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A simulation study on the choice of regularization parameter in

ℓ2-norm ultrasound image restoration*

Zhouye Chen, Adrian Basarab, Denis Kouamé

Abstract— Ultrasound image deconvolution has been widely
investigated in the literature. Among the existing approaches,
the most common are based on ℓ2-norm regularization (or
Tikhonov optimization) or the well-known Wiener filtering.
However, the success of the Wiener filter in practical situations
largely depends on the choice of the regularization hyperpa-
rameter. An appropriate choice is necessary to guarantee the
balance between data fidelity and smoothness of the decon-
volution result. In this paper, we revisit different approaches
for automatically choosing this regularization parameter and
compare them in the context of ultrasound image deconvolution
via Wiener filtering. Two synthetic ultrasound images are
used in order to compare the performances of the addressed
methods.

I. INTRODUCTION

Ultrasound (US) medical imaging has the advantages of

being noninvasive, harmless, cost-effective and portable over

many other imaging modalities such as X-ray computed

tomography or Magnetic Resonance Imaging [1]. However,

the limited bandwidth of the imaging transducer, the char-

acteristics of the ultrasound propagation such as diffraction

and the imaging system tend to degrade the quality of the US

images. To deal with this problem, significant efforts have

been made in the last few decades.

Under some weak assumptions (first order Born ap-

proximation and weak scattering), the recorded US radio-

frequency image can be modeled as the result of a 2D

convolution between the tissue reflectivity function and the

point-spread function (PSF) [2]. As a consequence, deconvo-

lution methods have been intensively considered to enhance

the spatial resolution of US images. Among the existing

approaches, Wiener filtering (and variants) was one of the

most explored tracks in US imaging [3], [4]. However, it is

well-known that the results of the Wiener filter or its variants

largely depends on the choice of the regularization parameter

(RP) that provides a compromise between data fidelity and

smoothness of the deconvolution result. In US imaging, the

choice of the RP is either done manually (empirically or by

trial-and-error) [3], or is simply related to the signal-to-noise

ratio (the RP is considered the inverse of the SNR) which is

further estimated from the data [4]. In the general literature

related to Wiener filter deconvolution, several approaches

have been proposed to find an optimal value of RP in an

automatic manner. In this paper, we propose to evaluate and

compare their performances in the framework of ultrasound

imaging. To do so, two simulated US images are used.

The remainder of the paper is organized as follows. The

considered model and the Wiener filtering approach are

presented in Section II. Section III reviews the existing

approaches of optimal RP choice. The simulation setup, the

deconvolution results and the comparison in US imaging are

provided in Section IV.

II. PROBLEM FORMULATION

Under the assumption of weak scattering and using the

first order Born approximation, the interaction between the

tissues and the propagating ultrasound waves is classically

modeled by the following 2D convolution model [2]:

y = Hx+ n (1)

where y ∈ R
MN×1 is the vertical concatenation of M

acquired radio-frequency (RF) signals of length N (also

known as ”lexicographical notation” of the RF image), x ∈
R

MN×1 is the tissue reflectivity function using the same

lexicographical notation, H ∈ R
MN×MN is a block circulant

with circulant block (BCCB) matrix related to the 2D PSF of

the system and n ∈ R
MN×1 is a zero-mean additive white

Gaussian noise with variance σ2. The purpose of non-blind

deconvolution methods is to recover the tissue reflectivity

function x from the recorded US RF image y considering the

PSF known (or provided a previous estimate of the PSF). A

common way to solve the non-blind deconvolution problem

is the well-known Wiener/Tikhonov approach, that provides

the following analytical estimation of x:

x̂ = (HtH + λQtQ)−1Ht
y = F (λ)y (2)

where x̂ is the estimate of x, and Q ∈ R
MN×MN is a BCCB

matrix representing the regularization operator, classically

considered the identity matrix or the 2D Laplacian opera-

tor. λ is a hyperparameter providing compromise between

data fidelity and smoothness of the estimate (addressed as

regularization parameter (RP) hereafter). The value of λ that

guarantees an optimal compromise between data fidelity and

smoothness depends on the variance of the noise σ2 and on

the properties of H , Q and y [5].

