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Proactive Planning and Execution Strategies with
Multiple Hypotheses

Jorrit T’Hooft1 and Charles Lesire2 and Caroline P. Carvalho Chanel3

Abstract. In order to enhance the behavior of autonomous ser-
vice robots, we are exploring multiple paradigms for their planning
and execution strategy (the way of interleaving the planning, selec-
tion and execution of actions). In this paper we focus on continu-
ous proactive planning with multiple hypotheses in order to contin-
uously generate multiple solution-plans from which an action can
potentially be selected when required. To illustrate the concepts, we
develop how it can be used for autonomous navigation in dynamic
environments. For this purpose we present and analyze the tests we
realized with several instantiations. We also discuss several aspects
and concerns about the proposed strategy, and how integrating more
semantic information could enhance the capabilities of service robots
for real-world applications.

1 Introduction

In the near future we would like autonomous service robots able to
accomplish complex missions in real environments. Such missions
include human assistance, surveillance of infrastructure, search and
rescue, and dangerous work. Real environments on the other hand
are often dynamic, unstructured, open, unknown and only partially
observable, which further complicates the execution of the already
complex missions.

In practice, it is impossible to precompute valid plans or policies
able to cope with all unexpected events and unpredictable changes in
the environment that could occur, because:

• Goals are unknown before execution: Often the exact goal is
not known before execution, so it is not clear for which goal
plans should be made, and it would be impossible to store us-
able solution-plans for each possible goal. For example, if a robot
should be able to take a cup and place it on a table, there are in-
finite possibilities of instantiations of cups, tables, their locations
and environments.

• Dealing with uncertainties is hard: In order to find “good”
solution-plans, for example optimizing some criteria, all uncer-
tainties would need some accurate quantitative or qualitative rep-
resentation which is very hard to obtain for real situations.

• The state-spaces are too big: Because of the complexity and un-
certainties involved, the state-spaces incorporating all possibilities
(e.g. all possible environments) would be infinite and thus unus-
able for precomputing policies in limited time. Even with approxi-
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mated (but still usable) models the state-spaces remain too impor-
tant.

For all these reasons, service robots need to plan and manage their
actions online. Online planning and execution in this context imposes
some requirements as well:

• Planning and execution strategy: The planning and execution
strategy is the way of interleaving the planning, selection and exe-
cution of actions. Depending on the application, one strategy may
be better suited than another.
In [16, 9], the authors argue that the importance and difficulty of
deliberative acting has been underestimated, and call for more re-
search on the problems that arise when endeavoring to integrate
acting with planning. They focus on two interconnected princi-
ples: a hierarchical structure to integrate the actor’s deliberation
functions, and continual online planning and reasoning through-
out the acting process.

• Default behavior: A valid plan to reach some goal is not always
available, e.g. when no plan has been computed yet, or the avail-
able plan is invalidated. In such situations the robot should execute
“default” actions to ensure the integrity of itself and/or its environ-
ment. Such default behavior may be precomputed or obtained by
fast (sub-optimal) planning.
In [1] for example, an emergency maneuver library is used to guar-
antee the safety of a robot.

• Reactivity: The system must remain reactive, which imposes con-
straints on the software architecture. For example, the planning
process may not block the rest of the system, s.t. when an un-
expected event occurs the robot is still able to correctly adapt its
behavior.
An overview of commonly used robotic architectures can be found
in [13].

In order to enhance the behavior of service robots, we are explor-
ing multiple paradigms for the planning and execution strategy. In
this paper we focus on continuous proactive planning with multiple
hypotheses in order to continuously generate multiple solution-plans
from which an action can potentially be selected when required.

In Sec. 2 we discuss a selection of existing planning and execution
strategies to give some insight. In Sec. 3 we develop the main con-
cepts of our continuous proactive planning with multiple hypothe-
ses strategy. Sec. 4 gives a high-level algorithm to show how such
strategies can be implemented. To give an idea on how the proposed
concepts can be used for a specific application, we present in Sec.
5 how proactive planning with multiple hypotheses can be used for
autonomous navigation in dynamic environments. For this purpose
we explain and analyze the tests we realized with multiple instantia-
tions. In Sec. 6 we discuss different aspects and concerns about the



proposed strategy, as well as how integrating more semantic informa-
tion could enhance the capabilities of service robots for real-world
applications.

