in section 5.

PROBLEM FORMULATION

An intuitive idea to invert the direct model in ( 1) is to proceed in two sequential steps. The aim of the first step is to recover the blurred US RF image r = Hx from the compressed measurements y by solving the following optimization problem:

min a∈R N a 1 + 1 2µ y -ΦΨa 2 2 ( 2 
)
where µ is a parameter, a is the sparse representation of the blurred image r in the transformed domain Ψ. That is, a = Ψ -1 Hx, where Ψ ∈ R N ×N represents an orthonormal basis. Different basis have been shown to provide good results in the application of CS in US imaging, such as the wavelets, the wave atoms or the 2D Fourier basis [START_REF] Liebgott | Compressive sensing in medical ultrasound[END_REF] .

Once the blurred RF image recovered by minimizing the convex problem in (2), one can use an US dedicated deconvolution method to restore the tissue reflectivity function x.

While the sequential approach represents the most intuitive way to solve the compressive deconvolution problem, dividing a single problem into two separate subproblems will inevitably generate larger estimation errors. Therefore, we propose herein a method to solve the CS and deconvolution problem simultaneously.

Following recent results in the US deconvolution literature [START_REF] Zhao | Restoration of ultrasound images using a hierarchical bayesian model with a generalized gaussian prior[END_REF][START_REF] Alessandrini | A restoration framework for ultrasonic tissue characterization[END_REF], we assume that the tissue reflectivity function x follows a GGD. Here, we are interested in shape parameters ranging from 1 to 2. Taking into account this statistical prior information for x, we reformulate our compressed deconvolution problem in:

min x∈R N Ψ -1 Hx 1 +α x p p + 1 2µ y -ΦHx 2 2 (3)
where α, µ are parameters, p is related to the shape parameter and 1 ≤ p ≤ 2. In the next section, we propose an ADMM-based scheme to solve the inverse problem above.

PROPOSED ULTRASOUND COMPRESSIVE DECONVOLUTION ALGORITHM

Basics of Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM) has been extensively studied in the areas of convex programming and variational inequalities [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. The general optimization problem is as follows:

min u,v f (u) + g(v) s.t. Bu + Cv = b, u ∈ U, v ∈ V (4) 
where U ⊆ R s and V ⊆ R t are given convex sets, f : U → R and g : V → R are closed convex functions; B ∈ R r×s and C ∈ R r×t are given matrices; b ∈ R r is a given vector.

By attaching the Lagrangian multiplier λ ∈ R r to the linear constraint, the Augmented Lagrangian (AL) function of (4) is

L(u, v, λ) = f (u) + g(v) -λ T (Bu + Cv -b) + β 2 Bu + Cv -b 2 2 (5)
where β > 0 is the penalty parameter for the linear constraints to be satisfied. The standard ADMM framework follows the iterative process:

       u k+1 ∈ argmin u∈U L(u, v k , λ k ) v k+1 ∈ argmin v∈V L(u k+1 , v, λ k ) λ k+1 = λ k -β(Bu k+1 + Cv k+1 -b) (6)
The advantage of ADMM is that it can split awkward intersections and objectives to easy subproblems and the iterations are comparable to those of other first-order methods. Moreover, it is relatively easy to implement.

Proposed ADMM parameterization for Ultrasound Compressive Deconvolution

In this subsection, we propose an ADMM method for solving the ultrasound compressive deconvolution problem in [START_REF] Michailovich | Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach[END_REF].

Using a trivial variable change, the minimization problem in (3) can be rewritten as:

min x∈R N w 1 +α x p p + 1 2µ y -Aa 2 2 (7) 
where a = Ψ -1 Hx. Let us denote z = w x , w = a and A = ΦΨ. The reformulated problem in [START_REF] Jensen | Deconvolution of in vivo ultrasound b-mode images[END_REF] can fit the general ADMM framework in (4) by choosing:

f (a) = 1 2µ y -Aa 2 2 , g(z) = w 1 +α x p p , B = I N ×N Ψ , C = -I N ×N 0 0 -H and b = 0.
The augmented Lagrangian function of ( 7) is given by

L(a, z, λ) = f (a) + g(z) -λ T (Ba + Cz) + β 2 Ba + Cz 2 2 ( 8 
)
where λ ∈ R 2N stands for λ =

λ 1 λ 2 , λ i ∈ R N (i = 1, 2).
According to the standard ADMM iterative scheme, the minimization with respect to a and z will be performed alternatively, followed by the update of λ. More precisely, the numerical scheme for solving (8) is described in Algorithm 1.