III. METHODS FOR REGULARIZATION

PARAMETER OPTIMAL CHOICE

In the general Wiener filtering literature, several ap-

proaches have been proposed to automatically fix the value of

the RP λ [6]. We review hereafter the main approaches, that

we further evaluate in the context of US images. Following

[6], we classify them into two categories. The first includes

methods that need the knowledge of the variance of the noise



(or an estimate of it) to estimate the RP, while the second

one does not have this constraint.

A. Methods with knowledge of the variance of the noise

1) Constrained least squares (CLS): The principle of this

method, originally proposed in [7], is based on the residual

between the data y and Hx̂ for a given λ, expressed as:

φ(λ) =‖ y −Hx̂ ‖2
2
=‖ y −HF (λ)y ‖2

2
(3)

The optimal λ in the sense of CLS is obtained in the

case where the residual in (3) is equal to the variance of the

noise, or more precisely to MNσ2. From this it results an

equation with the unknown λ, which was shown in [7] to

have an unique solution. This optimal value of λ, that we

will denote by λCLS in this paper, is obtained by solving

the above equation using a numerical iterative procedure.

2) Degree of freedom (EDF): Similar to CLS approach,

the equivalent degree of freedom method [8] estimated the

RP λ from an equation relating the residual and the variance

of the noise. Based on the linear relation between y and x̂,

the residual in (3) is further expressed as:

φ(λ) = σ2trace[IMN −HF (λ)] (4)

where IMN ∈ R
MN×MN is the identity matrix.

The optimal RP given by EDF approach will be denoted

hereafter by λEDF .

3) Mean square error (MSE): The main idea behind this

method is to find the value of λ that minimizes the mean

square error between x and its estimate, denoted by ǫ(λ):

E(‖ ǫ(λ) ‖2
2
) = E[‖ x̂−x ‖2

2
] =‖ x ‖2

2
+E[‖ x̂ ‖2

2
]−2E[x̂t

x]
(5)

In order to eliminate the cross-term 2E[x̂t
x], which is

impossible to compute in practice because of the non-

knowledge of x, it is replaced in [6] by a term depeding on

the data y and on the noise variance σ2, based on a circulant

assumption in DFT domain. In this case, it is shown in [6]

that minimizing (5) with espect to λ is equivalent to soving

the following equation:

‖ Q−1(IMN−HF (λ))
3

2y ‖2
2
= σ2trace[Q−2(IMN−HF (λ))2]

(6)

We denote by λMSE the value of λ verifying (6) and

obtained in practice with numerical optimization techniques.

4) Predicitve mean square error (PMSE): Similar to

the previous approach, this method is also based on the

minimization of the MSE between x and its estimate. More

precisely, a weighted ℓ2 error norm E[‖ Hǫ(λ) ‖2
2
], also

called the predictive mean square error, is minimized [5],

[9], [10]. Following the same assumptions as the previous

approach, this minimization turns out in solving the equation

hereafter:

E[‖ Hǫ(λ) ‖2
2
] =‖ (IMN−HF (λ))y ‖2

2
+2σ2trace[HF (λ)]

(7)

The solution of (7), obtained by numerical optimization,

is called λPMSE in what follows.

5) Generalized Stein’s unbiased risk estimate (GSURE):

The main idea behind this method is to find the RP that

minimizes the following error measure between x and its

estimate [11], [12]:

e(λ) =‖ P (x− x̂) ‖2 (8)

where P = Ht(HHt)†H is the projection operator and (·)†

represents the pseudo-inverse.