2 Existing Online Planning and Execution
Paradigms

Preliminary note on replanning from scratch vs plan repair
In online planning and execution paradigms, replanning can be trig-
gered in order to adapt to changes in the environment or unexpected
events. When replanning is triggered one can chose to replan from
scratch or to repair the previous plan. A number of algorithms exist
for repairing the previous plan [7], among them a lot are based on the
popular Focussed Dynamic A* (D*) [17] and D* Lite [12] which are
able to propagate changes in their data-structures and remain optimal
once the propagation finishes. However, depending on the applica-
tion, it can be difficult to track those changes (e.g. a small change in
the environment can have an incidence on the cost of a lot of actions
when the cost takes into account the proximity to the obstacles) and
a single change can invalidate a large part of the underlying graph,
in which case it can be preferable to just replan from scratch with a
faster algorithm (e.g with A* [11]).

[8] suggests the notion of plan stability, referring to a measure of
the difference between the current plan and a new target plan, which
can help to determine which part of the plan should be repaired,
accelerating the plan adaptation. This notion can also be used in a
heuristic to chose between replanning from scratch or repairing the
previous plan [10].

The selection of strategies presented here is meant to give some
insight, but is in no way exhaustive and for each one variants exist.

2.1 Plan-Replan
A basic but commonly used planning and execution strategy is the
plan-replan strategy:
The robot computes a plan that achieves the goal under some con-
straints based on the available (often incomplete) information. Dur-
ing this time, the robot executes its default behavior. Once a plan is
available, the robot selects and executes the actions of the plan as
long as the plan remains valid. If at some moment the plan is inval-
idated, the execution is interrupted and replanning is triggered (i.e.
replanning is triggered only when strictly necessary). The process
repeats until goal completion.

In [14] this type of planning and execution strategy allowed a robot
to complete 26.2 miles of autonomous navigation in a real office en-
vironment. Their system is either in mode planning, controlling, or
clearing. In planning mode, the robot is stationary and waiting for a
plan. In controlling mode, the robot has a plan and is sending com-
mands to the actuators. In clearing mode, something has gone wrong
and one of a user-specified set of recovery behaviors is being exe-
cuted [15].

Other approaches have proposed to take into account uncertainty
directly in the planning model to reduce possible faults at execution,
or to adapt to observations. FF-Replan [22] for example transforms a
probabilistic description of the environment into deterministic prob-
lems, computes a deterministic plan and executes it until an unex-
pected state occurs, in which case a partial replanning is triggered.

In the approach presented in [4], agents deliberately postpone parts
of their planning process because of incompleteness of initial infor-
mation. When enough information becomes available, partial replan-

ning is triggered. With this paradigm, replanning is triggered only
when it is strictly necessary, but not during the execution of the mis-
sion.

2.2 Continuous Planning
The difference between plan-replan and continuous planning is that
continuous planning tries to integrate observed discrepancies (e.g.
changes in the environment), during the execution of a plan, to avoid
that the available plan becomes invalid or sub-optimal. For this, dur-
ing the execution of actions, replanning is triggered (periodically or
when changes are observed) with the latest information available.

The main advantages are:

• As long as discrepancies can be integrated in time and the result-
ing plan remains valid, the use of default behavior can be avoided.

• By continuous planning with the latest available information, the
robot can take advantage of opportunities that occur during the
execution, e.g. changes in the environment can create shortcuts
that weren’t available before.

In [21] the authors present and compare an anytime method for
path planning in dynamic environments. Their method is able to re-
pair the previous solution in the same way as incremental replanning
algorithms such as D* and D* Lite, but also in an anytime fashion.
Each timestep (of 0.1 seconds for their tests) the position of the agent
is updated and replanning is triggered, with the latest available infor-
mation from the sensors, to update the previous plan.

In [15], while the robot is navigating, replanning is triggered dur-
ing each action, to solve a reduced Partially Observable Markov De-
cision Process (POMDP) with the latest information available. If the
action succeeds, the next action can be selected immediately. Other-
wise, the robot pauses and the planner is rerun for one second.

3 Continuous Proactive Planning with Multiple
Hypotheses: Concepts

3.1 Proactive Planning
While continuous planning (as we described it in Sec. 2.2) often im-
proves the behavior of the robot in dynamic environments, it lacks
proactivity in the sense of anticipating future situations. By only
planning with the latest available information it is often one step be-
hind when a new action must be selected, because of the duration
needed for the planning. For example, no valid plan is available when
a new action must be selected to execute if a change in the environ-
ment invalidating the current plan occurs just before the selection, or
when the search for a new solution takes too much time. The more
the environment is dynamic and complex, the more this situation is
likely to occur, and thus the more default actions will be executed
because no valid action from a solution-plan is available. The use of
a lot of default actions (such as immobilizing the robot) may cause
the robot to behave strangely for a human observer which is why we
prefer to avoid this.

