
HAL Id: hal-01371783
https://hal.science/hal-01371783

Submitted on 27 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using SMT Solving for the Lookup of Infeasible Paths in
Binary Programs

Jordy Ruiz, Hugues Cassé

To cite this version:
Jordy Ruiz, Hugues Cassé. Using SMT Solving for the Lookup of Infeasible Paths in Binary Programs.
15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015), Jul 2015, Lund,
Sweden. pp. 95-104. �hal-01371783�

https://hal.science/hal-01371783
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 15319 

The contribution was presented at WCET 2015 :  
http://www.bsc.es/caos/WCET2015 

 
 
 

To cite this version : Ruiz, Jordy and Cassé, Hugues Using SMT Solving for the 
Lookup of Infeasible Paths in Binary Programs. (2015) In: 15th International 
Workshop on Worst-Case Execution Time Analysis (WCET 2015), 7 July 2015 
(Lund, Sweden). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Using SMT Solving for the Lookup of Infeasible

Paths in Binary Programs∗

Jordy Ruiz and Hugues Cassé

IRIT – Université de Toulouse, France

{jruiz, casse}@irit.fr

Abstract

Worst-Case Execution Time (WCET) is a key component to check temporal constraints of real-

time systems. WCET by static analysis provides a safe upper bound. While hardware modelling

is now efficient, loss of precision stems mainly in the inclusion of infeasible execution paths in

the WCET calculation. This paper proposes a new method to detect such paths based on static

analysis of machine code and the feasibility test of conditions using Satisfiability Modulo Theory

(SMT) solvers. The experimentation shows promising results although the expected precision

was slightly lowered due to clamping operations needed to cope with complexity explosion. An

important point is that the implementation has been performed in the OTAWA framework and

is independent of any instruction set thanks to its semantic instructions.

1998 ACM Subject Classification J.7 Real time

Keywords and phrases WCET, infeasible paths, SMT, machine code

Digital Object Identifier 10.4230/OASIcs.WCET.2015.95

1 Introduction

Temporal properties verification is utterly important for critical embedded systems like

avionics, automotive or any system involving real-time constraints. Such verification is

usually performed in two steps: first, the Worst-Case Execution Time (WCET) of each task

composing the system is computed and, second, this WCET is used to check if the set of tasks

is schedulable according to the system real-time constraints. Hence, the WCET determination

must be (a) safe (higher than the real worst-case execution) to ensure soundness of the

scheduling and (b) tight or precise to minimize the hardware required to run the system.

This paper addresses the computation of WCET by static analysis that ensures safety

of WCET by construction at the price of tightness: an overestimation of the WCET is

produced without guaranty about precision. A successful and widely used approach to

compute statically WCET is Implicit Execution Path Technique or IPET. It models the

execution paths of the program and the host hardware (that induces execution time) as an

Integer Linear System, ILP, whose maximization function is the estimated WCET. Lots of

work has been devoted to model the hardware and, for some classes of microprocessor parts

(LRU caches, pipeline, etc.), provides precise results.

Yet, modelling the execution paths seems to remain a challenge and could be an important

source of precision improvement. Basically, IPET models the execution paths by a Control

Flow Graph, CFG, where vertices represent blocks of instructions1 and edges, execution flow

between blocks. The CFG is usually derivated from a program by a basic analysis examining

∗ This work was partially supported by the french ANR project, W-SEPT.
1 Usually machine instructions to be as close as possible to the hardware.

© Jordy Ruiz and Hugues Cassé;
licensed under Creative Commons License CC-BY

15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015).
Editor: Francisco J. Cazorla; pp. 95–104

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



96 Using SMT Solving for the Lookup of Infeasible Paths in Binary Programs

the branch targets of control instructions. Therefore, the set of paths represented by the

CFG (potentially unbounded if the program contains loops) includes (a) all actual paths of

the program and (b) other paths that are infeasible because of the program internal logic.