Keeping in mind that the Wiener filter, given a value of λ,

provides an analytical relation between x̂ and y, we denote

by f a function from R
MN to R

MN with x̂ = f(y). As

shown in [10], [11] and [12], an unbiased estimator for the

projected MSE in (8), depending on the variance of the noise

and separating the true x from its estimation f(y), is given

by:

e(λ) =‖ Px ‖2 + ‖ Pf(y) ‖2
2
−2f t(y)Ht(HHt)†y

+2σ2trace(P (HtH + λQtQ)−1)
(9)

Minimizing (9) with respect to λ provides the optimal

value of the RP, in the sense of GSURE approach, denoted

by λGSURE .

B. Methods without knowledge of the variance of the noise

The methods presented in the previous section are all

based on the knowledge of the variance of the noise. De-

pending on the application, this may be an issue and a bad

estimation of σ2 may cause severe errors in the optimal

choice of the RP.

In the following, we briefly describe two existing ap-

proaches that do not use σ2 to provide an automatical choice

of λ.

1) Generalized cross-validation (GCV): Generalized

cross-validation (GCV) is one of the most popular methods

of choosing optimal RP and does not require the knowledge

of the noise variance σ2. Introduced in [5], its main idea is

based on the ”leave-one-out” principle. In the case of linear

algorithms, the GCV method leads to a simple function to

minimize depending on λ:

GCV (λ) =
‖ (IMN −HF (λ))y ‖2

2

[trace(IMN −HF (λ))]2
(10)

The value obtained by numerical minimization of (10) is

denoted by λGCV in this paper.

2) Marginal likelihood (ML): This approach is based on

the minimizing of the marginal likelihood (ML) function

given hereafter [6]:

ML(λ) =
y
t(IMN −HF (λ))y

(det[IMN −HF (λ)])1/MN
(11)

Hereafter, we denote the λ minimizing (11) by λML.

IV. RESULTS AND DISCUSSION

A. Experimental Setting

To evaluate the performance of these different methods, we

used two synthetic ultrasound images. The two images were

simulated by 2D convolution between realistic PSFs and the

tissue reflectivity functions shown as the first images in Fig.



TABLE I: Deconvolution Results of Synthetic Ultrasound Images

SNR 10dB 20dB 30dB

Image Cyst Phantom Cardiac Image Cyst Phantom Cardiac Image Cyst Phantom Cardiac Image

Lambda SSIM Lambda SSIM Lambda SSIM Lambda SSIM Lambda SSIM Lambda SSIM

1/SNR 1,00E-01 82,05 1,00E-01 63,50 1,00E-02 86,88 1,00E-02 67,29 1,00E-03 91,61 1,00E-03 76,15

CLS 2,12E-01 82,95 8,32E-01 65,32 1,60E-02 86,53 4,13E-02 67,93 1,81E-03 91,76 2,66E-03 75,24
EDF 2,73E-02 76,67 3,48E-02 61,05 2,12E-03 83,74 1,91E-03 60,24 3,18E-04 89,49 2,22E-04 67,49
MSE 2,37E-02 75,74 2,49E-02 40,46 2,25E-03 84,04 1,79E-03 59,69 4,09E-04 90,55 2,89E-04 70,56

PMSE 3,41E-02 77,98 5,84E-02 63,73 2,02E-03 83,46 2,12E-03 61,02 2,06E-04 86,59 1,79E-04 64,27
GSURE 2,37E-02 75,74 2,49E-02 40,46 2,25E-03 84,04 1,79E-03 59,69 4,09E-04 90,55 2,89E-04 70,56

GCV 3,46E-02 78,06 6,05E-02 63,80 2,02E-03 83,46 2,13E-03 61,08 2,06E-04 86,59 1,79E-04 64,27
ML 4,57E-02 79,46 2,79E-01 63,59 3,90E-03 86,04 1,51E-02 67,78 2,80E-04 88,65 7,00E-04 70,24

Fig. 1: SNR=30dB. From left to right, the images are Cyst phantom tissue reflectivity function, Cyst phantom B-mode US

image and its deconvolution results (B-mode visualisation) for Q = I .

