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GAUSSIAN APPROXIMATIONS FOR CHEMOSTAT MODELS IN

FINITE AND INFINITE DIMENSIONS

BERTRAND CLOEZ1 AND CORALIE FRITSCH2,3,4

Abstract. In a chemostat, bacteria live in a growth container of constant volume in
which liquid is injected continuously. Recently, Campillo and Fritsch introduced a mass-
structured individual-based model to represent this dynamics and proved its convergence
to a more classic partial differential equation.

In this work, we are interested in the convergence of the fluctuation process. We
consider this process in some Sobolev spaces and use central limit theorems on Hilbert
space to prove its convergence in law to an infinite-dimensional Gaussian process.

As a consequence, we obtain a two-dimensional Gaussian approximation of the Crump-
Young model for which the long time behavior is relatively misunderstood. For this
approximation, we derive the invariant distribution and the convergence to it. We also
present numerical simulations illustrating our results.

Keywords: chemostat model, central limit theorem on Hilbert-space, individual-based
model, weak convergence, Crump-Young model, stationary and quasi-stationary distri-
butions
Mathematics Subject Classification (MSC2010): 60F05, 92D25, 60J25, 60G57, 60B10,
60H10

1. Introduction

The chemostat is a biotechnological process of continuous culture developed by Monod
(1950) and Novick and Szilard (1950) in which bacteria live in a growth container of
constant volume in which liquid is continuously injected.

From a mathematical point of view, beyond classic models based on systems of ordinary
differential equations (see for instance Smith and Waltman (1995)) or integro-differential
equations (see for instance Fredrickson et al. (1967); Ramkrishna (1979, 2000)), several
stochastic models were introduced in the literature. The first-one seems to be the one
developed by Crump and O’Young (1979) and is a birth and death process for the biomass
growth coupled with a differential equation for the substrate evolution. This one is the
main object of interest in Section 3 below. Recently, Campillo et al. (2011) and Collet
et al. (2013a) studied some extensions of this model. In particular, Campillo et al. (2011)
propose some stochastic differential equations to model the demographic noise from the
microscopic interactions.

1INRA Montpellier UMR MISTEA , 2 place Pierre Viala 34060 Montpellier, France
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2 BERTRAND CLOEZ AND CORALIE FRITSCH

Other stochastic models were introduced by Stephanopoulos et al. (1979); Imhof and
Walcher (2005). Let us also mention Diekmann et al. (2005); Mirrahimi et al. (2012, 2014)
or, for individual-based models, Campillo et al. (2016a,b); Champagnat et al. (2014);
Fritsch et al. (2016) which model the evolutionary dynamics of the chemostat.

We focus here on the individual-based model developed by Campillo and Fritsch (2014)
and Fritsch et al. (2015). In this mass-structured model, the bacterial population is repre-
sented as a set of individuals growing in a perfectly mixed vessel of constant volume. This
representation combines discrete mechanisms (birth and death events) as well as contin-
uous mechanisms (mass growth and substrate dynamics). Campillo and Fritsch (2014)
set the exact Monte Carlo simulation algorithm of this model and its mathematical rep-
resentation as a stochastic process. They prove the convergence of this process to the
solution of an integro-differential equation when the population size tends to infinity. In
the present work, we investigate the study of the fluctuation process; namely the difference
between the measure-valued stochastic process and its deterministic approximation. We
first show that, conveniently normalized, this fluctuation process converges to some super-
process. One difficulty is that it is a signed measure and we have to find a suitable space
in which it, as well as its limit, are to be immersed (because the space of signed measures
endowed with the weak convergence is not metrizable). Inspired by Meleard (1998) and
Tran (2006), we consider the fluctuation process as an element of some Sobolev space (see
Section 2.1 for a description of this space). This type of spaces takes the advantage to be
Hilbertian and one can use martingale techniques on Hilbert spaces to obtain the tightness
(and then the convergence of this process); see for instance Métivier (1984). The limit
object that we obtain is then an infinite dimensional degenerate Gaussian process.

We illustrate the interest of this result applying it in finite dimension. More precisely,
for particular parameters, the mass-structured model of Campillo and Fritsch (2014) can
be reduced to the two-dimensional Crump-Young model. As pointed out by Collet et al.
(2013a), the long time behavior of this model is complex and misunderstood; only few
properties are known about the behavior before extinction. The convergence developed
by Campillo and Fritsch (2014) induces an approximation by an ordinary differential
equation of the Crump-Young model, whereas our main result allows to obtain a stochastic
differential approximation for which we are able to plainly describe the long-time behavior.

Our main results are described in section that follows: Theorems 1.2 and 1.3 are the
central limit theorems (convergence of the fluctuation processes) in infinite and finite
dimensions. Theorem 1.4 gives the long time behavior of a stochastic differential approx-
imation of the Crump-Young model. Section 2 is devoted to the proofs of the two central
limit theorems. We first, introduce all the notations and preliminaries that we need from
Section 2.1 to Section 2.3, then Theorem 1.2 is proved in Section 2.4. The main steps of
the proof of Theorem 1.3 are given in Section 2.5. The finite-dimensional case is studied in
Section 3. We prove the convergence in time of the stochastic differential approximation
of the Crump-Young model in Section 3.1. We present numerical simulations and discus-
sion illustrating our results in Section 3.2. In particular, we discuss about the validity of
the approximation and introduce another diffusion process, obtained from Theorem 1.3,
whose the numerical behavior seems to have a better mimic of the Crump-Young model in
some particular situations. The extinction time of this new process is studied in Section
3.3.
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Main results. Let us be more precise on our main results before to introduce all the
machinery (notations, Sobolev spaces, ...) that we will use.

We consider the following mass-structured chemostat model : each individual is char-
acterized by its mass x P r0,M s, where M is the maximal mass of a bacterium. At each
time t ě 0, the system is caracterized by the random variable pSnt , ν

n
t q, where Snt is the

substrate concentration and νnt “
řNn

t
i“1 δXi

t
is the population of the Nn

t individuals with

mass X1
t , ¨ ¨ ¨ , X

Nn
t

t in the chemostat at time t. The parameter n represents a scaling
parameter.

We assume that one individual with mass x P r0,M s

‚ divides at rate bpS, xq into two individuals with masses αx and p1´ αqx where α
is distributed according to a probability distribution Qpdαq on r0, 1s;

‚ is withdrawn from the chemostat at rate D, with D the dilution rate of the chemo-
stat;

‚ grows at speed gpS, xq : 9xt “ gpSnt , xtq,

where the substrate concentration Sn evolves according to the following equation

9Snt “ D psin ´ S
n
t q ´

k

nV

Nn
t

ÿ

i“1

gpSnt , X
i
tq , Sn0 “ S0 ,

where sin is the input substrate concentration in the chemostat, S0 is a deterministic
initial substrate concentration, nV is the volume of the chemostat and k is a stoichiometric
coefficient. Note that the scale parameter n is only involved in front of the volume and the
initial number of individuals. The approximations below then holds when the volume and
the initial population become larger and larger. In this context, let us do a small remark
on modelling. Parameter D corresponds to a dilution rate, which is usually defined as the
ratio between the flow and the volume. As we assume that the dilution rate is constant,
approximations below only hold when also the flow became larger and larger.

A more complete description of the stochastic process is given in Section 2.1 in term of
martingale problem. To have a better understanding of the dynamics let also see (Campillo
and Fritsch, 2014, Section 2.2).

For every n ě 1, we consider the renormalized process psνnt qtě0 defined by

sνnt “
1

n
νnt , t ě 0 (1)

and we make the following assumptions.

Assumptions 1.1 (Regularity of the division rate and the growth speed).

(1) The division rate and the growth speed are bounded :

0 ď bps, xq ď sb, 0 ď gps, xq ď sg, s ě 0, x P r0,M s.

(2) The functions ps, xq ÞÑ gps, xq and ps, xq ÞÑ bps, xq are Lipschitz continuous w.r.t.
s uniformly in x and differentiable in s with derivative Lipschitz continuous w.r.t.
s uniformly in x: for all s1, s2 ě 0, x P r0,M s,

|gps1, xq ´ gps2, xq| ď Kgb |s1 ´ s2|; bps1, xq ´ bps2, xq| ď Kgb |s1 ´ s2|;
|Bsgps1, xq ´ Bsgps2, xq| ď Kgb |s1 ´ s2|; |Bsbps1, xq ´ Bsbps2, xq| ď Kgb |s1 ´ s2|.

(3) The function g P C1,1pR` ˆ r0,M sq is such that gps, 0q “ gps,Mq “ 0 .



4 BERTRAND CLOEZ AND CORALIE FRITSCH

(4) In absence of substrate the bacteria do not grow, i.e. gp0, xq “ 0 for all x P r0,M s.

Note that Assumption 1.1 (1) is not really necessary. Indeed, due to the form of the
differential equation satisfied by the substrate concentration pSnt qtě0, one can see that
it remains in the compact set r0,maxpS0, sinqs. As a consequence, the regularity of the
functions g and b, induced by Assumption 1.1 (2), implies this point.

With these assumptions, Campillo and Fritsch (2014) show that if the sequence psνn0 qn
converges in distribution towards a deterministic, finite and positive measure ξ0 then,
under Assumptions 1.1,

lim
nÑ8

pSnt , sν
n
t qtPr0,T s “ pSt, ξtqtPr0,T s, (2)

for any horizon time T ą 0, where pSt, ξtqtPr0,T s is the solution of the deterministic system
of equations

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

St “ S0 `
şt
0

„

D psin ´ Suq ´
k
V

ş

r0,Ms gpSu, xq ξupdxq



du ,

ξt pfq “ ξ0 pfq `
şt
0

ş

r0,Ms

„

bpSu, xq
ş1
0

”

fpαxq ` fpp1´ αqxq ´ fpxq
ı

Qpdαq

´Dfpxq ` gpSu, xq f
1pxq



ξupdxqdu ,

(3)

for any f P C1pr0,M sq, t ě 0, with, for any h P Cpr0,M sq and ν in the set MF pr0,M sq of
finite (positive) measures,

ν phq :“

ż

r0,Ms
hpxq νpdxq .

Let us finally introduce the main object of the present article, that is the fluctuation
process sηnt “ pη

n
t , R

n
t q defined by

ηnt :“
?
n psνnt ´ ξtq , Rnt :“

?
n pSnt ´ Stq . (4)

Our main result is Theorem 1.2 below. For presentation convenience, we don’t detail
here the topology of Dpr0, T s,Hq, H or H0 but all details are given in Section 2.1, in
particular H and H0 are defined in (15) (see also Remark 2.2). Briefly Dpr0, T s,Hq is the
Skohorod space associated to an appropriately chosen Sobolev space H and H0 Ĺ H.