The algorithm stops when the convergence criterion x kx k-1 / x k-1 < 5e -3 is satisfied.

Algorithm 1 The Alternating Direction Method of Multipliers for Solving (3) Input: a 0 , λ 0 , α, µ, β Output: x 1: while not converged do 2:

Step 1. Given a k-1 , update w k by using the shrinkage formula: 3:

w k = Shrink 1 β (a k-1 - λ k-1 1 β ) 4:
Step 2. Given a k-1 , update x k by using the proximal operator: 5:

x k = prox αγ • p p /β {x k-1 -γh ′ (x k-1 )} 6:
Step 3. Given z k = w k

x k and λ k-1 , update a k by solving the following linear system 7:

a k = ( 1 µ A T A + βB T B) -1 ( 1 µ A T y + B T λ k-1 - βB T Cz k ) 8:
Step 4. Update λ k by 9:

λ k = λ k-1 -β(Ba k + Cz k ) 10: end while
We solve the subproblems in Step 1 and Step 2 by using proximal operator as proposed in [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF][START_REF] Pustelnik | Parallel proximal algorithm for image restoration using hybrid regularization[END_REF][START_REF] Pustelnik | Relaxing tight frame condition in parallel proximal methods for signal restoration[END_REF]. The wsubproblem in Step 1 is equivalant to:

min w∈R N w 1 + β 2 a k-1 -w - λ k-1 1 β 2 2 (9) 
The solution of ( 9) is given explicitly in the literature (see e.g. [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF])

w k (i) = max |a k-1 (i) - λ k-1 1 (i) β | - 1 β , 0 • sign(a k-1 (i) - λ k-1 1 (i) β ) (10) 
where i ∈ {1, 2, ..., N }, w i denotes the intensity value of pixel i. The x-subproblem in Step 2 is as follow:

min x∈R N α x p p -λ k-1 2 T (Ψa k-1 -Hx)+ β 2 Ψa k-1 -Hx 2 2 (11) Denoting by h(x) = 1 2 Ψa k-1 -Hx - λ k-1 2 β 2 2 , we approximate h(x) by h ′ (x k-1 )(x -x k-1 ) + 1 2γ x -x k-1 2 2 (12)
where γ > 0 is a proximal parameter and h ′ (x k-1 ) is the gradient of h(x) when x = x k-1 , which is equal to

h ′ (x k-1 ) = H T (Hx k-1 -Ψa k-1 - λ k-1 2 β ) (13) 
We should note that the proximal operator associated to • p p has been given in [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. Herein, we use Newton's method to obtain its numerical solution.

In Step 3, the update of a is written in the form of solving an N × N linear system or inverting an N × N matrix. However, since the sparse basis Ψ is orthogonal, it can be reduced to solving a smaller M × M linear system or inverting an M × M matrix by Sherman-Morrison-Woodbury formula [START_REF] Deng | Group sparse optimization by alternating direction method[END_REF]:

(β 1 I N +β 2 A T A) -1 = 1 β 1 I N - β 2 β 1 A T (β 1 I M +β 2 AA T ) -1 A (14) 
where I N ∈ R N ×N and I M ∈ R M ×M are identity matrices. In this paper, we considered the compressive sampling matrix Φ as Structurally Random Matrix (SRM) [START_REF] Do | Fast and efficient compressive sensing using structurally random matrices[END_REF]. Therefore, A was formed by randomly taking a subset of rows from orthonormal transform matrices, that is, AA T = I M . As a consequence, there is no need to solve a linear system and the main computational cost becomes two matrix-vector multiplications per iteration.

SIMULATION RESULTS

In this section we evaluate the performance of the proposed compressive deconvolution algorithm for synthetic ultrasound data against a sequential resolution processing separately the CS reconstruction and the deconvolution. For the sequential approach, YALL1 [START_REF] Yang | Alternating direction algorithms for l1problems in compressive sensing[END_REF] was used to process the CS reconstruction from (2), while the deconvolution was done using an ℓ pnorm minimization. To solve this minimization problem, we also used one of the parameterizations of ADMM to split the ℓ p -norm term and the quadratic term, then solved them separately and iteratively.