Applying the IPET approach to the CFG model of execution paths is consistent (as long

as a maximum bound is provided for loops) because it consists in computing the maximum

of execution paths. Adding infeasible paths to the set of actual execution paths will, in the

worst case, produce an estimated WCET higher than the actual WCET. Yet, the added

execution paths may cause a loss of tightness (distance between real WCET and estimated

WCET) that is difficult to evaluate. In practice, separating feasible and infeasible paths

faces the complexity issue of the number of paths in the program and in the CFG.

This paper proposes a new approach to detect infeasible paths in machine language

programs based on (a) the representation of program states as labelled sets of predicates and

(b) the detection of unsatisfiable conditions using a Satisfiability Modulo Theories (SMT)

solver. The result is a mostly minimal list of infeasible paths or families of paths that may be

used in WCET computation like IPET. The experimentation shows that our approach on

the Mälardalen benchmark [4] is promising. It does not allow capturing all infeasible paths

of the program but it should help improving precision of the estimated WCET.

The next section presents works related to infeasible path detection or execution path

validation. Section 3 gives an overview of the proposed method and of its context while

section 4 enters into details of the proposed analysis. Section 5 exposes the experimentation

results and we conclude and propose future development in the last section.

2 Related Works

Several works already exist on this topic and are surveyed here.

Suhendra et al. [6] present an integrated approach to compute the WCET while excluding

infeasible paths. The program is expressed as a Direct Acyclic Graph (DAG) and traversed

in a bottom-up way. Throughout the analysis, the worst-case execution time is computed by

accumulating block time and selecting the maximum time. During this traversal, predicates

are built reflecting assignments and conditions, and paths with unsatisfiable set of predicates

are discarded. This approach uses a very limited set of predicates that reduces analysis time

but also the amount of infeasible paths found. In addition, there is no plan to cope with

hardware effects.

Henry et al. [5] propose another integrated solution that represents as an SMT the

semantic of execution paths and the time consumed by a particular path. To determine the

WCET, one has to propose an upper bound, to add the matching predicate and to check

the feasibility of the system. Main drawbacks of this approach are the computation time,

the need for unrolling loops and the lack of support for non-scalar memory structures like

arrays. In addition, there is no clear solution to cope with hardware effects except adding

constant access time to instruction blocks. Unlike our approach, this approach determines

the set of feasible paths and uses it to compute WCET.

The PathCrawler [7] tool generates disjunctions of conjunctions for any control point

of the CFG, then proceeds to do constraint solving in order to rigorously verify properties.

However, it runs on source code, and while we use a similar approach, our final goal differs:

the detection of infeasible paths. In the next section, we present our approach that (a) is

applied to machine code and (b) tries to preserve precision of predicates.



J. Ruiz and H. Cassé 97

3 Proposed Method

3.1 Source of infeasible paths

3.1.1 Infeasible path patterns

We have identified three common types of infeasible paths found by our analysis. This list

is not exhaustive and we sometimes find more complex infeasible paths but these are rarer.

The first type of infeasible path simply comes from two mutually exclusive conditions in the

source code, tested in sequential order:

if(x == 1)

/*...*/

if(x == 2)

This can look like a mistake from the programmer, but there may be a lot of code between

the two conditions, making the infeasible path much less obvious to see, and/or difficult to

remove.

Some other infeasible paths are due to the restriction of the function parameters domain

at a particular call and require interprocedural analysis to be identified. The if(x) condition

will never be taken in the case of a call from main() in the following example:

void icrc(int x) {

if(x)

/*...*/

}

int main () {

icrc (0);

The last type of common infeasible path is due to short-circuit condition evaluation

during the compilation:

if(x && a)

/* ... */

if(x && b)

In this case, the binary program may include an infeasible path because if(x && a) will be

broken down into if(x) { if(a) by the compiler, unless smart optimizations are performed.

3.1.2 Analysis on Machine Language

Working on machine code allows precisely understanding the work of the program in the

hardware and improving the WCET tightness. Yet, the analysis of the machine code suffers

from (a) the lack of expressivity of machine instructions, (b) the size of the program and

(c) the implementation complexity of data flow analyses. For example, registers are loosely

typed and the structure of data in memory is not explicit.