Theorem 1.2 (Convergence of the fluctuation process). Under Assumption 1.1 and if

supnPN˚ E
´

}sηn0 }
2
H0

¯

ă 8 and psηn0 qnPN˚ converges to some η0 in H then, for any horizon

time T ą 0, the sequence of process psηnqnPN˚ converges in distribution in Dpr0, T s,Hq
towards sη “ pη,Rq solution of the system
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$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ηt pfq “ η0 pfq `
şt
0

ş

r0,Ms

„

bpSu, xq
ş1
0

“

fpαxq ` fpp1´ αqxq ´ fpxq
‰

Qpdαq

´Dfpxq ` gpSu, xq f
1pxq



ηupdxqdu

`
şt
0Ru

ş

r0,Ms

„

BsbpSu, xq
ş1
0

“

fpαxq ` fpp1´ αqxq ´ fpxq
‰

Qpdαq

`BsgpSu, xq f
1pxq



ξupdxqdu`Gtpfq

Rt “ ´
şt
0

„

DRu `
k
V ηu pgpSu, .qq `Ru

k
V ξu pBsgpSu, .qq



du

(5)

where Gpfq is a centred Gaussian process with quadratic variation

xGpfqyt “

ż t

0

ż

r0,Ms
bpSu, xq

ż 1

0

“

fpαxq ` fpp1´ αqxq ´ fpxq
‰2
Qpdαq ξupdxqdu

`D

ż t

0

ż

r0,Ms
f2pxq ξupdxqdu, (6)

for any f P C1pr0,M sq and t P r0, T s.

This theorem may look complicated but let us illustrate the interest of this type of
result with a finite dimensional application. Let us choose

M “ 8, gps, xq “ µpsqm, bps, xq “ µpsq, (7)

where s ÞÑ µpsq is the specific growth rate of the population that we will assume to be
Lipschitz.

Then, the substrate concentration of the stochastic model satisfies

d

dt
Snt “ D psin ´ S

n
t q ´

k

V n
mµpSnt qN

n
t

where the process pNn
t qt, depicting the number of individuals, is a birth-death process

with non-homogeneous birth rate µpSnt q and death rate D. It is exactly the Crump-Young
model as studied in Campillo et al. (2011); Collet et al. (2013a); Crump and O’Young
(1979). In particular, the long time behavior of this process is investigated in Collet
et al. (2013a). It is shown that this process extincts after a random time and, under
suitable assumptions (µ increasing,...), admits (at least) a quasi-stationary distribution.
This distribution describes the behavior of the process before the extinction (when it is
unique and there is convergence to it); see for instance Collet et al. (2013b). Even though
the previous assumptions are not included in the set of assumptions of Theorem 1.2 (see
however remark 2.8), we can obtain the same result for specific functions f . In particular,
when f ” 1, let us define

sNn
t “ sνnt p1q “

Nn
t

n
, Nt “ ξtp1q, Qnt “

?
np sNn

t ´Ntq.

We have then the following result.

Theorem 1.3 (Convergence of the Crump-Young fluctuation process). If supně1 Ep| sNn
0 |

2`

|Qn0 |
2q ă `8 and the sequence of random variables p sNn

0 , Q
n
0 qně0 converges in distribution

towards pN0, Q0q then the sequence of processes pp sNn
t , S

n
t , Q

n
t , R

n
t qtě0qnPN˚ converges in
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distribution in Dpr0, T s,R4q towards pN,S,Q,Rq solution of the following system of sto-
chastic differential equations:

$

’

’

’

&

’

’

’

%

dNt “ pµpStq ´DqNt dt ,

dSt “
“

D psin ´ Stq ´
k
V mµpStqNt

‰

dt ,

dQt “ rpµpStq ´DqQt ` µ
1pStqRtNtsdt`

a

pµpStq `DqNt dBt ,

dRt “ ´
“

DRt `
k
V µpStqmQt `

k
V Rt µ

1pStqmNt

‰

dt .

(8)

for all t ě 0, where pBtqtě0 is a classic Brownian motion.

The previous theorem suggests, if n is sufficiently large, that

Nn
t « nNt `

?
nQt, Snt « St `

1
?
n
Rt , (9)

Note that another (SDE type) approximation is given in Section 3.2. This is a Feller-
diffusion type approximation (see Bansaye and Méléard (2015)) and it is closer to the SDE
introduced in Campillo et al. (2011).

The two first equations of (8) are, up to a factor m{V in front of Nt, the classic
differential equations for representing the chemostat (see Smith and Waltman (1995)).
The four-component process is a non-elliptic diffusion time-homogeneous process whose
the long time behavior is given by Theorem 1.4 below.

Theorem 1.4 (Long time behavior of the Crump-Young SDE). Assume that µ is strictly
increasing on r0, sins, µp0q “ 0 and µpsinq ą D. There exists a unique pN˚, S˚q such that

µpS˚q “ D , N˚ “
V

km
psin ´ S

˚q,

and for any initial condition in R˚` ˆ R` ˆ R ˆ R, the process ppNt, St, Qt, Rtq
T qtě0 (T

designs the transpose of the vector) converges in distribution to a Gaussian random variable
with mean m and variance Σ defined by

m “

¨

˚

˚

˝

N˚

S˚

0
0

˛

‹

‹

‚

, Σ “

¨

˚

˚

˚

˝

0 0 0 0
0 0 0 0

0 0 α ´
µpS˚q
µ1pS˚q

0 0 ´
µpS˚q
µ1pS˚q β

˛

‹

‹

‹

‚

, (10)

where

α “

`

k
V mµ1pS˚qN˚ ` 3

2 D
˘2
´ 5

4 D
2

k
V mµ1pS˚q pD ` k

V mµ1pS˚qN˚q
(11)

and

β “
k

V
m

D2

µ1pS˚q pD ` k
V mµ1pS˚qN˚q

. (12)

Some extensions of this Theorem are given in Section 3 such as the rate of convergence
and non-monotonic growth rate. The last Theorem gives the heuristic that, until extinc-
tion and if n is sufficiently large, the discrete model is almost distributed as a normal
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distribution:

pNn
t , S

n
t q « N

˜

ˆ

nN˚

S˚

˙

,

˜

nα ´
µpS˚q
µ1pS˚q

´
µpS˚q
µ1pS˚q

β
n

¸¸

. (13)

As one would expect, the number of bacteria is negatively correlated to the substrate
rate: more individuals implies less food and vice versa. Recall that pSnt `

km
V nN

n
t qtě0 is a

martingale (i.e. the total mass is in mean conserved in the container).
This theorem can be understood as a first step to fully describe the Crump-Young model

such as in the case of the logistic model described in Chazottes et al. (2015). Indeed, in
Section 3.2, we will see that, in large population, the quasi-stationary distribution of
the Crump-Young model matches with the stationary distribution of its approximation.
This is not trivial (and also not proved) because, for instance, the limits when n Ñ 8

and t Ñ 8 do not even commute! An example with a non-monotonic µ with different
behaviors (several invariant measures, behavior depending on the initial conditions) is also
presented.

2. Central limit theorems

2.1. Functional notations. For any n P N˚ and t ě 0, the population of bacteria is

represented by the punctual measure νnt “
řNn

t
i“1 δXi

t
. We denote by Mpr0,M sq the set of

such measures (punctual measures), it is a subset of the set MF pr0,M sq of finite (positive)
measures.

For any n P N˚ and T ą 0, the process pνnt qtPr0,T s is a càd-làg process. It (almost-surely)
belongs to the space Dpr0, T s,MF pr0,M sqq of càd-làg functions of r0, T s with values in
MF pr0,M sq, embedded with the (usual) Skohorod topology; see for instance Billingsley
(1968); Ethier and Kurtz (1986) for an introduction. In contrast, pSnt qtPr0,T s is (almost
surely) a continuous function. We denote by Cpr0, T s,R`q the set of continuous functions
from r0, T s to R` embedded with its usual norm.

The convergence (2) corresponds to a convergence in distribution in the product space
Cpr0, T s,R`q ˆDpr0, T s,MF pr0,M sqq. Roughly this convergence is proved by a compact-
ness/uniqueness argument. The compactness (or tightness) is proved by the (well-known)
Aldous criterion which is a stochastic generalisation of the Arzelà-Ascoli Theorem. One of
the key assumption of this theorem is to work in metric space. Considering the fluctuation
process pηnt qtě0, such arguments cannot be used to establish any convergence. Indeed, in
contrast to the measure ν̄nt , the measure ηnt is not a positive measure but it is a signed
measure. The set of signed measures being not metrisable (Varadarajan, 1958), one have
to consider ηnt as an operator acting on a different space than those of continuous and
bounded functions. As Meleard (1998) and Tran (2006), we will use some Sobolev spaces
that are defined as follows: for every integer j, we let Cjpr0,M sq be the set of functions
being j times continuously differentiable embedded with the norm } ¨ }Cj , defined for all

f P Cjpr0,M sq by }f}Cj “
řj
i“0 }f

piq}8 (with }.}8 the infinity norm). Let now }¨}Wj
be

the norm defined, for any f P Cjpr0,M sq, by

}f}2Wj
:“

ż

r0,Ms

j
ÿ

i“0

pf piqpxqq2 dx.
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Let Wj “Wjpr0,M sq be the completion of Cjpr0,M sq with respect to this norm. Contrary
to the Banach space Cjpr0,M sq, the Sobolev space Wj is Hilbertian. Let W ˚

j be its dual
space, classically embedded with the norm

}µ}W˚
j
“ sup
}f}Wj

ď1
|µ pfq | .

Another useful property is given by the Sobolev-type inequalities: there exist universal
constants Cj , C

1
j such that

}f}Wj
ď Cj }f}Cj , }f}Cj ď C 1j }f}Wj`1

. (14)

See for instance (Meleard, 1998, Equations (3.5) and (3.6)) or (Adams, 1975, Theorem
V-4). In particular, Wj`1 is continuously embedded in Wj . Moreover, this embedding
is a Hilbert-Schmidt embedding (see (Meleard, 1998, Equation (3.7)) or (Adams, 1975,
Theorem VI-53)). Therefore bounded and closed sets of Wj`1 are compact for the Wj ’s
topology.

Let us illustrate an application of inequalities (14) that will be useful in the proof of
Theorem 1.2.

Lemma 2.1 (Useful bound on the basis). Let pekqkě0 be an orthonormal basis of W2, we
have,

K1 :“ sup
xPr0,Ms

ÿ

kě0

e2kpxq ă `8 .