The ultrasound data in Figure 1 and Figure 2 were simulated by 2D convolution between known PSFs and reflectivity images. For the first simulated image, the PSF was generated with Field II [START_REF] Jensen | A model for the propagation and scattering of ultrasound in tissue[END_REF] corresponding to a 3.5 MHz linear probe, sampled in the axial direction at 20 MHz. For the simulated kidney image, the PSF was also generated with Field II [START_REF] Jensen | A model for the propagation and scattering of ultrasound in tissue[END_REF] Fig. 1: The 1 st row represents the tissue reflectivity function, the ultrasound RF image and the corresponding B-mode image (obtained after envelope detection and log-compression from the RF image) from left to right; The 2 nd row depicts the compressive deconvolution results obtained with the proposed method for SNR=40dB and for CS ratios of 80%,60% and 40% respectively; The 3 rd row shows the corresponding B-mode images of the results in the 2 nd row.
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Fig. 2: Simulated kidney image and its compressive deconvolution results for SNR=40dB. From left to right, the tissue reflectivity function, the B-mode image and the compressive deconvolution results for CS ratios of 80%, 60% and 40% respectively.

corresponding to a 4 MHz central frequency and a axial sampling frequency of 40 MHz. The amplitudes of the scatters in these two reflectivity images are random variables distributed according to GGD with the shape parameter set to 1.5. The number of scatterers was considered sufficiently large to ensure fully developed speckle.

The variables a 0 and λ 0 were initialized to zeros vec-tor and image. The rest of the hyperparameters, α, µ, β and γ, were set to their best possible values by crossvalidation. For the results in Figure 1, the parameters were set to {α, µ, β, γ} = {1e-6, 1e-3, 1e-3, 1e-1} and for those in Figure 2, {α, µ, β, γ} = {1e -5, 5e -3, 1e -4, 2e -4}. Figure 1 and Figure 2 show a series of compressive deconvolution results for the two tested data sets, for various CS ratios and for a SNR of 40dB. Quantitative results are shown in Table 1 and Table 2 and allow the comparison between the proposed method and the sequential approach. Three metrics were employed: the Blurred-PSNR (B-PSNR) (defined and used in [START_REF] Amizic | Compressive blind image deconvolution[END_REF]), the Blurred-Structural Similarity (B-SSIM, defined in the same manner as B-PSNR) and the Structural Similarity (SSIM) . Ten experiments were conducted for each CS ratio. We may remark that in all cases our approach provides better reults than the sequential scheme. We should remark that in both cases the same priors were used for the CS reconstruction and for the deconvolution. 

CONCLUSIONS

In this paper, we firstly presented a compressive deconvolution framework for ultrasound imaging systems. Then we developed a compressive deconvolution algorithm based on Alternating Direction Method of Multipliers (ADMM). Based on the assumption of generalized Gaussian distributed tissue refelectivity function, our method uses an ℓ p -norm minimization for p between 1 and 2. The results obtained on simulated ultrasound images are promising and clearly show that the proposed simutaneously compressive deconvolution scheme performed better than the typical sequential approach. Future work will include the study of medical CS reconstruction algorithms such as [START_REF] Florescu | A majorize-minimize memory gradient method for complex-valued inverse problems[END_REF], the automatic estimation of p for the ℓ p -norm, the comparison with other existing methods such as [START_REF] Amizic | Compressive blind image deconvolution[END_REF] and experiments on clinical data.
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Table 1 :

 1 Quatitative results for US image in Figure1PSNR 52.33 47,28 40,65 28,97 B-SSIM 99.41 98.27 93.24 48.72 SSIM 72.52 65.06 43.74 22.40 sequential B-PSNR 49,25 40,98 31,90 22,34 B-SSIM 98.91 93.37 64.20 23.84 SSIM 70.93 55.72 36.82 20.75

		CS ratio	80%	60%	40%	20%
	proposed	B-			

Table 2 :

 2 Quatitative results for US image in Figure 2 PSNR 73.75 66.98 52.38 52.12 B-SSIM 100.0 99.99 99.64 79.11 SSIM 60.25 59.06 52.80 26.23 sequential B-PSNR 36.46 29.60 25.90 23.87 B-SSIM 88.36 64.31 44.88 32.37 SSIM 39.89 40.89 28.02 18.32

		CS ratio	80%	60%	40%	20%
	proposed	B-