Even though finding infeasible paths is easier on programs in high-level languages, an

additional pass is required to map and exploit this information on binary programs. This pass

is even more difficult if the optimizations of the compiler are activated. Even worse, analysis

of the high-level language requires different analysers for each language, the complete sources

to be available and prevents the processing of low-level subprograms written in assembly.

Hence, we choose to work at the machine code level but, as the real-time embedded

domain uses lots of different microprocessors, we have to cope with as many instruction

sets. Fortunately, the OTAWA C++ framework provides an abstraction of the different

WCET’15



98 Using SMT Solving for the Lookup of Infeasible Paths in Binary Programs

instruction sets through an independent semantic language [3]. It consists in the translation

of the machine instruction into a sequence of semantic instructions that try to capture as

precisely as possible its semantics. When the instruction cannot be expressed, a special

SCRATCH instruction allows marking the result register as modified in an unspecified way.

This approach has been successfully applied to translate several instruction sets like PowerPC,

ARM, Sparc and Tricore.

Basically, the semantic language looks like a RISC-instruction set and is made of:

three-operand computation instructions: ADD, SUB, CMP, SHL, SHR, etc;

dedicated instructions to load a literal in a register: SETI;

memory access instructions: LOAD, STORE;

branches or assignments to program counter: BRANCH;

conditional execution of the sequence: IF.

Most instructions work only on registers but temporary registers may also be used to

let instructions exchange information without modifying the actual program state. In the

following, we show how the semantic language can be used to perform infeasible path analysis.

3.2 Analysis overview

The lookup of infeasible paths is performed by top to bottom traversal of the program;

all non-cyclic paths are explored, each machine instruction is broken down into one or

several semantic instructions, and an abstract representation of the program state is updated

accordingly for each path. Sets of possible program states are represented as lists of predicates,

initially empty (⊤), meaning that any state is possible.

3.2.1 Predicate generation

Figure 1 shows several examples of analysis results. (a) is an example of predicate generation,

upon parsing an ARM instruction mov r4, r0. The first bold line is the ARM instruction,

semantic instructions are capitalized, and italic lines are modifications to the list of predicates.

Two predicates are generated (noted with ⊕), and t1 is a temporary register introduced

by OTAWA. While it may look purposeless here, OTAWA automatically chooses to use

this intermediate to handle more complex uses of the mov instructions such as, for example,

mov r0, r1, LSR #2. Here, the instruction mov r4, r0 is translated into two semantic

instructions, SET t1, r0 and SET r4, t1. In turn, their interpretation generates two

predicates, t1 = r0 and r4 = t1.

3.2.2 Predicate update

The predicates can be modified either because the instruction we are parsing requires us to

or because we wish to and believe it will be beneficial.

Extending the example (a), there are cases where modifying predicates is unnecessary

but useful (b) because of the ephemerality of the temporary register t1, whereas sometimes

updating the predicate is required by the instruction (c). In (b), [r4 replaces t1] means

that every occurrence of the temporary register t1 will be replaced by register r4. The

predicate r4 = t1 becomes identity (r4 = r4), so we only keep r4 = r0 as a result of this

mov.

In the example (c) initially containing “r3 = [SP − 12]”, in order for our predicate list to

remain a valid abstract representation of the program state, this instruction that adds 1 to r3

requires replacing every r3 occurrence with r3 − 1, hence the [r3 - 1 replaces r3] line.



J. Ruiz and H. Cassé 99

mov r4, r0

SET t1, r0

⊕ t1 = r0

SET r4, t1

⊕ r4 = t1

(a) An addition.

{ r3 = [SP-12] }

add r3, r3, #1

SETI t1, 1

⊕ t1 = 1

ADD r3, r3, t1

[r3 - 1 replaces r3]

⊖ r3 = [SP-12]

⊕ r3 - 1 = [SP-12]

(c) A necessary update.

mov r4, r0

SET t1, r0

⊕ t1 = r0

SET r4, t1

⊕ r4 = t1

[r4 replaces t1]

⊖ t1 = r0

⊕ r4 = r0

(b) A useful update.

[...]

SET r13, t3

⊖ r13 = SP - 4

⊕ r13 = SP + 0

⊖ tempvars t1, t2, t3

(d) A removal.