Proof. By definition, for any x P r0,M s,

}δx}W˚
2
“ sup
}f}W2

ď1
|δx pfq | “ sup

}f}W2
ď1
|fpxq| ď sup

}f}W2
ď1
}f}8 .

Moreover, we have the Sobolev-type inequalities, }f}8 “ }f}C0 ď C }f}W2
, for some

C ą 0. Hence, by the Parseval identity,

C2 ě sup
xPr0,Ms

}δx}
2
W˚

2
“ sup

xPr0,Ms

ÿ

kě0

e2kpxq . �

Finally, contrary to the models of Meleard (1998); Tran (2006), the fluctuation process
(as the empirical measure) is not here a Markov process by itself. We have to consider
the couple population/substrate to have an homogeneous dynamics. As a consequence,
we will use a slightly larger space than those of Meleard (1998); Tran (2006). Let

H0 “W ˚
2 ˆ R, H “W ˚

3 ˆ R, (15)

be the Hilbert spaces endowed with the following norms : for pµ,Rq P H0 or pµ,Rq P H,

}pµ,Rq}H0
“

b

}µ}2W˚
2
` |R|2 , }pµ,Rq}H “

b

}µ}2W˚
3
` |R|2 .

Remark 2.2 (Weaker assumptions on pη̄n0 qnPN˚). More generally, Theorem 1.2 holds for
H0 “ W ˚

j ˆ R and H “ W ˚
j`1 ˆ R with j ě 2 (the entire proof holds replacing W2, W ˚

2 ,

W3 and W ˚
3 by Wj, W

˚
j , Wj`1 and W ˚

j`1). For j ą 2, the assumptions on pη̄n0 qnPN˚ are

weaker than for H0 and H defined by (15), however the convergence result is also weaker.
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2.2. Martingale properties. The sequence of processes ppsνnt qtě0qnPN˚ , defined by (1),
can be rigorously defined as solution of stochastic differential equations involving Pois-
son point processes; see (Campillo and Fritsch, 2014, Section 4). Instead of using this
characterisation, we only need that it is solution to the following martingale problem.

Lemma 2.3 (Semi-martingale decomposition, Campillo and Fritsch (2014)). We assume

that Epsνn0 p1q
2
q ă 8. Let f P C1pr0,M sq, then, under Assumptions 1.1, for all t ą 0:

sνnt pfq “ sνn0 pfq `

ż t

0

ż

r0,Ms

„

bpSnu , xq

ż 1

0

“

fpαxq ` fpp1´ αqxq ´ fpxq
‰

Qpdαq

´Dfpxq ` gpSnu , xq f
1pxq



sνnu pdxqdu` Znt pfq (16)

where

d

dt
Snt “ Dpsin ´ S

n
t q ´

k

V

ż

r0,Ms
gpSnt , xq sν

n
t pdxq

and pZnt pfqqtě0 is a martingale with the following predictable quadratic variation:

xZn pfqyt “
1

n

ż t

0

ż

r0,Ms
bpSnu , xq

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqs2 Qpdαq sνnu pdxqdu

`
1

n
D

ż t

0

ż

r0,Ms
fpxq2 sνnu pdxqdu .

Let us recall that sηnt “ pη
n
t , R

n
t q is defined by (4). From the last lemma, we deduce that

sηnt “
sAnt `

ĎMn
t with

sAnt pfq :“

ˆ

Ant pfq
Rnt

˙

ĎMn
t pfq :“

ˆ

Mn
t pfq
0

˙

,

where the processes pAnt qtPr0,T s and pRnt qtPr0,T s have finite variations and are defined by

Ant pfq :“ ηn0 pfq `

ż t

0

„
ż

r0,Ms
bpSnu , xq

ż 1

0

“

fpαxq ` fpp1´ αqxq ´ fpxq
‰

Qpdαq ηnupdxq

´Dηnu pfq ` η
n
u

`

gpSnu , .q f
1
˘



du`
?
n

ż t

0

"

ξu
`

pgpSnu , .q ´ gpSu, .qq f
1
˘

`

ż

r0,Ms
pbpSnu , xq ´ bpSu, xqq

ż 1

0

”

fpαxq ` fpp1´ αqxq ´ fpxq
ı

Qpdαq ξupdxq

*

du

(17)

and

Rnt “

ż t

0

„

´DRnu ´
k

V
ηnu pgpS

n
u , .qq ´

?
n
k

V
ξu pgpS

n
u , .q ´ gpSu, .qq



du. (18)

The process pMn
t pfqqr0,T s, defined by

Mn
t pfq :“

?
nZnt pfq , (19)
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is a martingale with predictable quadratic variation

xMn pfqyt “

ż t

0

ż

r0,Ms
bpSnu , xq

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqs2 Qpdαq sνnu pdxqdu

`D

ż t

0

ż

r0,Ms
fpxq2 sνnu pdxq du . (20)

2.3. Preliminary estimates. For any n P N˚, let pxxMnyytqtPr0,T s be the trace of the

process pMn
t qtPr0,T s, that is the process such that p}Mn

t }
2
W˚

2
´ xxMnyytqtPr0,T s is a local

martingale (Joffe and Métivier, 1986; Métivier, 1982, 1984). Let pekqkě0 be an orthonormal
basis of W2, we have

xxMnyyt “
ÿ

kě0

xMnpekqyt . (21)

Indeed, on the one hand, the Parseval’s identity entails that

}Mn
t }

2
W˚

2
“

ÿ

kě0

pMn
t pekqq

2 .

On the other hand, by definition of the predictable quadratic variation, pMn
t pekq

2 ´

xMnpekqytqtě0 is a martingale for any k ě 0. Therefore, the uniqueness of the trace
implies (21).

Lemma 2.4 (Uniform moment). If supnPN˚ E
´

}sηn0 }
2
H0

¯

ă 8 then for any T ą 0

sup
nPN˚

E
ˆ

sup
uďT

}sηnu}
2
H0

˙

ă 8 .

Proof. By definition of }.}H0
and the triangular inequality, we have

}sηnt }
2
H0
“ }ηnt }

2
W˚

2
` |Rnt |

2 ď 2 p}Ant }
2
W˚

2
` }Mn

t }
2
W˚

2
q ` |Rnt |

2 .

By the Fubini-Tonelli theorem,

E
„

sup
uďt

}Mn
u }

2
W˚

2



“ E

«

sup
uďt

ÿ

kě0

Mn
u pekq

2

ff

ď
ÿ

kě0

E
„

sup
uďt

Mn
u pekq

2



.

Applying the Doob inequality (see for instance (Jacod and Shiryaev, 2003, Theorem 1.43))
to the martingale pMn

u pekqquě0 for any k ě 0, we have

E
„

sup
uďt

}Mn
u }

2
W˚

2



ď 4
ÿ

kě0

E
“

Mn
t pekq

2
‰

“ 4
ÿ

kě0

E rxMnpekqyts “ 4E

«

ÿ

kě0

xMnpekqyt

ff

.

By (20) and by Lemma 2.1,

ÿ

kě0

xMnpekqyt “
ÿ

kě0

ż t

0

ż

r0,Ms

!

bpSnu , xq

ż 1

0
rekpαxq ` ekpp1´ αqxq ´ ekpxqs

2 Qpdαq

`De2kpxq
)

sνnu pdxq du

ď
`

5sb`D
˘

K1 T sup
uďt

sνnu p1q .
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By assumption supn E
`

}sηn0 }H0

˘

ă 8, which implies that supn E psνn0 p1qq ă `8. Then,

from (Campillo and Fritsch, 2014, Lemma 5.4) supn E
“

supuďT sνnu p1q
‰

ă `8. Hence

K2 :“ sup
n

E
„

sup
uďT

}Mn
u }

2
W˚

2



ă `8 . (22)

Using the Gronwall inequality, we easily check that

CξT :“ sup
tPr0,T s

ξt p1q ă `8 ; (23)

it is however proved in (Campillo and Fritsch, 2014, Proof of Theorem 5.2). Therefore,
from Assumptions 1.1 and the Sobolev-type inequalities,

}Ant }W˚
2
ď }ηn0 }W˚

2
` C

ż t

0
}ηnu}W˚

2

`

sg ` 3sb`D
˘

du` 4C

ż t

0
|Rnu|KgbC

ξ
T du

ď }ηn0 }W˚
2
`K3

ż t

0

´

}ηnu}W˚
2
` |Rnu|

¯

du ,

with K3 :“ C max
 

sg ` 3sb`D; 4KgbC
ξ
T

(

and C depends on the constants C1 and C 11 of
the Sobolev-type inequalities. Hence

}Ant }
2
W˚

2
ď 2

ˆ

}ηn0 }
2
W˚

2
`K2

3 T

ż t

0
}sηnu}

2
H0

du

˙

.

Moreover,

|Rnt | ď

ż t

0

ˆ

D |Rnu| ` C
k

V
sg }ηnu}W˚

2
`
k

V
|Rnu|KgbC

ξ
T

˙

du

hence

|Rnt |
2
ď K2

4 T

ż t

0
}sηnu}

2
H0

du ,

with K4 “ max
!

C k
V sg ; D ` k

V KgbC
ξ
T

)

. Therefore, by the Fubini-Tonelli theorem

E
„

sup
sďt
}sηns }

2
H0



ď p4K2
3 `K

2
4 qT

ż t

0
E
„

sup
sďu

}sηns }
2
H0



du` 4E }sηn0 }
2
H0
` 2K2 .

By Gronwall lemma, we finally get

sup
nPN˚

E
„

sup
sďt
}sηns }

2
H0



ď ep4K
2
3`K

2
4 qT t p2K2 ` 4 sup

nPN˚
E }sηn0 }

2
H0
q ă `8 .

�

2.4. Proof of the Theorem 1.2. We divide the proof in two steps. The first one is
devoted to the proof of the tightness of the sequence of processes psηnqně1 in Dpr0, T s,Hq.
In the second one, we prove that the limit of the process is unique and given by (5-6).
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Step 1 : Tightness of psηnq in Dpr0, T s,Hq. From (Meleard, 1998, Lemma C) or Joffe and
Métivier (1986), the sequence of processes ppsηnqtPr0,T sqně1 is tight in Dpr0, T s,Hq if the
two following conditions hold:

rT s for all t ď T ,
sup
ně1

E
“

}sηnt }
2
H0

‰

ă `8;

rAs for any ε ą 0, α ą 0, there exist θ ą 0 and n0 such that for any sequence pσn, τnqn
of pairs of stopping times with σn ď τn ď σn ` θ,

sup
něn0

Pp
›

› sAnτn ´
sAnσn

›

›

H ě αq ď ε ,

sup
něn0

Pp|xxMnyyτn ´ xxM
nyyσn | ě αq ď ε .

