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ULTRASOUND COMPRESSIVE DECONVOLUTION WITH ℓP -NORM PRIOR

Zhouye Chen, Ningning Zhao, Adrian Basarab, Denis Kouamé

University of Toulouse, IRIT UMR CNRS 5505, Toulouse, France

ABSTRACT

It has been recently shown that compressive sampling is an in-

teresting perspective for fast ultrasound imaging. This paper

addresses the problem of compressive deconvolution for ul-

trasound imaging systems using an assumption of generalized

Gaussian distributed tissue reflectivity function. The benefit

of compressive deconvolution is the joint volume reduction of

the acquired data and the image resolution improvement. The

main contribution of this work is to apply the framework of

compressive deconvolution on ultrasound imaging and to pro-

pose a novel ℓp-norm (1 ≤ p ≤ 2) algorithm based on Alter-

nating Direction Method of Multipliers. The performance of

the proposed algorithm is tested on simulated data and com-

pared with those obtained by a more intuitive sequential com-

pressive deconvolution method.

Index Terms— ultrasound imaging, compressive sam-

pling, deconvolution, generalized Gaussian distribution, al-

ternating direction method of multipliers

1. INTRODUCTION

Ultrasound (US) medical imaging has the advantages of being

noninvasive, harmless, cost-effective and portable over many

other imaging modalities such as X-ray Computed Tomogra-

phy or Magnetic Resonance Imaging [1]. US images have

a textural appearance caused by the presence of a speckle

noise resulting from the interferences between the US waves

backscattered by the randomly-located scatterers of the tissue

being imaged. However, the limited bandwidth of the imaging

transducer, the characteristics of the US propagation such as

the diffraction and the imaging system tend to degrade the res-

olution of the US images. Thus, one of the research tracks ex-

tensively explored in the litterature is the deconvolution of US

images [2–6]. Based on the first order Born approximation,

these methods assume that the US radiofrequency (RF) im-

ages follow a 2D convolution model between the point spread

function (PSF) and the tissue reflectivity function to be recov-

ered [7].

More recently, a few research teams (e.g. [8–13]) evalu-

ated the application of compressive sampling (CS) in the con-

text of 2D and 3D US imaging. CS [14, 15] is a mathematical

framework allowing to recover, via non linear optimization
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routines, an image from few linear measurements (below the

limit imposed by the Shannon-Nyquist theorem). For this,

two conditions must be fulfilled: the image must have a sparse

representation in a known basis or frame and the measurement

and sparifying basis must be incoherent [16]. The benefits of

CS in US imaging reported by the existing approaches are the

reduction of the acquired data (very useful for instance in 3D

or in Doppler imaging) or/and of the acquisition time.

The direct models of both deconvolution and CS are linear

models leading to ill-posed inverse problems. Thus, combin-

ing these two frameworks, leading to the so-called compres-

sive deconvolution problem [17, 18], is a very interesting and

recent research track. The benefit of compressive deconvolu-

tion is the joint volume reduction of the acquired data and the

image quality improvement.

In this paper, we propose a novel scheme of compressive

deconvolution and its application to US imaging. The result-

ing acquisition model is as follows:

y = ΦHx+ n (1)

where Φ ∈ R
M×N corresponds to the CS acquisition ma-

trix composed for example by M random Gaussian vectors

with (M << N ), H ∈ R
N×N is a block circulant with circu-

lant block (BCCB) matrix related to the 2D PSF of the system,

x ∈ R
N and n ∈ R

M represent the lexicographically ordered

tissue reflectivity function and the zero-mean additive white

Gaussian noise, respectively. y ∈ R
M corresponds to the M

compressed measurements of one US RF image.

The aim of this work is to estimate the tissue reflectivity

function x from the compressed and blurred measurements

y. The solution proposed herein is based on the alternat-

ing direction method of multipliers (ADMM) [19, 20] and

uses two constraints. The first one is related to CS and im-

poses via an l1-norm the sparsity of the RF images in the 2D

Fourier domain [9]. The second one is related to an lp-norm

[21]. Based on the assumption of Generalized Gaussian Dis-

tributed (GGD) x, we employ the minimization of an lp-norm

of the tissue reflectivity function [5, 6]. The simulation results

show that our method outperforms a more intuitive sequential

scheme estimating firstly the blurred image and processing

the deconvolution in a second step.