Figure 1 Example of operations on the predicates.

3.2.3 Predicate removal

Instructions may force us to remove predicates from our list. For instance, if we set to r13 a

new value, we must remove any predicate mentioning r13 as it will no longer be valid. In the

example (d), the previously generated r13 = SP - 4 predicate must be removed (noted with

⊖). In this case, the analysis identifies t3 to the constant SP + 0 (value of the stack pointer

at the start of the program), so it chooses to generate r13 = SP + 0 in place of r13 = t3.

Also, temporary registers are always deleted at the end of every semantic instruction

block (matching an assembly instruction), thus we should remove all predicates containing

them, hence the ⊖ tempvars t1, t2, t3 in the example.

4 Analysis Definition

4.1 Abstract domain

The goal of this analysis is to build a function L → M
# that gives, at any control point L,

an abstract state M
# : ∨i(∧j(φi,j(R, Mh, Ms))) where:

R ∼= Z
n is the set of registers, n being the amount of available registers on the architecture;

Mh represents the heap memory, Mh
∼= Z

Z;

Ms represents the stack memory, Ms
∼= Z

Z.

φi,j are predicates defined as:

φ : Operand × Opr × Operand

Opr : = | Ó= | ≤ | <

Operand : Operand ω Operand | − Operand

ω : + | − | × | / | mod

Each conjunction of predicates represents a set of possible program states for one or

several execution paths up to a given control point. A control point may contain information

coming from several paths: we do not merge the conjunctions of predicates but instead

keep them in a set, this way M
# is actually a disjunction of conjunction of predicates, and

overestimates the set of possible program states.

WCET’15



100 Using SMT Solving for the Lookup of Infeasible Paths in Binary Programs

In order to show this, we define M as a concrete program state, that is, the set of values

of the registers and of the memory, and the following concretisation function γ : M# → 2M:

γ(
∨

i

∧

j

φi,j(R, Mh, Ms)) :=
⋃

i

⋂

j

γ′(φi,j(R, Mh, Ms))

where for any p : Predicate, γ′(p) := {m ∈ M | p(m)} and the analysis is sound if

γ(f#(s)) ⊒ f(γ(s))

with f : M → M being any semantic instruction and f# : M# → M
#, also later noted U(f),

the corresponding modifications to be applied on our abstract state.

4.2 Update function

Our update function takes a semantic instruction and an abstract program state as parameters

to return a new abstract state:

U : IM × M
# → M

#

where IM = M → M is the set of semantic instructions, which modify the machine state. Let

V ar be the set of variables, including R, Mh, Ms and the temporary registers Temp.

In the first place, we define the following functions to operate on M
#:

invalidate : Var × M
# → M

#

This function removes any Predicate containing a reference to the provided Var. Before

removing, it computes the transitive closure of the current predicates to avoid unnecessary

loss of information. Importantly, we observe for any s : M#,

γ(s r {p}) ⊒ γ(s)

that is, by removing a predicate we lose precision but the result remains sound. It is a

convenient property to handle unsupported operations. We also use variable replacement

mechanics on predicates: for any x : Var, arithmetic expression e and program state s : M#,

the program state in which every occurrence of x has been replaced by e is noted s [e / x].

For any instruction modifying a variable d, if the computation of the new value of d is

independent of its previous value, we remove all predicates containing d as they become

obsolete. If, at the contrary, this computation depends on the previous value of d, we try

to apply to the affected predicates the inverse operation, but this inverse only exists if the

original operation is bijective. For instance, f : d Ô→ 3d is not surjective in Z, therefore f−1

does not exist and we will not be able to update our predicates. In this case, we often have

to throw away information about the variable f is applied to, although we can sometimes

keep some properties: for example f preserves the parity in this case.