Indeed recall that embedding H0 Ă H is Hilbert-Schmidt and then, using Markov inequal-
ity, rT s implies that the sequence psηnt qn almost surely belongs to a bounded set of H0

(which is compact in H). In short, rT s implies the tightness of psηnt qně0 for every t ě 0 in
H.

In order to prove the tightness of psηnq in Dpr0, T s,Hq, we have to prove the conditions
rT s and rAs. Condition rT s is a direct consequence of Lemma 2.4. Let us now prove rAs.
By the Markov inequality,

P
`›

› sAnτn ´
sAnσn

›

›

H ě α
˘

ď
E
›

› sAnτn ´
sAnσn

›

›

H
α

.

By (17), we have for any f PW3 ĂW2 such that }f}W3
ď 1,

|pAnτn ´A
n
σnq pfq | ď C

ż σn`θ

σn

}ηnu}W˚
2
psg ` 3sb`Dqdu` C

ż σn`θ

σn

|Rnu| 4KgbC
ξ
T du

ď C

ż σn`θ

σn

p}ηnu}W˚
2
` |Rnu|qdu

ď C θ sup
uďT

}sηnu}H0

where the constant C can be different from a line to another.
By the same way, |Rnτn ´R

n
σn | ď C θ supuďT }sη

n
u}H0

then

Ep
›

› sAnτn ´
sAnσn

›

›

Hq ď C θ sup
nPN˚

E
ˆ

sup
uďT

}sηnu}H0

˙

.

By Lemma 2.4, the first condition of rAs is then satisfied.

In the same way,

|xxMnyyτn ´ xxM
nyyσn | “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kě0

`

xMnpekqyτn ´ xM
npekqyσn

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

kě0

|xMnpekqyτn ´ xM
npekqyσn |

By (20) and Lemma 2.1, we then get

|xxMnyyτn ´ xxM
nyyσn | ď C K1

ż σn`θ

σn

sνnu p1q du



GAUSSIAN APPROXIMATIONS FOR CHEMOSTAT MODELS 13

therefore

E |xxMnyyτn ´ xxM
nyyσn | ď C K1 θ sup

nPN˚
E
ˆ

sup
uďT

}sηnu}H0

˙

and by Lemma 2.4, the condition rAs holds.

Step 2 : Identification of the accumulation points. From Step 1, the sequence psηnqnPN˚ is
tight in Dpr0, T s,Hq. Therefore, by Prokhorov’s theorem, it is relatively compact and then
we can extract, from psηnqnPN˚ , a subsequence that converges weakly to a limit psηtqtPr0,T s “
pηt, RtqtPr0,T s P Dpr0, T s,Hq. We want to prove, in this step, that this limit is unique and
defined by (5). Then, the theorem will follow (see for example (Billingsley, 1968, Corollary
p.59)). For a better simplicity in the notations, we assume, without loss of generality that
the entire sequence psηnqnPN˚ converges towards the limit sη “ pη,Rq.

Lemma 2.5 (Convergence of the martingale part). The sequence of martingale pro-
cesses pMnqn converges in distribution in Dpr0, T s,W ˚

3 q towards a process G with values in
Cpr0, T s, C0,˚pr0,M sqq Ă Dpr0, T s,W ˚

3 q, where C0,˚pr0,M sq is the dual of C0pr0,M sq. For
any f P C0pr0,M sq, the process G pfq is a continuous centred Gaussian martingale with
values in R with quadratic variation defined by (6).

Proof. Let f P C0pr0,M sq and xG pfqyt be the quadratic variation defined by (6), then by
(20),

|xMn pfqyt ´ xG pfqyt|

ď

ż t

0

ż

r0,Ms

„

bpSnu , xq

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqs2 Qpdαq `Dfpxq2



ˆ |sνnu pdxq ´ ξupdxq|du

`

ż t

0

ż

r0,Ms
|bpSnu , xq ´ bpSu, xq|

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqs2 Qpdαq ξupdxq du

ď p9sb`Dq }f}28

ż t

0

ż

r0,Ms
|sνnu pdxq ´ ξupdxq|du` 9Kgb }f}

2
8C

ξ
T

ż t

0
|Snu ´ Su| du

with CξT defined by (23). Therefore, by (2) and the dominated convergence theorem,
xMn pfqy converges in distribution towards xG pfqy.

Moreover, a discontinuity of t ÞÑ νt only happens during a birth or death event and the
jump of the population number is ˘1. Then from (1) and (16), for any f P C0pr0,M sq,

|∆Znt pfq| ď
}f}8
n . Therefore, from (19)

sup
tPr0,T s

|∆Mn
t pfq | ď

}f}8
?
n
, (24)

and then suptPr0,T s |∆M
n
t pfq | converges in probability towards 0. Hence, according to

(Jacod and Shiryaev, 2003, Theorem 3.11 page 473), for each f , the sequence of processes
ppMn

t pfqqtPr0,T sqnPN˚ converges to pGt pfqqtPr0,T s. To have an (infinite dimensional) con-
vergence of the sequence of (operator valued) processes ppMn

t qtPr0,T sqnPN˚ , it then suffices
to prove its tightness in Dpr0, T s,W ˚

3 q. To do it, it enough to use (22) and arguments of
the step 1. �
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Lemma 2.6 (Limit equation for pRtq). The limit process pRtqtPr0,T s satisfies

Rt “ ´

ż t

0

„

DRu `
k

V
ηu pgpSu, .qq `Ru

k

V
ξu pBsgpSu, .qq



du .

Proof. By definition, pRtqtPr0,T s is a limit point of the sequence of processes ppRnt qtPr0,T sqn,
then by (18), we have the following limit in distribution : for any t P r0, T s,

Rt “ ´ lim
nÑ8

ż t

0

„

DRnu `
k

V
ηnu pgpS

n
u , .qq `

?
n
k

V
ξu pgpS

n
u , .q ´ gpSu, .qq



du . (25)

By definition of sη “ pη,Rq as a limit of psηnqn and as the function s ÞÑ gps, .q is contin-
uous, from Lemma 2.4, DRnu `

k
V η

n
u pgpS

n
u , .qq converges in distribution towards DRu `

k
V ηu pgpSu, .qq. Moreover, for any x P r0,M s, by definition of Rnu (see (4)),

?
n pgpSnu , xq ´ gpSu, xqq “

?
n

ˆ

g

ˆ

Su `
1
?
n
Rnu, x

˙

´ gpSu, xq

˙

“

ż 1

0
Bsg

ˆ

Su `
α
?
n
Rnu, x

˙

Rnu dα .

Therefore, by Assumption 1.1

ˇ

ˇ

?
n pgpSnu , .q ´ gpSu, .qq ´Ru BsgpSu, .q

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

BsgpSu, .qpR
n
u ´Ruq `R

n
u

ż 1

0

„

Bsg

ˆ

Su `
α
?
n
Rnu, .

˙

´ BsgpSu, .q



dα

ˇ

ˇ

ˇ

ˇ

ď |BsgpSu, .qpR
n
u ´Ruq| `

Kgb

2
?
n
pRnuq

2

which converges towards 0, in distribution, by Lemma 2.4. Hence, from Lemma 2.4 again
and the dominated convergence theorem in (25), the conclusion follows. �

Lemma 2.7 (Semi-martingale decomposition). The process pMtqtPr0,T s defined for any
f PW3 by

Mt pfq “ ηt pfq ´ η0 pfq ´

ż t

0

ż

r0,Ms

„

bpSu, xq

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqsQpdαq

´Dfpxq ` gpSu, xq f
1pxq



ηupdxqdu

´

ż t

0
Ru

ż

r0,Ms

„

BsbpSu, xq

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqsQpdαq

` BsgpSu, xq f
1pxq



ξupdxqdu (26)

has the same law as the process G defined in Lemma 2.5.
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Proof. We define, for any ζ P Dpr0, T s,W ˚
3 q, f PW3, t P r0, T s,

Ψf
t pζq “ ζt pfq ´ ζ0 pfq ´

ż t

0

ż

r0,Ms

„

bpSu, xq

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqsQpdαq

´Dfpxq ` gpSu, xq f
1pxq



ζupdxqdu

´

ż t

0
Rζu

ż

r0,Ms

„

BsbpSu, xq

ż 1

0
rfpαxq ` fpp1´ αqxq ´ fpxqsQpdαq

` BsgpSu, xq f
1pxq



ξupdxqdu (27)

where

Rζt “

ż t

0

„

´DRζu ´
k

V
ζu pgpSu, .qq ´R

ζ
u

k

V
ξu pBsgpSu, .qq



du . (28)

Following, for example, the approach of (Campillo and Fritsch, 2014, Lemma 5.8),

we can prove that ζ ÞÑ Ψf
t pζq is continuous from Dpr0, T s,W ˚

3 q to R in any point ζ P
Cpr0, T s,W ˚

3 q. Indeed, using some rough bounds, we have the existence of a constant
C ą 0, such that

|Ψf
t pζq ´Ψf

t p
rζq| ď C sup

sPr0,T s

›

›

›
ζs ´ rζs

›

›

›

W˚
3

and on continuous points, the Skorohod topology coincides with the uniform topology.
However, as for (24),

|ηnt pfq ´ η
n
t´ pfq | ď

}f}8?
n

therefore, η is a continuous process and then limnÑ8Ψf
t pη

nq “ Ψf
t pηq in distribution. By

Lemma 2.5, it is sufficient to prove the proposition that pΨf
t pη

nqqt and Mn
t pfq converge

in distribution towards the same limit.
As ηnt pfq “ Ant pfq `M

n
t pfq, by (17) and (27),

Ψf
t pη

nq ´Mn
t pfq “ Bn

t pfq ` C
n
t pfq

with

Bn
t pfq “

ż t

0
ξu

`“?
n pgpSnu , .q ´ gpSu, .qq ´R

ηn

u BsgpSu, .q
‰

f 1
˘

du

`

ż t

0

ż

r0,Ms

“?
n pbpSnu , xq ´ bpSu, xqq ´R

ηn

u BsbpSu, xq
‰

ż 1

0

”

fpαxq ` fpp1´ αqxq ´ fpxq
ı

Qpdαq ξupdxq du

and

Cnt pfq “

ż t

0

„

ηnu
`

pgpSnu , .q ´ gpSu, .qq f
1
˘

`

ż

r0,Ms
pbpSnu , xq ´ bpSu, xqq

ż 1

0

“

fpαxq ` fpp1´ αqxq ´ fpxq
‰

Qpdαq ηnupdxq



du .
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By the same approach using in the proof of Lemma 2.6, we get
ˇ

ˇ

?
n pgpSnu , .q ´ gpSu, .qq ´R

ηn

u BsgpSu, .q
ˇ

ˇ ď
ˇ

ˇBsgpSu, .qpR
n
u ´R

ηn

u q
ˇ

ˇ`
Kgb

2
?
n
pRnuq

2 (29)

and
ˇ

ˇ

?
n pbpSnu , xq ´ bpSu, xqq ´R

ηn

u BsbpSu, xq
ˇ

ˇ ď
ˇ

ˇBsbpSu, xqpR
n
u ´R

ηn

u q
ˇ

ˇ`
Kgb

2
?
n
pRnuq

2 .