In order to improve the continuous planning strategy in such situa-
tions, we propose to plan in a proactive manner for multiple hypothe-
ses (which can correspond to predictable future situations) in order
to generate multiple solution-plans from which an appropriate action
can often be selected, depending on the actual encountered situation.
For example, if it is known where obstacles may appear in the sur-
rounding of the robot, instead of waiting until the obstacles appear
before computing a plan taking them in account, the robot can antici-
pate these situations by searching for solutions in a proactive manner



(before such an obstacle actually appears). Then, when an obstacle
actually does appear, it is likely that a valid plan is already available,
and the robot just has to select a new action from (one of) the valid
plan(s).

In [6, 19], a generic framework has been proposed to continuously
optimize a (PO)MDP problem while executing actions. The authors
also propose two instantiations for focusing the search on predictable
future situations. The input problem is however not modified during
the execution, but only possible observations are considered.

In [5] an anticipatory online planning algorithm is presented for
the problem in which additional goals may arrive while plans for pre-
vious goals are still executing. It samples possible futures according
to their distribution and than solves each sampled future with a fast
deterministic planner. While this approach, which has many ideas in
common with ours, is very specific to a particular kind of applica-
tions, our approach is more generic and could easily be instantiated
to behave the same.

3.2 Hypotheses

What we call a hypothesis is a collection of information in order to
generate a corresponding type of solution-plan. It can take into ac-
count arbitrary information considered useful for the kind of solu-
tion one wants to generate with it, such as: constraints on the search
space, a particular configuration or initialization, etc. For example,
the hypotheses anticipating the appearing of obstacles could include
a zone where obstacles can occur, initialize the search with a previ-
ous plan, and restrict the search space within some range around that
previous plan. The corresponding solution, if one is found, would be
a solution “close” to the previous plan and avoiding the selected zone
where obstacles could appear.

3.3 Using One or Multiple Planners

This paradigm generates multiple solution-plans from multiple hy-
potheses. This can be obtained with a planning algorithm able to
store multiple solutions depending on the future states, such as poli-
cies created by Markov Decision Process (MDP) solvers. But it is
also possible to use one or multiple faster planning algorithms that,
depending on the input-parameters, solve the problem for the se-
lected hypotheses, and store the solutions in a separate data-structure.
This can be interesting for multiple reasons: one planner can be more
suited than another for a particular hypothesis (e.g. ability to deal
with some uncertainties, time needed to solve); one could chose to
solve a hypothesis with different planners to obtain different plans
for the same constraints (e.g. with randomized planners); different
planners can have different guarantees on the optimality; etc. (It is
the role of the supervising algorithm presented in Sec. 4 to call a
function that, depending on the hypothesis and current situation se-
lects the appropriate planning algorithm.)

3.4 Tackling (some) Uncertainties with Multiple
Hypotheses

Planning algorithms able to cope with uncertainties are often to slow
to be usable for online planning if they are instantiated with all the
possible uncertainties for the complete mission. With the multiple
hypotheses paradigm, because it instantiates the hypotheses online,
it is possible to generate solution-plans taking into account only a
subset of the uncertainties to speed up the search (e.g. with a reduced

MDP). This however still requests to have an accurate representation
for the remaining uncertainties involved.

Another way to take into account (some) uncertainties, without
the need to quantify them, is to proactively solve for (some of) the
possible future situations separately.

4 Continuous Proactive Planning with Multiple
Hypotheses: Algorithm

To guarantee the reactivity of the system (see Sec. 1), multiple
threads are running in parallel: A supervising thread, described in
Algorithm 1, is in charge of the planning and execution strategy, and
drives other threads for planning, executing the actions, and gather-
ing information, in a non blocking way. The proposed algorithm was
designed for implementing the continuous proactive planning with
multiple hypotheses strategy, but can also be used for implementing
the other strategies.

Algorithm 1 Continuous proactive planning with multiple hypothe-
ses

1: loop
2: update current goal
3: update current state
4: collect planning results (if any)
5: if no action executing then
6: select best action to execute
7: launch selected action
8: else
9: verify if a better action is available from current state

10: if a better action available then
11: stop the execution of current action
12: launch new best action
13: monitor discrepancies
14: if current action invalidated then
15: stop current action
16: else
17: if currently planning then
18: if the hypothesis for which we are planning is still

coherent then
19: continue planning
20: else
21: stop the corresponding planning algorithm
22: if currently not planning then
23: if hypothesis left to explore then
24: h← select hypothesis to plan for
25: create planning algorithm input for h
26: launch the planning algorithm for h

Algorithm 1 is a loop in which the first lines update the data struc-
tures (lines 1.2 to 1.4). The goal is updated because it can change
during the execution. The state of the robot and its environment can
change at every moment and thus must also be updated at every it-
eration. And because we want to dispose of the last results of the
planning algorithms, they are collected.