For any variables d, a, constant k:

U [SETI d, k] s := “d = k” ∪ (invalidate d s)

U [SET d, a]d=a s := s

U [SET d, a]dÓ=a s := “d = a” ∪ (invalidate d s)

For any variables d, a, b such that d Ó= a, d Ó= b:

U [ADD d, a, b] s := “d = a + b” ∪ (invalidate d s)

U [ADD d, a, d] s := s [d − a / d]

U [ADD d, d, b] s := U [ADD d, b, d] s

U [ADD d, d, d] s := “d % 2 = 0” ∪ (s [d/2 / d])



J. Ruiz and H. Cassé 101

In the ADD d, d, d case, we lose information when replacing d with d/2, thus we add a

predicate that says that d is even, to strip away the ambiguity.

U [MUL d, a, b] s := “d = a ∗ b” ∪ (invalidate d s)

U [MUL d, a, d] s := “d % a = 0” ∪ (s [d/a / d])

U [MUL d, d, b] s := U [MUL d, b, d] s

U [MUL d, d, d] s := “0 ≤ d” ∪ (invalidate d s)

Again, we add a predicate to avoid the loss of information in the MUL d, a, d case. We

cannot express the square root, so there is not a whole lot to be done for MUL d, d, d.

There is no support for the binary instructions AND, OR, XOR, thus for any d, a′, b′:

U [[AND/OR/XOR] d, a’, b’] s := U [SCRATCH d] s := invalidate d s

This list is incomplete and there are many other semantic instructions to be interpreted

(namely logical arithmetic shifts, memory accesses...), but these are handled in a similar way.

4.3 Flow analysis

Our analysis is applied on a Control Flow Graph (CFG), a directed rooted graph G =

(V, E, ǫ) composed of lists of sequential instructions grouped in basic blocks which are the

vertices (V ) of said graph, and edges (E = V × V ) between basic blocks that represent the

possible execution paths of the program. These edges can be conditional or not, and the

CFG always includes one entry (ǫ ∈ V ) as a virtual basic block.

We parse the CFG with a working list algorithm, which general idea is to only process

basic blocks once all the sources of the incoming edges have been processed. Below is a first

version of the flow analysis algorithm for loopless programs:

wl <- {ǫ};

While wl != ∅

pop bb from wl;

If allIncomingEdgesAreAnnotated (bb)

For edge in bb.ins

sl <- sl ∪ edge. getAnnotation ();

For state in sl

state. processBasicBlock (bb);

For edge in bb.outs

new_sl <- ∅;

For state in sl

new_state <- state. processEdge (edge );

new_sl <- new_sl ∪ new_state ;

edge. annotate ( new_sl );

wl <- wl ∪ edge. target ;

End If

End While

We first initialize our working list wl to the root, then pop basic block elements from it

until it is empty. For each basic block the algorithm is asked to work on, all its incoming

edges are checked for annotations that give an abstraction of the program state at that

control point. If any edge is missing an annotation, we cannot process the basic block yet

and pospone it. Otherwise, we put all the annotations into a list of abstract states named sl

above. Then, we update the states of sl to represent possible program states at the end of

the basic block. Lastly, we annotate all the outgoing edges with this state list, update them

WCET’15



102 Using SMT Solving for the Lookup of Infeasible Paths in Binary Programs

accordingly if it is a conditional edge and add the block the edge points to the working list if

it is not already in it.

The improved version of this algorithm that supports loops uses one more type of

annotation: on loop headers, we remember the last abstract program state we have computed.

We also keep information in our enhanced program states on whether we have reached a

fixpoint in the most inner loop or not. If not, we follow all the edges except for the loop exit

ones. If we have found a fixpoint, we follow all the edges except for back edges.

We merge the abstract program state list into one state on every loop header. When the

state list becomes too big, we may also choose to merge all paths into one to save analysis

time and prevent combinatorial explosion: this is a tradeoff between execution time and

efficiency of the algorithm. Our merge algorithm is a trivial intersection with a few simple

enhancements. For any conjunctions of predicates p :=
∧

i(φi) and p′ :=
∧

j(φ′
j) our merge

operator ⊓ : M# → M
# is defined as:

p ⊓ p′ :=
∧

i

(φi) ⊔

∧

j

(φ′
j) :=

∧

i,j

(φi ⊓ φ′
j)

where φi ⊓ φ′
i := φj if φi ≡ φ′

j and ⊤ otherwise. “≡” is a custom equivalence relation that is

slightly less strict than the syntactical equality and supports predicate commutativity. There

are many possibilities to improve this semantical equality and keep as much information

as possible. The idea behind using this slightly improved intersection to approximate the

disjunction of conjunctions of predicates is that for any set A, B, (A ∩ B) ⊆ (A ∪ B).