Hence,

sup
tďT

|Bn
t pfq| ď p

›

›f 1
›

›

8
}Bsg}8 ` 3 }f}8 }Bsb}8qC

ξ
T T sup

tďT
|Rnt ´R

ηn

t |

` p
›

›f 1
›

›

8
` 3 }f}8qKgb

CξT T

2
?
n

sup
tďT
pRnt q

2,

where CξT was defined in (23). From Lemma 2.4, the second term converges towards 0 in
probability. By (18), (28) and (29)

|Rnt ´R
ηn

t | ď

ˆ

D `
k

V
}Bsg}8 CξT

˙
ż t

0
|Rnu ´R

ηn

u | `Kgb
k

V

ż t

0
|Snu ´ Su| η

n
u p1q du

`
k

V

Kgb

2
?
n
T CξT sup

tďT
|Rnt |

2 .

From Lemma 2.4 and by the Gronwall lemma, we deduce that pRnt ´R
ηn

t qtďT converges
uniformly towards 0 in probability and then that pBn

t pfqqtďT converges uniformly towards
0 in probability. Furthermore,

sup
tďT

|Cnt pfq| ď p
›

›f 1
›

›

8
` 3 }f}8q

Kgb T

C 11
sup
tďT

}ηnt }W˚
2

sup
tďT

|Snt ´ St|

where C 11 was defined in (14). The sequence Sn converges in distribution towards S then
by Lemma 2.4, we deduce that suptďT |C

n
t pfq| converges in probability towards 0. Finally,

pΨf
t pη

nqqt and Mn
t pfq have the same limit G pfq in distribution. �

To conclude the proof of Theorem 1.2, it rests to prove the uniqueness of the solution
of (26) but it can be easily proved via the classic argument involving Gronwall lemma.

2.5. Proof of Theorem 1.3. The proof is quite similar to the proof of Theorem 1.2 so
we do not relate all details.

Firstly, similarly to Lemma 2.4, we can use Lemma 2.3 (with f ” 1), Doob’s inequality,
Gronwall lemma and some rough bounds to show that

sup
ně1

E
ˆ

sup
tďT

|Nn
t |

2 ` |Snt |
2 ` |Qnt |

2 ` |Rnt |
2

˙

ă `8 . (30)

Indeed, note that one can bound µpSns q by sµ “ max0ďsďsin_S0 µpsq for every s ě 0, because
Sn remains in r0, sin _ S0s; see for instance (Collet et al., 2013a, Proposition 2.1).

Using Equation (30) and Markov inequality, we obtain, as in the proof of Theorem
1.2 that pNn, Sn, Qn, Rnqně1 satisfies the Aldous Robolledo criterion (Joffe and Métivier,
1986, Corollary 2.3.3.) and then that pNn, Sn, Qn, Rnqně1 is tight in Dpr0, T s,R`ˆr0, sin_
S0s ˆ R2q.
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It remains to show the uniqueness of the limit point. Using Lemma 2.3, we can see
that each limit point of the sequence pNn, Snq is solution to the classic chemostat ODE
(i.e. the two first equations of (8)) and then by uniqueness of the solution, it converges
to pN,Sq. Let now study a limit of a convergent subsequence of pQn, Rnqn. Following the
way of Lemma 2.5 with f ” 1, we obtain that suptPr0,T s |∆M

n
t p1q | ď

1?
n
. Moreover, we

have the following convergence in distribution,

lim
nÑ8

xMn p1qytPr0,T s “

ˆ
ż t

0
pµpSuq `DqNu du

˙

tPr0,T s

.

Then, by (Jacod and Shiryaev, 2003, Theorem 3.11 page 473), we deduce the convergence,

in distribution, of ppMn
t p1qqtPr0,T sqně1 towards p

şt
0

a

pµpSuq `DqNu dBuqtPr0,T s. The end
of the proof is then as in the proof of Theorem 1.2.

Remark 2.8 (Infinite dimensional case when M “ 8). According to the proof of Theorem
1.3, we see that to obtain the convergence from finite M to infinite M (i.e. non compact
support for the mass) for the finite-dimensional process then it is enough to prove that the
uniform bound of Lemma 2.4 remains valid (that is equation 30).

The situation is more tricky in infinite dimension. Indeed, firstly, we crucially need the
convergence of sνn to ξ in the space of positive measure embedded with the weak topology in
the proof of Theorem 1.2. In Campillo and Fritsch (2014), it is proved that the convergence
in the space of positive measure embedded with the vague topology. Although vague and
weak topology coincides on compact space, it is not right anymore in non-compact set.
Extending the convergence to the weak topology is not trivial; see for instance Cloez (2011);
Méléard and Tran (2012). Also, note that Inequalities (14) are also no longer valid in
infinite dimension.

3. The Crump-Young model

In this section, we propose an application of the previously demonstrated central limit
theorem (Theorem 1.3) to understand the Crump-Young model. In particular, Section
3.1 contains the proof of Theorem 1.4, which gives an approximation of the long-time
behavior of the Crump-Young model (see (13)). The process pSnt , N

n
t qtě0 satisfies the

Markov property and is generated by he following infinitesimal generator

Lfps, `q “
„

Dpsin ´ sq ´
km

nV
µpsq



Bsfps, `q ` µpsq ` pfps, `` 1q ´ fps, `qq

`D ` pfps, `´ 1q ´ fps, `qq ,

for all ` ě 0, s ě 0 and smooth f . This model is a particular case of the general model
of Campillo and Fritsch (2014), where we suppose that division rate and the growth rate
(per capita) do not depend on the mass of the bacteria. This is a rough assumption
which enables us to considerably weaken the dimension of the problem (from an infinite
dimension to two dimensions). Our main result implies that it can be approximated by
(9) and this diffusion process will be the main object of interest. Note that, although the
function µ, we introduce a parameter m which can be understood as the mean size of
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one bacterium induced by the mass-structured model. Indeed, if we consider the integro-
differential equation (3) with parameters given by (7) and we set

@t ě 0, Nt “

ż

r0,Ms
ξtpdxq, Yt “

ż

r0,Ms
x ξtpdxq,

where Nt represents the number of individuals at time t and Yt the biomass. As pointed
out by (Campillo and Fritsch, 2014, Section 5.4), one can prove that these two quantities
can be described as solution to the classic chemostat equations. Moreover

d

dt

Yt
Nt
“ µpStq

ˆ

m´
Yt
Nt

˙

,

and then Yt
Nt

converges to m when t tends to infinity. Before to study rigorously the

behavior of the system (8), let us end this section by a remark on the modelling.

Remark 3.1 (Reinforced process for indirect interactions). Consider the system (8), with
starting points N0 “ N˚, S0 “ S˚, R0 “ 0, Q0 P R, where pN˚, S˚q ‰ p0, sinq is some
equilibrium of the two first equations. As µpS˚q “ D, the system then reduces to

#

dQt “ µ1pS˚qRtN
˚ dt`

?
2DN˚ dBt,

dRt “ ´
“

DRt `
k
V µpS

˚qmQt `
k
V Rt µ

1pS˚qmN˚
‰

dt.

In particular the second equation became a simple linear (ordinary) differential equation
and then by the variation of constants method, we have

Rt “ ´
k

V
mµpS˚q

ż t

0
e´pD`

k
V
mµ1pS˚qN˚q pt´sqQs ds.

Hence

dQt “ ´µ
1pS˚qN˚

k

V
mµpS˚q

ż t

0
e´pD`

k
V
mµ1pS˚qN˚q pt´sqQs ds dt`

?
2DN˚ dBt .

The solution of this equation then represents the evolution of the population around an
equilibrium under an indirect competition (presence of substrate). This process belongs to
the large class of self-interacting diffusions; see Gadat and Panloup (2014); Gadat et al.
(2015) and reference therein. These processes are not Markov and if, more generally,

dQt “ ´

ż t

0
κpt´ sqQs ds dt`

?
2DN˚ dBt ,

for some function κ, then κ represents the memory of the substrate consumption. In a
different context than the chemostat, one can imagine a different function κ to model an
indirect interaction which can influence the size of the population.

3.1. Proof of theorem 1.4. In this section, we study the solution of the system of
equations (8) under the assumptions of Theorem 1.4.

Firstly, let us see that the two first equations of (8) forms an homogeneous system of
ODE. It is the classic chemostat equations; see Smith and Waltman (1995). In particular,
as the specific growth rate µ is supposed to be increasing, the couple pNt, Stqtě0 admits
only two equilibria that are p0, sinq, which is usually called the washout and corresponds
to the extinction of the population, and another pN˚, S˚q corresponding to the unique
solution of

µpS˚q “ D and N˚ “
V

km
psin ´ S

˚q.
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Moreover, we have

d

ˆ

St `
mk

V
Nt

˙

“ D

ˆ

sin ´

ˆ

St `
mk

V
Nt

˙˙

dt,

and then

lim
tÑ8

St `
mk

V
Nt “ sin.

Also a calculus of the Jacobian at these two points shows that pN˚, S˚q is stable while
p0, sinq is unstable. As a consequence, the Poincaré-Bendixson theorem (see for instance
(Smith and Waltman, 1995, Page 9)) entails that, whatever the initial condition pN0, S0q P
R˚` ˆ R`,

lim
tÑ8

pNt, Stq “ pN
˚, S˚q.

Now, let us study the dynamics of pQt, Rtqtě0. We set Zt “ pQt, Rtq
T , then

dZt “ At Zt dt` Ct dBt, (31)

where

At “

ˆ

µpStq ´D µ1pStqNt

´ k
V µpStqm ´pD ` k

V µ
1pStqNtmq

˙

, Ct “

ˆa

pµpStq `DqNt

0

˙

.