Then the algorithm ensures that the robot executes the best avail-
able action (lines 1.5 to 1.12). The selected action can for example be
the first action of the best available valid plan, or the appropriate “de-
fault” action if no valid plan is available. It first verifies if an action
is currently running or not (a previous launched action can: still be
running, have finished normally since last verification, or have been
stopped in the previous iteration). If no action is running it selects the
best action to execute. Otherwise, if an action is already running, it
verifies if a better one is available for the current state in which case
the current running action is interrupted and the new one is launched.



At this stage, the algorithm monitors the discrepancies (line 1.13)
and verifies if the current running action is still valid. If the current
action is no more valid, it is interrupted and the iteration finishes
so that a new appropriate action can be launched as fast as possible
(lines 1.14 to 1.15). Otherwise it manages the planning part (lines
1.16 to 1.26).

For managing the planning part, the algorithm first looks if a plan-
ning algorithm is still running. (In the presented version of the algo-
rithm planning is done sequentially, so only one planning algorithm
should run at a time.) If a planning algorithm is still running, the
supervisor verifies if the hypothesis for which it is planning is still
consistent in the current context, and stops the planning algorithm in
case it isn’t (lines 1.17 to 1.21). At this stage, if no planning algo-
rithm is running and there is at least one hypothesis left to explore
(depending on the context), the hypothesis to plan for is selected, the
corresponding planning algorithm input is created, and the planning
algorithm is launched in a non blocking manner (lines 1.22 to 1.26).

Remark: At the start of a new mission, no plan is available yet and
the algorithm starts with selecting an action of the default behavior.
The default behavior is executed as long as no valid plan is available.

4.1 Using Algorithm 1 to Implement the Other
Strategies

Algorithm 1 behaves differently according to its instantiation, more
precisely to: the way the action to execute is selected, the selection
of the hypotheses to plan for and the scheduling of the planning
episodes. Depending on how this is done it can even be used for im-
plementing the continuous planning and the plan-replan strategies as
showed next.

4.1.1 For the Plan-Replan Strategy

• Selection of the action to execute:
Only one plan is stored in the “planning results”. If the plan is
valid from the current state to the goal, the action to apply is se-
lected from the available plan, otherwise the action corresponding
to the default behavior is selected.

• Selection of the hypothesis to plan for and scheduling of the plan-
ning episodes:
There is only one hypothesis, corresponding to the observed situa-
tion. Replanning is triggered only when no valid plan is available.
In algorithm 1 this corresponds to defining that there is a hypoth-
esis left to explore only when there is no valid plan available i.e
when the currently executing action comes from the default behav-
ior. The planner is not interrupted before it finishes. If a solution
is found, it replaces the previous plan.

4.1.2 For the Continuous Planning Strategy

• Selection of the action to execute:
The same as for the plan-replan strategy.

• Selection of the hypothesis to plan for and scheduling of the plan-
ning episodes:
There is only one hypothesis, corresponding to the observed situa-
tion. Replanning is triggered periodically (e.g. each time an action
is launched) or when changes are observed. If the previous search
did not finish yet when replanning is triggered, depending on the
planner used, it can be updated (e.g. if a D* planner is used) or
interrupted (e.g. if an A* planner is used). If a solution is found, it
replaces the previous plan.

5 Application to Autonomous Navigation in
Dynamic Environments

Autonomous navigation in real environments, which are very dy-
namic and largely unpredictable, is a complex task almost all service
robots will have to master. Even if the exact evolution of the envi-
ronment is unpredictable, we are convinced that if the robot disposes
of a “good” set of solution-plans it could largely enhance its perfor-
mance, which is exactly what we try to obtain with the continuous
proactive planning with multiple hypotheses strategy.

For the tests, the goal was to reduce the durations of the missions
and the number of default actions launched, compared to the plan-
replan and continuous planning strategies. For this purpose we ex-
plored several types and combinations of hypotheses for the continu-
ous proactive planning with multiple hypotheses strategy. We also
instantiated the plan-replan and continuous planning strategies to
compare and discuss the results.

5.1 Test Conditions
For our tests, we suppose the robot is able to map and provide a 2D
occupancy-grid representation of its environment, to localize itself,
and to execute displacement actions along straight line-segments. To
run the tests in similar conditions we realized them in simulations.