4.4 Infeasible path identification

We now have to exploit the information we have on the state of the program at the different

control points to find infeasible paths. In order to do this, we use a SMT solver, that is, a

SAT solver enhanced with several theories including integers. This kind of tool allows us to

find inconsistencies in our list of predicates via its C++ API. It may return SAT when it is

able to exhibit a solution to the problem, or UNSAT, what guarantees that the problem has

no solution. The SMT solver is systematically called at the end of the analysis of each basic

block to test the consistency of the predicate list.

We chose CVC4 [1] for its high performance at recent contests such as SMT-COMP [2],

its very open license and its rich API. CVC4 also supports (although partially) “unsat

cores”, a technique that finds a minimal subset of predicates that caused unsatisfiability. For

instance, for such a conjunction of predicates:

(x Ó= 2) ∧ (y > z) ∧ (x = y + z) ∧ (z = 1) ∧ (y ≤ 0)

the unsat core module of CVC4 would return {y > z, z = 1, y ≤ 0}.

There may be several minimal unsatisfiable subsets of predicates, in this case CVC4 will

return only one of them. This feature is still being worked on, and we have observed great

improvements in the success rate of this feature in the recent development versions of this

solver. Still, the interface with CVC4 is separate from the rest of our tool and it can be

enhanced with the ability to call other SMT solvers.

Let φi be the set of predicates returned as an unsat core and Eφi
the edges of each

predicate φi. Any path traversing Fp = ∪Eφi
should be infeasible, but because of side-effects

on parallel paths, Fp may include actually feasible paths, so we only consider Fp valid when

there is no feasible path traversing Fp (and we manually check for that). In the worst case,

we will have to use a full, unminimized path, but this will not cause us to miss infeasible

paths, only to get a bigger and less “factorized” output.



J. Ruiz and H. Cassé 103

Table 1 Results on the Mälardalen benchmarks.

Inf. paths found with minimization w/o minimization

Benchmark BB (#) Time (s) 1 edge Minimized Non-minimized Non-minimized

Small benchmarks (no merging required)

ndes 57 0.267 0 0 0 0

expint 70 0.748 4 5 5 34

edn 75 0.537 2 0 0 2

prime 118 4.368 2 8 12 43

compress 122 1.801 2 8 0 19

select 136 45.598 0 4 0 8

qsortexam 155 28.201 2 4 2 12

adpcm 323 0.074 3 0 0 3

Large benchmarks (merging required)

ud 153 17.477 3 3 0 23

minver 449 188.339 4 0 0 16

statemate 453 193.849 0 16 0 22

ludcmp 632 143.088 5 6 0 510

nsichneu 754 250.385 0 1352 3234 8620

qurt 2777 773.805 3 0 0 3

lms 3098 915.434 26 22 211 2376

fft1 6123 2223.125 0 25 0 815

5 Experimental Results

We have run our analysis program on the Mälardalen benchmarks, compiled into ARM

binaries by gcc -O1 (minimal optimizations) with non-constant global memory to ensure

multiple paths, performed on a 2.90GHz i7-4600M CPU, 4GB memory. Measuring the

efficiency of such an analysis is tough for multiple reasons: (a) we do not know how many

actual infeasible paths the program contains, (b) since our analysis is targetted to exhibit

infeasible paths, but not to exploit them, any measured improvement on the computed

WCET estimation is also due to the efficiency of the tool that will exploit these infeasible

paths, (c) our infeasible paths are actually sets of infeasible paths, and we do not know how

many paths they include. Even if we stop trying to find minimal sets of edges, the analysis

cuts paths once they are identified as infeasible, and we do not know how many paths have

been cut this way.