In particular, one can think pNt, St, Qt, Rtqtě0 as an homogeneous-time Markov process
or only pQt, Rtqtě0 as an inhomogeneous one. Equation (31) is now linear, and classically

we set rZt “ e´
şt
0 As ds Zt, to obtain d rZt “ e´

şt
0 As dsCt dBt and

Zt “ e
şt
0 As ds Z0 `

ż t

0
e
şt
s Au duCs dBs . (32)

Therefore, for all t ě 0, the law of Zt is a Gaussian distribution of mean e
şt
0 As ds EpZ0q

and variance matrix Σt given by

Σt :“

ż t

0
e
şt
s Au duCsC

T
s e

şt
s A

T
u du ds.

To prove the convergence in law of Zt to a Gaussian variable, it is then enough to study
the convergence of its mean and its variance. Note that the eigenvalues of As are

λ1s “ µpSsq ´D ´
k

V
mµ1pSsqNs, λ2s “ ´D,

which are (at least for large s because pNs, Ssq Ñ pN˚, S˚q) negative because µpS˚q “ D
and µ1 ą 0. Nevertheless, it does not directly imply the convergence of the mean; see for
instance (Amato, 2006, Example 2.2). However, we have

A8 :“ lim
tÑ8

At “

ˆ

0 µ1pS˚qN˚

´ k
V µpS

˚qm ´pD ` k
V µ

1pS˚qN˚mq

˙

,

whose eigenvalues are λ` “ ´
k
V mµ1pS˚qN˚ and λ´ “ ´D, and then , by a Cesàro-type

theorem, (Amato, 2006, Theorem 2.9), we have

lim
tÑ8

e
şt
0 As ds “ 0.
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We have then obtained the convergence of the mean, it rests to prove the convergence of
the variance matrix to

Σ8 “

ż 8

0
eA8 uC8C

T
8 e

AT8 u du,

where

C8 :“

ˆ?
2DN˚

0

˙

“ lim
tÑ8

Ct .

Again by (Amato, 2006, Theorem 2.9), there exists C,α ą 0 such that

@t ě 0,
›

›

›
e
şt
0 As ds

›

›

›
`

›

›

›
e
şt
0 A8 ds

›

›

›
ď Ce´αt ,

where }.} is the standard matrix norm. Hence, there exists a constant K such that for
any τ and t ě τ ,

}Σt ´ Σ8} “

›

›

›

›

ż t

0
e
şt
t´s Au duCt´sC

T
t´s e

şt
t´s A

T
u du ds´

ż 8

0
eA8 sC8C

T
8 e

AT8 s ds

›

›

›

›

ď

ż τ

0

›

›

›
e
şt
t´s Au duCt´sC

T
t´s e

şt
t´s A

T
u du

´ eA8 sC8C
T
8 e

´A8 s
›

›

›
ds

`

ż 8

τ

›

›

›
e
şt
t´s Au duCt´sC

T
t´s e

şt
t´s A

T
u du

›

›

›
ds

`

ż 8

τ

›

›

›
eA8 sC8C

T
8 e

AT8 s
›

›

›
ds

ď

ż τ

0

›

›

›
e
şt
t´s Au duCt´sC

T
t´s e

şt
t´s A

T
u du

´ eA8 sC8C
T
8 e

AT8 s
›

›

›
ds

`Ke´2α τ .

The introduction of variable τ allows us to obtain an integral whose the integration interval
does not depend on t. As the second term of the last member is negligible for large τ , by
dominated convergence, it then remains to prove that the last integrand vanishes when tÑ
8. This is a direct application of the convergences of pAtqtě0, pCtqtě0 and the continuity of

the various applications (exponential, product...). Also note that
şt
t´sAudu “

şs
0At´udu.

This concludes the proof of the convergence of pΣtqtě0 and then of the convergence of
pNt, St, Qt, Rtqtě0. Let us finally express the calculus of Σ8. We have

eA8 s “
1

pD ´ Lq

ˆ

pDe´Ls ´ Le´D sq µ1pS˚qN˚ pe´Ls ´ e´D sq
k
V mD pe´D s ´ e´Lsq De´D s ´ Le´Ls

˙

where L “ k
V mµ1pS˚qN˚ “ psin ´ S

˚qµ1pS˚q, and then

eA8 sC8C
T
8 e

AT8 s “
2DN˚

pD ´ Lq2
ˆ

˜

pD e´Ls ´ Le´D sq2 k
V mD pDe´Ls ´ Le´D sqpe´D s ´ e´Lsq

k
V mD pDe´Ls ´ Le´D sqpe´D s ´ e´Lsq

`

k
V mD

˘2
pe´D s ´ e´Lsq2

¸

.

As a consequence, the term
ş8

0 eA8 sC8C
T
8 e

AT8 sds is equal to

2DN˚

pD ´ Lq2
ˆ

˜

D2

2L `
L2

2D ´
2DL
D`L

k
V mD

“

1´ D
2L ´

L
2D

‰

k
V mD

“

1´ D
2L ´

L
2D

‰

p kV mDq2
”

1
2D `

1
2L ´

2
D`L

ı

¸

.
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Finally

Σ8 “
DN˚

L
ˆ

˜

L2`3LD`D2

D pD`Lq ´ k
V m

´ k
V m p kV mq

2 D
pD`Lq

¸

“

¨

˝

p kV mµ1pS˚qN˚` 3
2
Dq

2
´ 5

4
D2

k
V
mµ1pS˚q pD` k

V
mµ1pS˚qN˚q

´ D
µ1pS˚q

´ D
µ1pS˚q

k
V m

D2

µ1pS˚q pD` k
V
mµ1pS˚qN˚q

˛

‚.

Remark 3.2 (Rate of convergence). Due to the simple form of (31), one can give some
estimates on the rate of convergence. Let W2 be the (second order) Wasserstein distance,
defined for any probability measure µ, ν by

W2pµ, νq “ inf Er}X ´ Y }22s1{2,

where } ¨ }2 is the classic euclidean norm in R2, and the infimum runs over all random
vectors pX,Y q with X „ µ and Y „ ν. Using (Givens and Shortt, 1984, Proposition 7),
we find, for any t ě 0,

W2 pLpZtq,N p0,Σ8qq “
›

›

›
e
şt
0 Asds

›

›

›

2

2
` Tr

´

Σt ` Σ8 ´ 2 Σ
1{2
t Σ8Σ

1{2
t

¯

,

where Tr is the classic trace operator. The decay of the right-hand side depends on the
rate of convergence of the two-component ODE towards pN˚, S˚q. However, even if we
assume that pN0, S0q “ pN˚, S˚q, one can not simplify this expression because, even in

this case, Σt “
şt
0 e

A8 sC8C
T
8 e

AT8 sds does not necessary commute with Σ8. The bound
of (Givens and Shortt, 1984, Proposition 7) also induces a bound in Wasserstein distance
for the four-component process pSt, Nt, Qt, Rtqtě0. This is not trivial because it is not the
case, for example, in total variation in contrast to pZtqtě0.

Remark 3.3 (An example of non-increasing growth rate). Let us consider the following
growth rate:

µ : s ÞÑ
µmax s

K ` s` s2{C
,

where µmax,K,C are some positive constants. This rate is often called Haldane kinetics in
the literature and can sometimes be more realistic in application; see for instance Mailleret
et al. (2004). We assume that D ą µpsinq and supsPr0,sins µpsq ą D.

In this case there are two solutions of

µpSq “ D , N “
V

km
psin ´ Sq ,

(see Figure 1). Let us denote by p0, sinq, pN
˚, S˚q, pNue, Sueq the tree equilibria for

pNt, Stqtě0, with µ1pS˚q ą 0 and µ1pSueq ă 0. The study of the Jacobian matrix and
the Poincaré-Bendixson theorem implies here that, if the ODE system does not start from
the unstable equilibrium pNue, Sueq then it necessary converges to one of the two stable
equilibria pN˚, S˚q or p0, sinq, depending on the initial condition. As a consequence, the
set of invariant distributions of the process pNt, St, Qt, Rtqtě0 is the convex hull of the
Gaussian distributions (10) (with the stable equilibrium pN˚, S˚q for the Haldane growth)
and δp0,sin,0,0q. Indeed, for the stable equilibrium p0, sinq, the matrix A8 is zero as well as
the vector C8 (when we replace pN˚, S˚q by p0, sinq) while Σt explodes for pNue, Sueq be-
cause A8 admits as positive eigenvalue ´ k

V mµ
1pSueqNue (again when we replace pN˚, S˚q
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0 S ∗ Sue

S

µ
(S

)

y=D

Figure 1. Equilibria of the substrate concentration with respect to the
Haldane specific growth rate.

Population size Small Medium Large
15 Crump-young runs 3.197 578.235 4797.546

15 runs of the SDE 4.631 4.573 4.272

Table 1. Simulation times, in seconds, of the simulations of Figure 2 (15
runs of the Crump-young model and the SDE in small, medium and large
population sizes). Simulations was made thanks to a laptop computer with
2.5 GHz processor and 4 Go memory.

by pNue, Sueq). Also, mimicking the previous proof gives the convergence to one of them
according to the starting distribution.

3.2. Numerical simulations and discussion. We use a Gillespie algorithm for the
simulation of the Crump-Young model (C-Y) (see Algorithm 1 of Fritsch et al. (2015))
and an Euler method for the simulation of the stochastic differential equations (SDE)
(9). The system of ordinary differential equations (ODE) (two first equations of (8)) is
performed by the odeint function of the scipy.integrate module of Python.

In general, a chemostat is described by the substrate and the biomass concentrations
rather than the substrate concentration and the number of individuals. The biomass
concentration is obtained multiplying the number of individuals by m

V , therefore, the
graphs are the same up to the multiplicative constant m

V .

3.2.1. Monod growth. We use the Monod growth parameters of the Escherichia coli bac-
teria in glucose with a temperature equals to 30 degrees Celsius (Monod, 1942), i.e.

µpSq “ 1.35
S

0.004` S
, k “ 0.23 ,

and with m “ 7 .10´13 g, D “ 0.5 h´1, S0 “ sin “ 0.003 g.l´1

The convergence, in large population size, of the Crump-Young model towards the SDE
(9) is illustrated in Figure 2. In small population size, the behavior of the Crump-Young
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Figure 2. Time evolution of the number of individuals (top) and the
substrate concentration (bottom) for small, medium and large population
sizes for the Monod growth model. The magenta lines are simulations of 15
independant runs of the Crump-Young model, the blue lines are simulations
of 15 independant runs of the system of stochastic differential equations (9)
and the large red line is the simulation of the system of ordinary differential
equations given by the two first equations of (8).

model is different from the one of the SDE. In particular, contrary to the Crump-Young
model, the SDE can not depict the population extinction. Moreover, in small population
size, we observe that the number of individuals can be negative for the SDE, therefore
this model is not satisfactory in this situation. Also note that the Crump-Young model
is a jump model, whereas the SDE is a continuous model. However, in large population
size, the jumps of the number of individuals (˘1) in the Crump-Young model become
neglectable with respect to the population size, then this model can be approximated by
a continuous one. According to Figure 2, the SDE seems to be a good approximation of
the Crump-Young model from medium population size. Moreover it is much more faster
to compute that the Crump-Young model (see Table 1). In very large population, both
models converge to the deterministic system of ODE, given by the two first equations of
(8), then the ODE model is sufficient to describe the behavior of the chemostat in this
context.

