
HAL Id: hal-01371530
https://hal.science/hal-01371530

Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Access Control Enforcement for Selective Disclosure of
Linked Data

Tarek Sayah, Emmanuel Coquery, Romuald Thion, Mohand-Saïd Hacid

To cite this version:
Tarek Sayah, Emmanuel Coquery, Romuald Thion, Mohand-Saïd Hacid. Access Control Enforce-
ment for Selective Disclosure of Linked Data. 12th International Workshop on Security and Trust
Management, Sep 2016, Heraklion, Greece. pp.47-63, �10.1007/978-3-319-46598-24�. �hal-01371530�

https://hal.science/hal-01371530
https://hal.archives-ouvertes.fr

Access Control Enforcement for Selective
Disclosure of Linked Data – Authors’ Version

Tarek Sayah, Emmanuel Coquery, Romuald Thion, and Mohand-Säıd Hacid

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205 F-69622, France

{tarek.sayah,emmanuel.coquery,

romuald.thion,mohand-said.hacid}@liris.cnrs.fr

Abstract. The Semantic Web technologies enable Web-scaled data link-
ing between large RDF repositories. However, it happens that organiza-
tions cannot publish their whole datasets but only some subsets of them,
due to ethical, legal or confidentiality considerations. Different user pro-
files may have access to different authorized subsets. In this case, selective
disclosure appears as a promising incentive for linked data. In this paper,
we show that modular, fine-grained and efficient selective disclosure can
be achieved on top of existing RDF stores. We use a data-annotation
approach to enforce access control policies. Our results are grounded on
previously established formal results proposed in [3]. We present an im-
plementation of our ideas and we show that our solution for selective
disclosure scales, is independent of the user query language, and incurs
reasonable overhead at runtime.

Keywords: RDF; Authorization; Enforcement; Linked Data

1 Introduction

The Linked Data movement [6] (aka Web of Data) is about using the Web to
create typed links between data from different sources. Technically, Linked Data
refers to a set of best practices for publishing and connecting structured data
on the Web in such a way that it is machine-readable, its meaning is explicitly
defined, it is linked to other external data sets, and can in turn be linked to
from external data sets [5]. Linking data distributed across the Web requires a
standard mechanism for specifying the existence and meaning of connections be-
tween items described in this data. This mechanism is provided by the Resource
Description Framework (RDF). Multiple datastores that belong to different the-
matic domains (government, publications, life sciences, etc) publish their RDF
data on the web1. The size of the Web of Data is estimated to about 85 bil-
lions of RDF triples (statements) from more than 3400 open data sets 2. One
of the challenges of the Linked Data is to encourage businesses and organiza-
tions worldwide to publish their RDF data into the linked data global space.

1 http://lod-cloud.net/
2 http://stats.lod2.eu

http://lod-cloud.net/
http://stats.lod2.eu

2 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

Indeed, the published data may be sensitive, and consequently, data providers
may avoid to release their sensitive information, unless they are certain that the
desired access rights of different accessing entities are enforced properly. Hence
the issue of securing RDF content and ensuring the selective exposure of infor-
mation to different classes of users is becoming all the more important. Several
works have been proposed for controlling access to RDF data. In [3], the au-
thors proposed a fine-grained access control model with a declarative language
for defining authorization policies (we call this model AC4RDF in the rest of this
paper).

Our enforcement framework allows to define multi-subject policies with a
global set of authorizations A. A subset As ⊆ A of authorizations is associated
to each subject S who executes a (SPARQL) query. The subject’s policy is then
enforced by AC4RDF which computes the positive subgraph of the authenticated
subject. We use an annotation based approach to enforce multi-subject policies:
the idea is to materialize every triple’s applicable authorizations of the global
policy, into a bitset which is used to annotate the triple. The base graph G is
materialized into a graph GA by annotating every triple t ∈ G with a bitset rep-
resenting its set of applicable authorizations ar(G,A)(t) ⊆ A. The subjects are
similarly assigned to a bitset which represents the set of authorizations assigned
to them. When a subject sends a query, the system evaluates it over the her/his
positive subgraph. In Section 3 we give an overview about RDF data model and
SPARQL query language. In Section 4 we give the semantics of AC4RDF model
which are defined using positive subgraph from the base graph. In Section 5 we
propose an enforcement approach of AC4RDF model in multiple-subject context.
We present and prove the correctness of our encoding approach. In Section 6 we
give details about the implementation and experimental results.

2 Related work

The enforcement techniques can be categorized into three approaches: pre-processing,
post-processing and annotation based.