The remainder of the paper is organized as follows. In

section 2 we formulate the compressive deconvolution prob-

lem. Section 3 details our proposed compressive deconvo-



lution algorithm based on ADMM. Simulation results are

shown in section 4 before drawing the conclusions in section

5.

2. PROBLEM FORMULATION

An intuitive idea to invert the direct model in (1) is to proceed

in two sequential steps. The aim of the first step is to recover

the blurred US RF image r = Hx from the compressed mea-

surements y by solving the following optimization problem:

min
a∈RN

‖a‖ 1 +
1

2µ
‖y − ΦΨa‖ 2

2 (2)

where µ is a parameter, a is the sparse representation of

the blurred image r in the transformed domain Ψ. That is,

a = Ψ−1Hx, where Ψ ∈ R
N×N represents an orthonormal

basis. Different basis have been shown to provide good results

in the application of CS in US imaging, such as the wavelets,

the wave atoms or the 2D Fourier basis [11] .

Once the blurred RF image recovered by minimizing the

convex problem in (2), one can use an US dedicated deconvo-

lution method to restore the tissue reflectivity function x.

While the sequential approach represents the most intu-

itive way to solve the compressive deconvolution problem,

dividing a single problem into two separate subproblems will

inevitably generate larger estimation errors. Therefore, we

propose herein a method to solve the CS and deconvolution

problem simultaneously.

Following recent results in the US deconvolution litera-

ture [5, 6], we assume that the tissue reflectivity function x

follows a GGD. Here, we are interested in shape parameters

ranging from 1 to 2. Taking into account this statistical prior

information for x, we reformulate our compressed deconvo-

lution problem in:

min
x∈RN

‖ Ψ−1Hx ‖1 +α ‖ x ‖ p
p +

1

2µ
‖ y − ΦHx ‖ 2

2 (3)

where α, µ are parameters, p is related to the shape pa-

rameter and 1 ≤ p ≤ 2. In the next section, we propose an

ADMM-based scheme to solve the inverse problem above.

3. PROPOSED ULTRASOUND COMPRESSIVE

DECONVOLUTION ALGORITHM

3.1. Basics of Alternating Direction Method of Multipli-

ers

Alternating Direction Method of Multipliers (ADMM) has

been extensively studied in the areas of convex programming

and variational inequalities [19]. The general optimization

problem is as follows:

min
u,v

f(u) + g(v)

s.t. Bu+ Cv = b, u ∈ U , v ∈ V
(4)

where U ⊆ R
s and V ⊆ R

t are given convex sets, f :
U → R and g : V → R are closed convex functions; B ∈
R

r×s and C ∈ R
r×t are given matrices; b ∈ R

r is a given

vector.

By attaching the Lagrangian multiplier λ ∈ R
r to the lin-

ear constraint, the Augmented Lagrangian (AL) function of

(4) is

L(u, v, λ) = f(u) + g(v)− λT (Bu+ Cv − b)

+
β

2
‖ Bu+ Cv − b ‖22

(5)

where β > 0 is the penalty parameter for the linear con-

straints to be satisfied. The standard ADMM framework fol-

lows the iterative process:















uk+1 ∈ argmin
u∈U

L(u, vk, λk)

vk+1 ∈ argmin
v∈V

L(uk+1, v, λk)

λk+1 = λk − β(Buk+1 + Cvk+1 − b)

(6)

The advantage of ADMM is that it can split awkward in-

tersections and objectives to easy subproblems and the iter-

ations are comparable to those of other first-order methods.

Moreover, it is relatively easy to implement.

3.2. Proposed ADMM parameterization for Ultrasound

Compressive Deconvolution

In this subsection, we propose an ADMM method for solving

the ultrasound compressive deconvolution problem in (3).

Using a trivial variable change, the minimization problem

in (3) can be rewritten as:

min
x∈RN

‖ w ‖1 +α ‖ x ‖ p
p +

1

2µ
‖ y −Aa ‖ 2

2 (7)

where a = Ψ−1Hx. Let us denote z =

[

w

x

]

, w = a

and A = ΦΨ. The reformulated problem in (7) can fit the

general ADMM framework in (4) by choosing: f(a) =

1

2µ ‖ y−Aa ‖ 2
2, g(z) =‖ w ‖1 +α ‖ x ‖ p

p, B =

[

IN×N

Ψ

]

,

C =

[

−IN×N 0

0 −H

]

and b = 0.