Figure 31 compares the estimated quasi-stationnary distribution of the Crump-Young
model to the invariant mesure of the SDE given in Theorem 1.4 for the three population

1The simulations of the 1000 runs in large population size was made on the babycluster of the Institut Élie
Cartan de Lorraine : http://babycluster.iecl.univ-lorraine.fr/

http://babycluster.iecl.univ-lorraine.fr/
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Figure 3. Distribution of the number of individuals and the substrate
concentration, at time T “ 1000 h, for small (top left), medium (top right)
and large (bottom) population sizes for the Monod growth model. For each
population size, the blue crosses represent the states of 1000 independant
runs of the Crump-Young model. The green dashed ellipse is the 95% con-
fidence ellipse of a bidimensional normal variable where the mean and the
covariance matrix are estimated on the 1000 Crump-Young model simula-
tions (the sample correlation between the substrate concentration and the
number of individuals is indicated under each graph). The red ellipse is the
95% confidence ellipse of a normal variable with law (13) (the theoretical

correlation equals ´ µpS˚q
µ1pS˚q

?
αβ
“ ´0.942470). On the top (resp. right) of

each graph, the blue histogram represents the empirical distribution of the
number of individuals (resp. the substrate concentration) of the Crump-
Young model, the dashed green line is this distribution regularized with a
gaussian kernel and the red curve represents the probability density func-
tion of the gaussian law N pN˚, αq (resp. N pS˚, βq), with α defined by
(11) (resp. β defined by (12)), where pN˚, S˚q is the non-trivial (‰ p0, sinq)
equilibrium of the ODE system (see (13)).
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sizes of Figure 2. In small population size, we observe that the two laws are different.
The main reason is due to the large probability of extinction of the Crump-Young model.
Indeed, on the 1000 non-extinct populations, many are close to the extinction p0, sinq,
whereas the invariant measure predicts a convergence in a neighbourhood of the non-
trivial stationnary state pN˚, S˚q ‰ p0, sinq. However, in medium and large population
sizes, the invariant mesure (13) is a very good approximation of the quasi-stationnary
distribution of the Crump-Young model.

3.2.2. Haldane growth. We now use the following Haldane growth function:

µpSq “ 1.35
S

0.004` S ` S2{0.04
,

and k “ 0.23, m “ 7 .10´13 g, D “ 0.5 h´1, sin “ 0.0978 g.l´1.
The behavior of the chemostat, for Haldane growth, really depends on the initial con-

dition. Indeed, there is, for the ODE, two basins of attraction which are associated to the
two stable equilibria p0, sinq and pN˚, S˚q (see Figure 1), contrary to Monod growth for
which there is only one stable equilibrium (the washout is an unstable equilibrium).

If the initial condition is close to the boundary of the two basins of attraction, the ODE
remains in its initial basin and converges to its attractor whereas, due to the randomness,
the Crump-Young model can change basin of attraction. The SDE (9) is very depending
on the ODE solution and will converge to the invariant mesure of the basin of attraction
associated to the initial condition. Therefore, the SDE (9) is not representative of the
two possible convergences for one given initial condition. The SDE (9) is in fact a good
approximation of the Crump-Young model when the population size is sufficiently large
(which depends on the distance between the initial condition and the boundary of the two
basins of attraction) to ensure that the Crump-Young model does not change (with a large
probability) basin of attraction (see Figure 4). Even if the approximation only holds for
large population, in Figure 4 (right), both models converge to the population extinction
(even if the SDE is not absorbed, it converges to 0).

However, if the object of interest is the convergence towards p0, sinq or pN˚, S˚q for one
given initial condition (close to the boundary of basins of attraction) then we must either
use the Crump-Young model (if the simulation time is reasonable) or use a model which
keep more qualitative properties than the SDE (9).

In fact, Theorem 1.3 suggests that, for n sufficiently large, the Crump-Young model can

be approximated by pNn
t , S

n
t q « p

rNn
t ,

rSnt q with

rNn
t :“ nNt `

?
n rQt ` F

n
t s ,

rSnt :“ St `
1
?
n
rRt `H

n
t s ,

where pFnqn and pHnqn are two sequences of processes which converge in distribution
towards the process 0 in Dpr0, T s,R`q. The SDE (9) is obtained by letting Fn “ Hn “ 0.
Let now consider pFnqn and pHnqn be defined by

dFnt “

„

?
n pµpSnt q ´ µpStqq

Nn
t

n
´ µ1pStqRtNt



dt

`

«

c

pµpSnt q `Dq
Nn
t

n
´
a

pµpStq `DqNt

ff

dBt
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Figure 4. Time evolution of the number of individuals for the Haldane
growth model for 20 independant runs of the Crump-Young model (ma-
genta lines), 20 independant runs of the SDE (9) (blue lines) and the ODE
(red curve) for initial conditions N0 “ 1000, S0 “ 0.08 g.l´1 (left) and
N0 “ 3000, S0 “ 0.04 g.l´1 (right).

and

dHn
t “

k

V
m

„

µpStq pQt ´Q
n
t q `Rt µ

1pStqNt ´
?
n pµpSnt q ´ µpStqq

Nn
t

n



dt ,

with initial condition Fn0 “ Hn
0 “ 0. Following, for example, the approach used in the

proof of Lemma 2.6, we can prove that pFnqn and pHnqn converge towards 0 in distribution.
We then (heuristically) obtain the following model of approximation :

$

&

%

d rNn
t “ pµprSnt q ´Dq

rNn
t dt`

b

pµprSnt q `Dq
rNn
t dBt ,

drSnt “

”

D psin ´ rSnt q ´
k
V n mµprSnt q

rNn
t

ı

dt .
(33)

This new approximation model can be seen as a particular case of the model of Campillo
et al. (2011); see (Campillo et al., 2011, Equations (17a) and (17b)) with K1 “ K4 “ 1
and K2 “ K3 “ K5 “ `8 (note that K2 “ K3 “ K5 “ `8 corresponds to a continuous
approximation of the substrate equation for a large number of substrate particles which
is an approximation that we made for all models in this article).

In contrast with (9), the variance of the population size rNn
t depends on itself. Moreover

this type of dependance is classic in population dynamics, see for instance Bansaye and
Méléard (2015).

Figure 5 represents the time evolution of the number of individuals for the four models
(ODE, Crump-young models, SDE (9) and SDE (33)) in three cases. Each column rep-
resents the same simulation with all or some represented curves (the first line allows to
compare the four models together, however we have split each graph in two graphs for the
sake of clarity). The first one (on the left) is for initial condition close to the unstable
equilibrium pNue, Sueq for which the solution of the ODE converges towards the washout
p0, sinq. Therefore the solutions of the SDE (9) also converge towards the washout. How-
ever the Crump-Young model changes basin of attraction with a large probability and
converges either to the washout or to a neighbourhood of the stable equilibrium pN˚, S˚q.



GAUSSIAN APPROXIMATIONS FOR CHEMOSTAT MODELS 27

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

C-Y

SDE (9)

SDE (33)

ODE

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

C-Y

SDE (9)

SDE (33)

ODE

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

C-Y

SDE (9)

SDE (33)

ODE

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

SDE (9)

ODE

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

SDE (9)

ODE

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

SDE (9)

ODE

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

C-Y

SDE (33)

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

C-Y

SDE (33)

0 10 20 30 40 50

time (h)

400

200

0

200

400

600

800

1000

1200

n
u
m

b
e
r 

o
f 

in
d
iv

id
u
a
ls

C-Y

SDE (33)

N0 “ 190, S0 “ 0.07 g.l´1 N0 “ 210, S0 “ 0.065 g.l´1 N0 “ Nue “ 200, S0 “ Sue “ 0.0656 g.l´1

V “ 10´9 l V “ 10´9 l V “ 10´9 l

Figure 5. Time evolution of the number of individuals for the Haldane
growth model for 20 independent runs of the Crump-Young model (ma-
genta lines), 20 independent runs of the SDE (33) (green lines), 20 inde-
pendent runs of the SDE (9) (blue lines) and the ODE (red curve) for
initial conditions N0 “ 190, S0 “ 0.07 g.l´1 (left), N0 “ 210, S0 “ 0.065
g.l´1 (middle) and N0 “ Nue, S0 “ Sue g.l´1 (right).

As we can observe, the solutions of the SDE (33) mimic the behavior of the Crump-Young
model and then the SDE (33) seems better than the SDE (9) in this context.

The second case (center) is for initial condition close to the unstable equilibrium pNue, Sueq
for which the solution of the ODE converges towards the stable equilibrium pN˚, S˚q. Once
again, the Crump-Young model and the diffusion process (33) depict two possible conver-
gences (towards the washout or the quasi-stationary distribution in the area of pN˚, S˚q)
while the diffusion process (9) follows the solution of the ODE. We see an explosion of the
noise for the blue curve. This comes from that for small time t, the matrix At has large
positive eigenvalue (due to the initial condition, recall that it tends to infinity when the
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initial condition is the unstable equilibrium) but, as in the Monod case, Σt converges to a
finite matrix.

For the last case (right), the initial condition equals the unstable equilibrium pNue, Sueq.
Therefore, the deterministic approximation stays at this equilibrium whereas the Crump-
Young model and the diffusion process (33) depict over again the two possible conver-
gences. We observe that the solutions of (9) diverge. In fact, we can write the SDE as in
(32), but, as µ1pSueq ă 0, the eigenvalue λ1s “ ´

k
V mµ1pSueqNue of As is positive which

implies the divergence of the SDE (9).
Even if the solutions of (33) seems, for some parameters, to be a more suitable ap-

proximation for the Crump-Young model, it is nevertheless more difficult to study it
mathematically. Indeed, as for the Crump-Young model, there is always extinction; see
Theorem 3.4. Also, even if this process is continuous and solution to a stochastic differ-
ential equation, it is not possible to deduce a result of uniqueness (or convergence) for a
quasi-stationary distribution because it is not reversible in contrast with the classic logistic
diffusion process; see Collet et al. (2013b). Also, in contrast with the solutions of (9), no
explicit formula is known for solutions of (33).