– The pre-processing approaches enforce the policy before evaluating the query.
For instance, the query rewriting technique consists of reformulating the user
query using the access control policy. The new reformulated query is then
evaluated over the original data source returning the accessible data only.
This technique was used by Costabello et al. [7] and Abel et al. [1].

– In the post-processing approaches, the query is evaluated over the original
data source. The result of the query is then filtered using the access control
policy to return the accessible data. Reddivari et al. [16] use a post-processing
approach to enforce their models.

– In the annotation based approaches, every triple is annotated with the ac-
cess control information. During query evaluation, only the triples annotated
with a permit access are returned to the user. This technique is used by Pa-
pakonstantinou et al. [13], Jain et al. [11], Lopes et al. [12] and Flouris et
al. [8].

Title Suppressed Due to Excessive Length 3

The advantage of the pre-processing approaches such as query rewriting, is that
the policy enforcer is independent from RDF data. In other words, any updates
on data would not affect the policy enforcement. On the other hand, this tech-
nique fully depends on the the query language. Moreover, the query evaluation
time may depend on the policy. The experiments in [1] showed that the query
evaluation overhead grows when the number of authorization grows, in contrast
to our solution which does not depend on the number of authorizations. In the
post-processing approaches, the query response time may be considerably longer
since policies are enforced after all data (allowed and not allowed) have been
processed. The data-annotation approach gives a fast query answering, since the
triples are already annotated with the access information and only the triples
with a grant access can be used to answer the query. On the other hand, any
updates in the data would require the re-computation of annotations.

Some works [13] support incremental re-computation of the annotated triples
after updates. In this paper, we do not handle updates and we leave the incre-
mental re-computation as future work.

In the data-annotation based approaches that hard-code the conflict resolu-
tion strategy [8], annotations are fully dependent on the used strategy so they
need to be recomputed in case of change of the strategy. Our encoding is inde-
pendent of the conflict resolution strategy function which is evaluated at query
time, which means that changing the strategy does not impact the annotations.

As the semantics of an RDF graph are given by its closure, it is important
for an access control model to take into account the implicit knowledge held by
this graph. In the Semantic Web context, the policy authorizations deny or allow
access to triples whether they are implicit or not. In [16] the implicit triples are
checked at query time. Inference is computed during every query evaluation, and
if one of the triples in the query result could be inferred from a denied triple,
then it is not added to the result. Hence the query evaluation may be costly
since there is a need to use the reasoner for every query to compute inferences.
To protect implicit triples, [12], [11] and [13] proposed a propagation technique
where the implicit triples are automatically labeled on the basis of the labels
assigned to the triples used for inference. Hence if one of the triples used for
inference is denied, then the inferred triple is also denied. This introduces a new
form of inference anomalies where if a triple is explicit (materialized) then it is
allowed, however, if the triple is inferred then it is denied. We illustrate with the
following example.

Example 1. Let us consider the graph G0 of Fig. 1. Suppose we want to pro-
tect G0 by applying the policy P ={deny access to triples with type :Cancerous,
allow access to all resources which are instance of :Patient}. The triple t9 is
inferred from t2 and t7 using the RDFS subClassOf inheretence rule. With
the propagation approaches which consider inference [12,13,11], the triple t9
=(:alice ; rdf : type ;:Patient)} will be denied since it is inferred from denied
triples (t7). Hence the fact that alice is a patient will not be returned in the
result even though the policy clearly allows access to it.

4 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

In our model, explicit and implicit triples are handled homogeneously to avoid
this kind of inference anomalies.

3 RDF data model

“Graph database models can be defined as those in which data structures for
the schema and instances are modeled as graphs or generalizations of them, and
data manipulation is expressed by graph-oriented operations and type construc-
tors” [2]. The graph data model used in the semantic web is RDF (Resource
Description Framework) [9]. RDF allows decomposition of knowledge in small
portions called triples. A triple has the form “(subject ; predicate ; object)” built
from pairwise disjoint countably infinite sets I, B, and L for IRIs (Internation-
alized Resource Identifiers), blank nodes, and literals respectively. The subject
represents the resource for which information is stored and is identified by an
IRI. The predicate is a property or a characteristic of the subject and is identified
by an IRI. The object is the value of the property and is represented by an IRI of
another resource or a literal. In RDF, a resource which do not have an IRI can be
identified using a blank node. Blank nodes are used to represent these unknown
resources, and also used when the relationship between a subject node and an ob-
ject node is n-ary (as is the case with collections). For ease of notation, in RDF,
one may define a prefix to represent a namespace, such as rdf : type where rdf

represents the namespace http://www.w3.org/1999/02/22-rdf-syntax-ns.