The augmented Lagrangian function of (7) is given by

L(a, z,λ) = f(a) + g(z)− λT (Ba+ Cz)

+
β

2
‖ Ba+ Cz ‖22

(8)
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where λ ∈ R
2N stands for λ =

[

λ1

λ2

]

, λi ∈ R
N (i =

1, 2). According to the standard ADMM iterative scheme,

the minimization with respect to a and z will be performed

alternatively, followed by the update of λ. More precisely, the

numerical scheme for solving (8) is described in Algorithm 1.

The algorithm stops when the convergence criterion ‖ xk −
xk−1 ‖ / ‖ xk−1 ‖< 5e−3 is satisfied.

Algorithm 1 The Alternating Direction Method of Multipli-

ers for Solving (3)

Input: a0, λ0, α, µ, β
Output: x

1: while not converged do

2: Step 1. Given ak−1, update wk by using the shrink-

age formula:

3: wk = Shrink 1

β
(ak−1 −

λ
k−1

1

β )

4: Step 2. Given ak−1, update xk by using the proximal

operator:

5: xk = proxαγ‖·‖p
p/β

{xk−1 − γh′(xk−1)}

6: Step 3. Given zk =

[

wk

xk

]

and λk−1, update ak by

solving the following linear system

7: ak = ( 1µA
TA + βBTB)−1( 1µA

Ty + BTλk−1 −

βBTCzk)

8: Step 4. Update λk by

9: λk = λk−1 − β(Bak + Czk)
10: end while

We solve the subproblems in Step 1 and Step 2 by

using proximal operator as proposed in [22–24]. The w-

subproblem in Step 1 is equivalant to:

min
w∈RN

‖ w ‖1 +
β

2
‖ ak−1 −w −

λk−1

1

β
‖ 2

2 (9)

The solution of (9) is given explicitly in the literature (see e.g.

[25])

wk(i) = max

{

|ak−1(i)−
λk−1

1
(i)

β
| −

1

β
, 0

}

· sign(ak−1(i)−
λk−1

1
(i)

β
)

(10)

where i ∈ {1, 2, ..., N}, wi denotes the intensity value of

pixel i. The x-subproblem in Step 2 is as follow:

min
x∈RN

α ‖ x ‖ p
p−λk−1

2

T
(Ψak−1−Hx)+

β

2
‖ Ψak−1−Hx ‖ 2

2

(11)

Denoting by h(x) = 1

2
‖ Ψak−1 −Hx −

λ
k−1

2

β ‖ 2
2, we

approximate h(x) by

h′(xk−1)(x− xk−1) +
1

2γ
‖ x− xk−1 ‖22 (12)

where γ > 0 is a proximal parameter and h′(xk−1) is the

gradient of h(x) when x = xk−1, which is equal to

h′(xk−1) = HT (Hxk−1 −Ψak−1 −
λk−1

2

β
) (13)

We should note that the proximal operator associated to ‖
· ‖pp has been given in [25]. Herein, we use Newton’s method

to obtain its numerical solution.

In Step 3, the update of a is written in the form of solv-

ing an N × N linear system or inverting an N × N matrix.

However, since the sparse basis Ψ is orthogonal, it can be re-

duced to solving a smaller M ×M linear system or inverting

an M ×M matrix by Sherman-Morrison-Woodbury formula

[26]:

(β1IN+β2A
TA)−1 =

1

β1

IN−
β2

β1

AT (β1IM+β2AAT )−1A

(14)

where IN ∈ R
N×N and IM ∈ R

M×M are identity ma-

trices. In this paper, we considered the compressive sampling

matrix Φ as Structurally Random Matrix (SRM) [27]. There-

fore, A was formed by randomly taking a subset of rows from

orthonormal transform matrices, that is, AAT = IM . As a

consequence, there is no need to solve a linear system and the

main computational cost becomes two matrix-vector multipli-

cations per iteration.

4. SIMULATION RESULTS

In this section we evaluate the performance of the proposed

compressive deconvolution algorithm for synthetic ultrasound

data against a sequential resolution processing separately the

CS reconstruction and the deconvolution. For the sequential

approach, YALL1 [28] was used to process the CS reconstruc-

tion from (2), while the deconvolution was done using an ℓp-

norm minimization. To solve this minimization problem, we

also used one of the parameterizations of ADMM to split the

ℓp-norm term and the quadratic term, then solved them sepa-

rately and iteratively.