3.3. Extinction time of the diffusion process (33). In this section, we will consider

a solution p rNt, rStqtě0 of (33) for one fixed n. The notation Ppx,sq refers to the probability

given the initial condition is p rN0, rS0q “ px, sq and Epx,sq is the expectation associated to
this probability.

Theorem 3.4 (Extinction). Let p rNt, rStqtě0 be a solution of (33) and

T0 “ inftt ě 0 | rNt “ 0u.

Then Ppx,sqpT0 ă `8q “ 1 for any starting distribution px, sq P R2
`. Moreover, there exists

C,α ą 0 such that for all px, sq P R2
` and t ě 0,

Ppx,sqpT0 ą tq ď Ce´αtpx` s` 1q. (34)

Proof. First, we assume that for every compact set K Ă R2
`, there exist t0, δ ą 0 such

that

δ “ inf
px,sqPK

Ppx,sqpT0 ă t0q ą 0. (35)

Secondly, considering V0 : pN,Sq ÞÑ km
V nN ` S ´ sin and using (33), peDtV0p rNt, rStqqtě0

is a martingale; namely V0 is a Lyapunov-type function. From (35) and the Lyapunov
property, it is then classic to prove the statement of the Lemma. Indeed, shortly, the
Lyapunov property entails that, whatever the initial position is, the process goes rapidly
in a compact set and then, by (35), it will be absorbed after a geometric time. This
standard argument to prove geometric ergodicity of general Markov processes is given, for
instance, by Hairer and Mattingly (2011). Nevertheless we can not directly apply this

theorem because even if S̃t Ñ sin, it does not hit it, therefore we can not obtain the
convergence of S̃t to sin in total variation.

So let us prove that the Lyapunov property and (35) are sufficient to ensure (34). Let
us fix a compact set K Ă R2

` such that, for all x R K, V0pxq ě C0, for some C0 ą 0.
Moreover let us fix the associated t0 and δ as in (35).

We divide the proof in two steps.
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Step 1 : Bound on hitting time. Let τ be the hitting time of K. Using the stopping-time
theorem, for any n P N and px, sq R K, we have

Epx,sqreDτ^nV0p rNτ^n, rSτ^nqs “ V0px, sq.

Then

C0Epx,sqreDpτ^nqs ď V0px, sq.

Indeed, if p rN0, rS0q R K then p rNt, rStq R K for all t ď τ (by definition of τ). Using the
monotone convergence theorem, we have for every px, sq R K

Epx,sqreDτ s ď C´10 V0px, sq .

Moreover, if px, sq P K, then τ “ 0 hence Epx,sqreDτ s ď 1 therefore for any px, sq P R2
`

Epx,sqreDτ s ď C´10 V0px, sq `B (36)

with B “ C´10 sin ` 1 (because V0px, sq ` sin ě 0). Then the Markov inequality gives

Ppx,sqpτ ě tq “ Ppx,sqpeDτ ě eDtq ď e´DtEpx,sqreDτ s ď pC´10 V0px, sq `Bq e
´Dt . (37)

Step 2 : Bound on the extinction time. Let s0 “ 0 and for every ` ě 0,

τ``1 “ infts ě s` |p rNs, rSsq P Ku ´ s`

s``1 “ s` ` τ``1 ` t0.

Let θ P r0, 1s, by Hölder inequality, we have

Ppx,sqpT0 ą tq “ Ppx,sqp rNt ‰ 0q “
ÿ

`ě0

Ppx,sqp rNt ‰ 0, t P rs`, s``1qq

ď
ÿ

`ě0

Ppx,sqp rNs` ‰ 0, t P rs`, s``1qq

ď
ÿ

`ě0

Ppx,sqp rNs` ‰ 0qθPpx,sqpt P rs`, s``1qq1´θ.

On the first hand and if ` ě 1, by the strong Markov property, Equation (35) and an
induction argument, we have

Ppx,sqp rNs` ‰ 0q “ Epx,sq
”

1
rNs`´1`τ`

‰0
P
p rNs`´1`τ`

,rSs`´1`τ`
q
p rNt0 ‰ 0q

ı

ď p1´ δqPpx,sqp rNs`´1`τ` ‰ 0q ď p1´ δqPpx,sqp rNs`´1
‰ 0q

ď p1´ δq`.

On the other hand, by the Markov property, Equation (37), the martingale properties
(stopping time theorem on a truncated version of s` and Fatou Lemma) and noting that
τ “ τ1,

Ppx,sqpt P rs`, s``1qq ď Epx,sq
”

1těs`Pp rNs` ,rSs` qpτ ě t´ s` ´ t0 | s`q
ı

ď Epx,sq
”

1těs`pC
´1
0 V0p rNs` ,

rSs`q `Bqe
´Dpt´s`´t0q

ı

ď C´10 eDt0e´DtEpx,sq
”

V0p rNs` ,
rSs`qe

Ds`
ı

`Be´DteDt0Epx,sq
“

eDs`
‰

ď C´10 eDt0e´DtV0px, sq `Be
´DteDt0Epx,sq

“

eDs`
‰

.
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Moreover by (36), the Markov property, the martingale properties and an induction
argument

Epx,sq
“

eDs`
‰

“ eDt0Epx,sq
”

eDs`´1E
p rNs`´1

,rSs`´1
q

“

eDτ
‰

ı

ď eDt0Epx,sq
”

eDs`´1pC´10 V0p rNs`´1
, rSs`´1

q `Bq
ı

ď C´10 eDt0V0px, sq `Be
Dt0Epx,sq

“

eDs`´1
‰

ď
`

BeDt0
˘`
ˆ

1`
C´10 eDt0V0px, sq

BeDt0 ´ 1

˙

.

Finally, this gives the existence of a constant C1 ą 0 (which depends on t0 but not on
θ) such that

Ppx,sqpT0 ą tq ď C1e
´Dp1´θqtpC´10 V0px, sq `Bq

ÿ

`ě0

´

p1´ δqθpBeDt0q1´θ
¯`
.

Choosing θ sufficiently close to 1 to guarantee that p1´ δqθpBeDt0q1´θ ă 1 ends the proof
of (34) and then of the statement of the lemma.

It remains to prove (35) to end the proof. Let us introduce

Ψ : px, sq ÞÑ
2
?
x

a

µpsq `D
.

We now set Ut “ Ψp rNt, rStq for all t ě 0. This new process hits 0 at the same time T0 as

p rNtqě0 and, using Itô formula, it verifies

dUt “

„

pµprStq ´Dq rNtBxΨp rNt, rStq `
1

2
pµprStq `Dq rNtBxxΨp rNt, rStq

`

ˆ

D psin ´ rStq ´
k

V n
mµprStq rNt

˙

BsΨp rNt, rStq



dt

`

b

pµprStq `Dq rNtBxΨp rNt, rStqdBt

“

„

1

2
pµprStq ´DqUt ´

1

4Ut

´
Ut

2pµprStq `Dq
µ1prStqD psin ´ rStq `

U3
t

8
µ1prStq

k

V n
mµprStq

ff

dt

` dBt.

One can then bound the drift term with quantities not depending on the substrate rate

and use (Ikeda and Watanabe, 1981, Theorem 1.1 chapter VI) to see that Ut ď rZt for

every t ě 0, where p rZtqtě0 is the one-dimensional diffusion solution to

dZ̃t “ Cp rZ3
t ´

1

rZt
qdt` dBt

for some constant C ą 0. By the Feller’s test for explosions (see (Karatzas and Shreve,
1991, Chapter 5)), and a monotonicity argument, we deduce that, for all z0 ą 0, there
exists t0 ą 0 such that

inf
zďz0

Pp rT0 ă t0 | rZ0 “ zq ą 0, (38)
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where rT0 “ inftt ě 0 | rZt “ 0u. More precisely, let S “ inftt ě 0 | rZt R p0,`8qu be
the exit time from p0,`8q. The scale function p defined in (Karatzas and Shreve, 1991,
Equation (5.42)) is given by

p : x ÞÑ c

ż x

1
ybe´ay

4
dy,

for some a, b, c ą 0, and then limxÑ0` ppxq and limxÑ`8 ppxq are clearly finite. Moreover,
the function v (defined in (Karatzas and Shreve, 1991, Equation (5.65))) verifies

v : x ÞÑ

ż x

1
p1pyq

ż y

1

2dz

p1pzq
dy “ 2

ż x

1
ybe´ay

4

ż y

1
eaz

4
z´bdzdy.

Using standart results of asymptotic analysis, we have
ż y

1
eaz

4
z´bdz „`8 eay

4
y´b ˆ

1

4ay3
.

Then as
şx
1 y
´3dy ă `8, we have that limxÑ`8 vpxq is finite. Moreover, for x P p0, 1q, we

have

0 ă vpxq “

ż 1

x
ybe´ay

4

ż 1

y
eaz

4
z´bdzdy ď ea

ż 1

x
yb

ż 1

y
z´bdzdy ď

ea

|b´ 1|

then limxÑ0` vpxq is also finite (note that even if the case b “ 1 is not treated in the previ-
ous line, it works as well). As a consequence by (Karatzas and Shreve, 1991, Proposition
5.32 (i)), the stopping time S is finite (and even integrable) and by (Karatzas and Shreve,

1991, Proposition 5.22 (d)) PpS “ rT0 | rZ0 “ z0q ą 0, for every z0 ą 0. Consequently, for

every z0 ą 0, there exits t0 ą 0 such that Pp rT0 ă t0 | rZ0 “ z0q ą 0 and then using that
for all z ď z0,

Pp rT0 ă t0 | rZ0 “ zq ě Pp rT0 ă t0 | rZ0 “ z0q,

we have proved (38). Finally (35) is a direct consequence of (38). �

Remark 3.5 (Quasi-stationary distribution). Equation (34) is a necessary (but not suf-
ficient) condition to ensure existence of a quasi-stationary distribution; see for instance
Collet et al. (2013b).

Remark 3.6 (Extinction of the Crump-Young model). It is not difficult to see that (35)
and the Lyapunov property also hold for the Crump-Young model and then (34) also holds
for this process. In particular this gives a new proof of (Collet et al., 2013a, Theorem
3.1). Moreover, in contrast with (Collet et al., 2013a, Theorem 3.1), we obtain the speed
of extinction (34); furthermore we do not assume any monotonicity on µ.
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The authors thank Sylvie Méléard about some discussions on tightness on Hilbert
spaces.

This work was partially supported by the Chaire “Modélisation Mathématique et Bio-
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