For generating our simulated test conditions, we started by select-
ing some problems from the benchmarks for grid-based path-finding
[18]. Each of these problems includes a start and a goal position and
a map (used maps shown in Fig. 1).

(a) From dao (b) From wc3maps (c) From rooms

(d) From mazes (e) From random
(10% filled)

(f) From random
(40% filled)

Figure 1. The maps used for the tests (with in red the initial plan).

5.1.1 Actions: Costs and Durations

In our simulated environments 9 actions are possible.
Eight “normal” actions correspond to the displacement of the

robot to the center of an adjacent grid-cell following a straight line-
segment at constant velocity v. For our tests, v was set to 2m · s−1.
Such an action is possible only if the corresponding line-segment
does not encounter an obstacle (occupied grid-cell). These are the
only actions used by the planners. For the planners, the cost of such
an action cost(a) is the length of the corresponding line-segment



length(a), and as we suppose the resolution of the occupancy-
grid (side of a grid-cell) is 1 meter cost(a) = length(a) ∈
{1,
√
2}. The duration of executing such an action a is computed

as: duration(a) = length(a)/v.
The ninth action corresponds to staying at the current position, it

is always valid for our tests and is only used for the default behavior.
In the real world, executing a “default” action can take more time

than just the time needed for replanning a new valid path, e.g. instead
of being able to “instantaneous” stop or evolve at constant speed (or
to catch up in one action), it can require a minimum duration to sta-
bilize the robot. Therefore, we will compare the results for the two
cases:

• Case A: The duration of a ”default” action equals the duration
needed to plan.

• Case B: The ”default” action has a minimum duration of 0.5s.

5.1.2 Adding Dynamics to the Simulated Environments

In order to evaluate how the different strategies behave, when dy-
namic obstacles invalidate the plan being executed, we choose to add
obstacles on the path followed by the robot during the simulations.
For a real-world application, the region where such obstacles have
effects is related to the region the robot is able to update of its envi-
ronment representation, which depends on the robot’s sensors.

“Adding” an obstacle means that the corresponding grid-cell of
the environment representation is set to “occupied”, and “removing”
such an obstacle means that the corresponding grid-cell is set back to
its previous value.

At the end of an executed action, an obstacle may be added on
the path of the followed plan with probability Pobstacle. It can be
added on the followed path between the previous state + 2 and
previous state + n (previous state + i means the state reached
after applying the first i actions of the followed path from the pre-
vious state), where n is some predefined value. For our tests we
chose n = 10. The exact place where the obstacle should be added
is randomly chosen with a uniform distribution that selects a num-
ber between 2 and n. At the same time, each previously added ob-
stacle may also be removed with the same probability. To simu-
late environments with different dynamics, we realized the tests for:
Pobstacle ∈ {0.2, 0.5, 0.8}.

5.1.3 Planning Algorithms

For the tests we used 2 planning algorithms. One based on A* and
one based on D* Lite. They both instantiate the underlying graph
representation on the fly, and optimize the cumulative cost of the
actions (i.e. the length of the path to the goal). As the robot moves at
constant velocity, the planners also optimize the duration for reaching
the goal under static conditions.

Both algorithms have advantages and inconveniences. For replan-
ning from scratch, A* is much faster than D* Lite due to the way it
chooses the next vertex to expand, and for each expansion D* Lite
also requires more time because it does more bookkeeping. On the
other hand, as long as the goal remains the same, D* Lite is able to
update its underlying graph representation to repair a previous plan,
while A* must always replan from scratch. For our tests, most of the
time, it was much faster to repair the previous plan with D* Lite than
replanning from scratch with A*, which is not necessarily the case
for real applications (see Sec. 2).

5.2 Explored Types of Hypotheses
5.2.1 Global Hypothesis

What we call the global hypothesis corresponds to what is most of-
ten used for solving a planning problem. It consists of giving the
planning algorithm the complete representation of the environment
and letting it compute a global solution to the goal from a given
source state. So for our tests it corresponds to giving the complete
occupancy-grid representation of the environment, and the source
and goal position for the robot. The advantage of this hypothesis is
that the solutions are global and can thus be globally optimal de-
pending on the planning algorithm used. The main disadvantage is
that finding a global (optimal) solution is often computationally ex-
pensive and thus often slow. Figure 2(a) shows an example of an
occupancy-grid representation of a global hypothesis.