Table 1 showcases both the performance of the analysis on this set of benchmark and

the powerfulness of the minimization algorithm. The benchmarks are sorted by number of

basic blocks (after virtual inlining of function calls). The 17 smallest benchmarks with a size

ranging from 2 to 50 basic blocks have been removed, 10 of which gave no results.

The first three result columns show the amount of unique infeasible paths found by the

analysis split in three kinds: paths made of only one edge, successfully minimized paths,

and paths for which the minimization failed. The last column gives the amount of infeasible

paths found when path minimization is disabled. For example, running on “prime” with

minimization, the analysis finds 2 + 8 + 12 = 22 infeasible paths, including 10 successfully

minimized ones. These 10 short-length paths translate into 43 − 12 = 31 lengthy infeasible

paths when no minimization work is done. “fft1” is an extreme: 815 paths have been

minimized into 25 paths of an average length of 2.84 edges. We have observed that most of

the computing time is spent on SMT solving.

The results look very promising for the bigger benchmarks and the occasional merges of

WCET’15



104 Using SMT Solving for the Lookup of Infeasible Paths in Binary Programs

predicates seem enough to tone down the combinatory explosion without hurting results too

much, yet the actual impact on the precision of the computed WCET remains unknown.

6 Conclusion and Future Works

This article proposes a new approach to discover infeasible paths in a binary program. Our

solution is a static analysis of (a) a CFG whose blocks are made of machine instructions

(abstracted by semantic instructions) and (b) of program data states represented by predic-

ates on registers and memories. Unsatisfiability by SMT of predicates allows identifying

infeasible paths. The result is a list of edges of the program CFG that are forbidden on a

feasible execution path. This information is typically used to tighten the precision of the

WCET computation.

Although the proposed approach gives promising results, we feel that some infeasible

paths remain undiscovered because of (a) too coarse states join operator and (b) of time

calculation explosion. Issue (a) is the most important although it means that we have to find

smart fixpoints for our predicates. Polyhedra could be an efficient and well-known alternative

but we would be bound to linear predicates.

The second issue may be solved by reducing the amount of produced predicates. For

example, code slicing would be a good technique to keep only code involved in conditions and

therefore to produce only predicates involved in conditions. As a significant part of analysis

time is spent in SMT solving, another solution might be to reduce the number of calls to

the solver. We have to find a tradeoff during fixpoint computations between the frequency of

SMT calls and the minimization of found paths: an SMT call finds infeasible paths but also

allows reducing the number of states.

Finally, the infeasible paths found by our approach only concern mutual exclusivity

between CFG edges. Our feeling is that quantitative relations, induced by the program

semantics, exist between CFG edges and we wish to investigate this domain deeper afterwards.

References

1 C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds,

and C. Tinelli. CVC4. In 23rd International Conference on Computer Aided Verification

(CAV’11), volume 6806 of Lecture Notes in Computer Science. Springer, 2011.

2 C. Barrett, M. Deters, L. de Moura, A. Oliveras, and A. Stump. 6 Years of SMT-COMP.

Journal of Automated Reasoning, 50(3):243–277, 2013.

3 H. Cassé, F. Birée, and P. Sainrat. Multi-architecture value analysis for machine code. In

WCET’13, pages 42–52. OASICs, Dagstuhl Publishing, 2013.

4 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET Benchmarks:

Past, Present And Future. WCET, 15:136–146, 2010.

5 J. Henry, M. Asavoae, D. Monniaux, and C. Maïza. How to compute worst-case execution

time by optimization modulo theory and a clever encoding of program semantics. SIGPLAN

Not., 49(5):43–52, June 2014.

6 V. Suhendra, T. Mitra, A. Roychoudhury, and Ting C. Efficient detection and exploitation

of infeasible paths for software timing analysis. In Design Automation Conference, 2006

43rd ACM/IEEE, pages 358–363, 2006.

7 N. Williams, B. Marre, P. Mouy, and M. Roger. PathCrawler: Automatic generation of

path tests by combining static and dynamic analysis. In Dependable Computing – EDCC

5, volume 3463 of Lecture Notes in Computer Science, pages 281–292. Springer, 2005.