1 and Fig. 2. Independent and identically distributed (IID)

zero- mean Gaussian noise was added to the data, yielding

different SNRs. This leads to the original B-mode images,

as shown in Fig. 1 and Fig. 2.

1) Cyst phantom image: For the first simulated image,

the PSF was generated with Field II [13] and corresponds

to a 3.5 MHz linear probe, sampled in the axial direction

at 20 MHz. The tissue refelctivity function was obtained

by generating scatterers at uniform random positions with

random amplitudes following gaussian distribution with zero

mean and variance depending on their spatial position. The

medium consists in five hyperechoic circular cysts, five

hypoechoic circular cysts and five point reflectors.

2) Simulated cardiac image: The PSF was also generated

with Field II [13] and corresponds to a sectorial probe

with the central frequency equal to 4 MHz and a axial

sampling frequency of 40 MHz. The scatterer positions were

uniformly random distributed. In order to obtain an ultra-

realistc simulation, the amplitudes of the scatterers were

related to the amplitude of an in vivo cardiac image, as

suggested in [14].

B. Deconvolution Results

For both US simulations, the deconvolution results were

obtained with the Wiener filtering approach, considering

the true PSF known. The RP was chosen with one of the

approaches in Section III or using the classical choice of λ

equal to the inverse of the SNR. For the methods that need

the knowledge of the SNR, the true value was employed.

Two classical cases were considered using two different

regularization operators Q: the identity matrix and the 2D

Laplacian operator.

TableI shows the deconvolution results for each approch of

RP optimal choice. The deconvolved images are compared

to the true reflectivity function using the structural similarity

measure (SSIM) [15]. For each simulation and for a given

SNR, we highlight in bold fonts the best result. Note that the

figures we give in Table I are obtained with a regularization

operator equal to the identity matrix. The results follow the

same trend for a Laplacian operator.

The different results may be appreciated from a quali-

tative viewpoint in Fig. 1 and 2, highlighting the original

refelctivity function, the data and the deconvolved images.

All the processing was done in the RF domain. However,

for visualisation reasons, we plot the corresponding B-mode

images, obtained after log-compression of the corresponding

enveloppe images.

C. Discussion

We may first remark that the different strategies of RP

optimal choice provide very different values of λ and thus

influence the quality of the deconvolution results. We should

note that this conclusion is less true for higher SNRs (larger

than 40 dB).

Second, as predicted in [5], the results provided by PMSE

and GCV approaches are very similar. Similarly, the values

of λMSE and λGSURE are also very close. This is due to

the fact that both MSE and GSURE methods are based on

the minimization of the MSE. Despite the different ways of

minimizing the MSE, they still provide similar results.



Fig. 2: SNR=30dB. From left to right, the images are Cardiac tissue reflectivity function, Cardiac B-mode US image and

its deconvolution results (B-mode visualisation) for Q = Q2DL.

Third, we may remark that the approaches that are not

based on the knowledge of the SNR (GCV and ML) are

still providing interesting results in US image deconvolution

compared to the other approaches. The quantitative and

qualitative results that we obtained point out that the ML

approach is more adapted to US imaging than GCV. For all

the cases, ML is among the best three methods (or very close

to the best three), with CLF and the inverse of the SNR, both

of which require the knowledge of the variance of the noise.

V. CONCLUSIONS

In this paper, we have compared eight methods of choos-

ing optimal RP in the context of US deconvolution via

Wiener filtering. The comparison was performed on two

synthetic US images. An interesting conclusion is that the

approaches not using the knowledge of the variance of the

noise are competitive against the others and are thus very

attractive in practical situations. In a future work, these

results should be confirmed on experimental data, combined

with approaches of PSF and noise variance estimation.
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