5.2.2 Path Region and Sub-Path Region Hypotheses

The path region hypothesis supposes a previous path already exists
and limits the state space for the planning algorithm in some range
around this selected path. The construction of this hypothesis in our
tests consists of taking into account only the obstacles around the
previous path, considering the rest of the space as obstacles (impass-
able). The range is parameterized with r, which for our tests corre-
sponds to the number of grid-cells taken into account around the path.
The main advantages are: (1) When a solution is found it is a global
solution and thus the robot will not get stuck in a local optimum. (2)
Often the search is largely sped up, for example in environments such
as mazes. One drawback is that it does not take into account that out-
side the region the robot did update its environment representation,
since the path for the construction of the hypothesis was generated,
the environment representation did not change. Once outside the up-
dated region, it is likely that the new path in this unchanged environ-
ment will converge to the existing path and the same solution will be
computed over again consuming time for nothing. A second draw-
back is that by only looking for solutions locally around a previous
path it can easily discard opportunities that occur during execution
(e.g. a door that opens) and thus losing its global optimality. Figure
2(b) shows an example of an occupancy-grid representation of the
path region hypothesis with r = 5.

The sub-path region hypothesis is a solution for the first drawback
mentioned for the path region hypothesis. Here we take into account
only the first part of the existing path that is supposed to change. The
last state of this sub-path becomes the sub-goal. The path-region hy-
pothesis is constructed for the sub-path and is solved for reaching the
sub-goal. Finally, by combining the solution returned by the planning
algorithm and the previous solution starting from the sub-goal we re-
construct a global path towards the real goal. It has the same range
parameter r as the path region hypothesis, and the sub-goal can be
expressed with a parameter n s.t. the sub-goal corresponds to the
state: first state of selected path+n. The main advantage is of
course the speed up compared to the path region hypothesis. Figure
2(c) shows an example of an occupancy-grid representation of the
sub-path region hypothesis with r = 5 and n = 10.

5.3 Tested Configurations
5.3.1 Instantiations of Plan-Replan

PR-A: This is the simplest configuration. Replanning is only trig-
gered when no valid plan is available. The search is done with the A*
planner. The only hypothesis used is the global hypothesis.



(a) Global hypothesis (b) Path region hypothe-
sis (r = 5)

(c) Sub-path region hy-
pothesis (r = 5 and n =
10)

Figure 2. Occupancy-grid representations of hypotheses. White represents
free space, gray occupied space.

PR-D: Similar to PR-A, but the search is done with the D* Lite
planner.

5.3.2 Instantiation of Continuous Planning

CP-D: Replanning is triggered each time a new action is launched.
The hypothesis and planner are the same as for PR-D.

5.3.3 Instantiations of Continuous Proactive Planning with
Multiple (10) Hypotheses

To reduce the mission durations and the number of launched default
actions, we tested the following combinations of hypotheses. Each
of them, in order to instantiate the additional hypotheses, supposes
some minimal semantic information is available about where obsta-
cles can appear. (For our tests this information was directly available
from the simulations, but for a real application it should be provided
by another component of the system.)

CPP-1: This configuration uses 10 hypotheses. Each time a “nor-
mal” action is launched, it first tries to solve the global hypothesis
just like the continuous planning strategy. Then, while there is time
left until the action finishes, it sequentially plans for sub-path region
hypotheses with A*. Each sub-path region hypothesis has a range
parameter r = 5, but the sub-goal parameter n takes respectively the
values 2 to 10. Here semantic knowledge is used to select the sub-
goals s.t. they correspond to the positions on the previous path just
after the places where dynamic obstacles can appear. These hypothe-
ses are trying to locally optimize the path to the selected sub-goals
with the freshest information available, but without considering that
dynamic obstacles can appear or disappear. When an action of the de-
fault behavior is launched instead of a “normal” action, it only tries
to solve the global hypothesis.

CPP-2: This is almost the same as CPP-1, but for the sub-path
region hypotheses we also add a (hypothetical) obstacle in the cor-
responding occupancy-grid on the selected path just before the sub-
goals. These hypotheses are thus anticipating the apparition of dy-
namic obstacles on the followed path, but without taking into account
that obstacles can also disappear. Here even more semantic knowl-
edge is used to predict the positions and sizes of future obstacles.

CPP-3: This final configuration has the same principle of CPP-2,
i.e. it tries to anticipate the apparition of dynamic obstacles on the
followed path (still without taking into account that obstacles can
also disappear). But as D* Lite can repair a plan fast for a global
hypothesis, all hypotheses are global, where for the last 9 hypotheses
a predicted obstacle is taken into account just like for CPP-2.