The ultrasound data in Figure 1 and Figure 2 were simu-

lated by 2D convolution between known PSFs and reflectivity

images. For the first simulated image, the PSF was generated

with Field II [29] corresponding to a 3.5 MHz linear probe,

sampled in the axial direction at 20 MHz. For the simulated

kidney image, the PSF was also generated with Field II [29]



Fig. 1: The 1st row represents the tissue reflectivity function,

the ultrasound RF image and the corresponding B-mode im-

age (obtained after envelope detection and log-compression

from the RF image) from left to right; The 2nd row depicts

the compressive deconvolution results obtained with the pro-

posed method for SNR=40dB and for CS ratios of 80%,60%

and 40% respectively; The 3rd row shows the corresponding

B-mode images of the results in the 2nd row.
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Fig. 2: Simulated kidney image and its compressive decon-

volution results for SNR=40dB. From left to right, the tissue

reflectivity function, the B-mode image and the compressive

deconvolution results for CS ratios of 80%, 60% and 40% re-

spectively.

corresponding to a 4 MHz central frequency and a axial sam-

pling frequency of 40 MHz. The amplitudes of the scatters in

these two reflectivity images are random variables distributed

according to GGD with the shape parameter set to 1.5. The

number of scatterers was considered sufficiently large to en-

sure fully developed speckle.

The variables a0 and λ0 were initialized to zeros vec-

tor and image. The rest of the hyperparameters, α, µ,

β and γ, were set to their best possible values by cross-

validation. For the results in Figure 1, the parameters were set

to {α, µ, β, γ} = {1e−6, 1e−3, 1e−3, 1e−1} and for those

in Figure 2, {α, µ, β, γ} = {1e− 5, 5e− 3, 1e− 4, 2e− 4}.

Figure 1 and Figure 2 show a series of compressive de-

convolution results for the two tested data sets, for various CS

ratios and for a SNR of 40dB. Quantitative results are shown

in Table 1 and Table 2 and allow the comparison between the

proposed method and the sequential approach. Three metrics

were employed: the Blurred-PSNR (B-PSNR) (defined and

used in [17]), the Blurred-Structural Similarity (B-SSIM, de-

fined in the same manner as B-PSNR) and the Structural Sim-

ilarity (SSIM) . Ten experiments were conducted for each CS

ratio. We may remark that in all cases our approach provides

better reults than the sequential scheme. We should remark

that in both cases the same priors were used for the CS recon-

struction and for the deconvolution.

Table 1: Quatitative results for US image in Figure 1

CS ratio 80% 60% 40% 20%

proposed
B-PSNR 52.33 47,28 40,65 28,97

B-SSIM 99.41 98.27 93.24 48.72

SSIM 72.52 65.06 43.74 22.40

sequential
B-PSNR 49,25 40,98 31,90 22,34

B-SSIM 98.91 93.37 64.20 23.84

SSIM 70.93 55.72 36.82 20.75

Table 2: Quatitative results for US image in Figure 2

CS ratio 80% 60% 40% 20%

proposed
B-PSNR 73.75 66.98 52.38 52.12

B-SSIM 100.0 99.99 99.64 79.11

SSIM 60.25 59.06 52.80 26.23

sequential
B-PSNR 36.46 29.60 25.90 23.87

B-SSIM 88.36 64.31 44.88 32.37

SSIM 39.89 40.89 28.02 18.32

5. CONCLUSIONS

In this paper, we firstly presented a compressive deconvolu-

tion framework for ultrasound imaging systems. Then we de-

veloped a compressive deconvolution algorithm based on Al-

ternating Direction Method of Multipliers (ADMM). Based

on the assumption of generalized Gaussian distributed tissue

refelectivity function, our method uses an ℓp-norm minimiza-

tion for p between 1 and 2. The results obtained on simulated

ultrasound images are promising and clearly show that the

proposed simutaneously compressive deconvolution scheme

performed better than the typical sequential approach. Future

work will include the study of medical CS reconstruction al-

gorithms such as [30], the automatic estimation of p for the



ℓp-norm, the comparison with other existing methods such as

[17] and experiments on clinical data.
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