5.4 Realized Missions and Results

We selected 6 missions from the benchmarks [18]. For each mission
a different map (about 512∗512 grid-cells) was selected from differ-
ent categories (dao, wc3maps, rooms, mazes, random (10%), random
(40%)). Each mission was realized 30 times with each configuration,
and for each Pobstacle ∈ {0.2, 0.5, 0.8} to simulate different dynam-
ics.

Most of the time, when a “normal” action was launched, the tested
configurations for the continuous proactive planning with multiple
hypotheses (CPP-1, CPP-2 and CPP-3) were able to finish the search
for the 10 hypotheses in time (before the action finished).

Figure 1 shows the maps from the different categories. Figure 3
shows the results for the tests realized in the environment based on
the map of “dao”. The results for the tests realized in the environ-
ments based on the five first maps had the same characteristics and
can thus be observed in Fig. 3. Figure 4 shows the results for the tests
realized in the sixth environment based on the map of “random (40%
filled)”.

5.4.1 Case A: the duration of a ”default” action equals the
duration needed to plan

We can observe that PR-A and PR-D need to replan about the same
number of times, and thus launched about the same number of “de-
fault” actions, as expected. As it takes more time for PR-A to replan
from scratch than for PR-D to repair the previous plan, the durations
of the “default” actions are more important for PR-A than for PR-D,
leading to higher total mission durations for PR-A.

CP-D tries to integrate the observed changes during the execution.
As dynamic obstacles are added or removed just before launching a
new action it has no time to integrate the last changes that invalidate
the followed plan. However, by integrating the changes that occurred
just before, the resulting plan can change and potentially avoid obsta-
cles that will be added on the currently followed plan. By continually
optimizing with the available information it generates shorter plans
and has to execute less “default” actions resulting in lower mission
durations than PR-D.

CPP-1, whose added hypotheses locally optimize the existing path
to the selected sub-goals, generates more plans that slightly diverse
in the beginning, but remain close to optimal under static conditions,
resulting in less “default” actions and even lower mission durations
than CP-D.

CPP-2’s hypotheses also take into account the obstacles than can
appear. For the first 5 environments, where local solutions were al-
most always possible, it was able to find them, resulting in almost
no need for default behavior. For the sixth environment (based on
random (40% filled)) often no local solution was possible, resulting
in less decreasing default behavior. Because these hypotheses don’t
take into account that obstacles can also disappear the resulting paths
are often slightly sub-optimal, resulting in slightly longer paths ex-
ecuted. As replanning is often faster than taking a longer path, and
here executing a default action only takes the time needed for replan-
ning, the mission duration was not improved compared to CP-D.

CPP-3, which also takes into account the obstacles that can ap-
pear but searches globally for solutions, had different results than ex-
pected. We thought that this would continue to improve the mission
durations by finding shorter paths, but we observed that it was actu-
ally the configuration that executed the most “normal” actions, result-
ing in longer executed trajectories to reach the goal. This is probably
because it often found solutions that diverged globally, changing rad-



(a) dao : 0.2 A (b) dao : 0.5 A (c) dao : 0.8 A

(d) dao : 0.2 B (e) dao : 0.5 B (f) dao : 0.8 B

Figure 3. The mission durations against the number of default actions that were executed during the missions, realized in the environment “dao”. Above :
without minimum duration for the default actions (indicated with the suffix “A”); Under : with minimum duration of 0.5 seconds for the default actions (indicated
with the suffix “B”). From left to right : Pobstacle = 0.2, 0.5, 0.8 (indicated with 0.2, 0.5 or 0.8).

(a) random 40% : 0.2 A (b) random 40% : 0.5 A (c) random 40% : 0.8 A

(d) random 40% : 0.2 B (e) random 40% : 0.5 B (f) random 40% : 0.8 B

Figure 4. The mission durations against the number of default actions that were executed during the missions, realized in the environment “random (40%
filled)”. Above : without minimum duration for the default actions (indicated with the suffix “A”); Under : with minimum duration of 0.5 seconds for the default
actions (indicated with the suffix “B”). From left to right : Pobstacle = 0.2, 0.5, 0.8 (indicated with 0.2, 0.5 or 0.8).



ically the followed plan, and when obstacles were removed or new
obstacles added it doubled back. This was catastrophic for the sixth
environment with the highest dynamics (Pobstacle = 0.8), where it
doubled back so often that it barely progressed to the goal. For this
setting we showed only the fastest execution of CPP-3 on the graph,
the others could even take over 10 hours. CPP-1 and CPP-2 suffered
much less from this phenomenon because their hypotheses “stabi-
lized” the updated path around the previous path, and when this was
not possible they replanned with the latest changes updated.

5.4.2 Case B: a “default” action has a minimum duration
of 0.5s

As PR-A was able to replan from scratch in less than 0.5s, the per-
formances of PR-A and PR-D are about the same.

The improvements of CP-D and CPP-1 w.r.t PR-A and PR-D are
emphasized.

The reduction of default behavior realized with CPP-2 made it the
fastest for the first five environments, and for the sixth close to the
fastest.

The reduction of default behavior realized with CPP-3 made it the
second fastest for the first five environments. For the sixth, due to
the phenomenon explained before, for low dynamics (Pobstacle =
0.2) the mission durations were about the same as for CP-D, for
Pobstacle = 0.5 they were about the same as for PR-A and PR-D,
and for high dynamics (Pobstacle = 0.8) it was catastrophic.

What we can conclude is that proactive planning with multiple
hypotheses may be capable to improve the performances compared
to commonly used strategies. As proof of concept, for our tests: If
the priority is to complete the mission in minimum time, CPP-1 per-
formed the best if the duration of a “default” action equals the dura-
tion needed to replan; or CPP-2 if a “default” action has a minimum
duration of 0.5s. If instead the priority is to avoid default behavior,
CPP-2 can be preferred for both cases.

6 Discussion

6.1 Optimality concerns

The presented strategy on itself does not restrict or enforce optimality
guarantees. The optimality aspects depend more on the instantiated
hypotheses, the selected planners to solve for the hypotheses and the
function that selects the “best” action to execute depending on the
context.

Guaranteeing some optimality for real applications in unpre-
dictable environments is not an easy task, and one should also know
what such a guarantee really means. For example, (PO)MDP solvers
optimize the expected reward (thus return the best policy for infinite
executions), but does this really makes a lot of sense for a mission
that is executed only once? For our tests, our planners optimized the
length of the path to the goal, but they only guarantee to return the
shortest path for the static environment description given as input. If
the actual environment changes during the execution, the guarantee
is lost. That is why we prefer to search for “good” solutions in the
sense of feasible, acceptable and appropriate, instead of guaranteed
optimal solutions which we don’t know how to define or obtain in
our context.

6.2 Critical Aspects
For obtaining a “good” set of solution-plans with the continuous
proactive planning with multiple hypotheses strategy, some aspects
are critical:

• Obviously, the choice and construction of the hypotheses to plan
for are very important. We observed that the construction of inter-
esting hypotheses is very difficult without enough semantic infor-
mation on the environment.

• The planning algorithm selected to solve for a hypothesis must
be efficient enough to return a solution before the hypothesis be-
comes obsolete.

• If local solutions are admitted for some hypotheses it must be
taken into account when selecting the actions to execute. Other-
wise it is possible to get stuck in a local optimum.

6.3 Computational Overhead
One can be concerned about the computational overhead because, of
course, solving for multiple hypotheses is more computational inten-
sive than solving for one hypothesis. For the use cases we consider
there is actually no concern because the planning is done during the
execution of actions when computational resource is available. How-
ever, if one must also minimize the consumption of the CPU, the
underlying function that indicates if there is a “hypothesis left to ex-
plore” should take this into account and only return true when appro-
priate.

6.4 Semantic Information
While the proactive planning with multiple hypotheses paradigm
looks promising and natural for anticipating future situations, we ob-
serve that it critically needs semantic information to be efficient.

However, if enough semantic knowledge is available, the robot
could largely enhance its capabilities, for example by inferring au-
tomatically:

• more interesteing hypotheses, taking into account that a person
can let the robot pass, a chair can be moved, some places would
better be avoided, etc.;

• which hypothesis to instantiate in which context;
• which planner to use for solving a particular hypothesis;
• how to create the right input for a planner and a hypothesis;
• how to schedule the planning episodes. (e.g.: for hypotheses with

defferent time horizons, priorities, ...)

Therefore, we are investigating tools for acquiring and managing se-
mantic information , such as the ones presented in [2, 20, 3].

7 Conclusion
We presented the continuous proactive planning with multiple hy-
potheses strategy. Its concept is to proactively plan for multiple
hypotheses, during the execution of actions, to generate multiple
solution-plans from which an appropriate action can be selected
when required. To illustrate the concepts, we developed how it could
be used for autonomous navigation in dynamic environments. For
this purpose we presented the tests we realized and compared the per-
formances to two commonly used strategies. The proactive planning
with multiple hypotheses paradigm looks promising and natural for
anticipating future situations, but needs enough semantic information



to be efficient. We also argued how integrating more semantic infor-
mation could enhance the capabilities of service robots. Therefore
we continue our work focusing on how this can be done effectively.
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