Note 1. In this paper, we explicitly write rdf and rdfs when the term is from
the RDF or the RDFS standard vocabulary. However, we do not prefix the other
terms for the sake of simplicity.

For instance the triple (:alice ;:hasTumor ;:breastTumor) states that alice has a
breast tumor. A collection of RDF triples is called an RDF Graph and can be
intuitively understood as a directed labeled graph where resources represent the
nodes and the predicates the arcs as shown by the example RDF graph G0 in
Fig. 1.

Definition 1. (RDF graph) An RDF graph (or simply “graph”, where unam-
biguous) is a finite set of RDF triples.

Example 2. Fig. 1 depicts a graph G0 constituted by triples t1 to t9, both pic-
torially and textually.

We reuse the formal definitions and notation used by Pérez and Gutier-
rez [14]. Throughout this paper, P(E) denotes the finite powerset of a set E and
F ⊆ E denotes a finite subset F of a set E.

3.1 SPARQL

An RDF query language is a formal language used for querying RDF triples
from an RDF store also called triple store. An RDF store is a database specially

http://www.w3.org/1999/02/22-rdf-syntax-ns

Title Suppressed Due to Excessive Length 5

Subject Predicate Object

t1 :hasTumor rdfs :domain :Cancerous
t2 :Cancerous rdfs :subClassOf :Patient
t3 :onc rdf : type :Oncology
t4 :alice :hasTumor :breastTumor
t5 :bob :service :onc
t6 :bob : treats :alice
t7 :alice rdf : type :Cancerous
t8 :alice :admitted :onc
t9 :alice rdf : type :Patient

Fig. 1: An example of an RDF graph G0

designed for storing an retrieving RDF triples. SPARQL (SPARQL Protocol and
RDF Query Language) is a W3C recommendation which has established itself as
the de facto language for querying RDF data. SPARQL borrowed part of its syn-
tax from the popular and widely adopted SQL (Structured Query Language). The
main mechanism for computing query results in SPARQL is subgraph matching:
RDF triples in both the queried RDF data and the query patterns are inter-
preted as nodes and edges of directed graphs, and the resulting query graph is
matched to the data graph using variables.

Definition 2. (Triple Pattern, Graph Pattern) A term t is either an IRI, a
variable or a literal. Formally t ∈ T = I ∪ V ∪ L. A tuple t ∈ TP = T× T× T is
called a Triple Pattern (TP). A Basic Graph Pattern (BGP), or simply a graph,
is a finite set of triple patterns. Formally, the set of all BGPs is BGP = P(TP).

Given a triple pattern tp ∈ TP, var(tp) is the set of variables occurring in tp.
Similarly, given a basic graph pattern B ∈ BGP, var(B) is the set of variables
occurring in the BGP defined by var(B) = {v | ∃tp ∈ B ∧ v ∈ var(tp)}.

6 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

In this paper, we do not make any formal difference between a basic graph
pattern and a graph. Blank nodes are replaced by variables since they are se-
mantically equivalent to existentially quantified variables [15]. Moreover, we use
an extended version of RDF [10] which allows variables in property position.
When graph patterns are considered as instances stored in an RDF store, we
simply call them graphs.

The evaluation of a graph pattern B on another graph pattern G is given by
mapping the variables of B to the terms of G such that the structure of B is
preserved. First, we define the substitution mappings as usual. Then, we define
the evaluation of B on G as the set of substitutions that embed B into G.

Definition 3. (Substitution Mappings) A substitution (mapping) η is a partial
function η : V → T. The domain of η, dom(η), is the subset of V where η is
defined. We overload notation and also write η for the partial function η? : T→
T that extends η with the identity on terms. Given two substitutions η1 and η2,
we write η = η1η2 for the substitution η : ?v 7→ η2(η1(?v)) when defined.

Given a triple pattern tp = (s ; p ; o) ∈ TP and a substitution η such that
var(tp) ⊆ dom(η), (tp)η is defined as (η(s) ; η(p) ; η(o)). Similarly, given a graph
pattern B ∈ BGP and a substitution η such that var(B) ⊆ dom(η), we extend η
to graph pattern by defining (B)η = {(tp)η | tp ∈ B}.

Definition 4. (BGP Evaluation) Let G ∈ BGP be a graph, and B ∈ BGP a
graph pattern. The evaluation of B over G denoted by JBKG is defined as the
following set of substitution mappings:

JBKG = {η : V → T | dom(η) = var(B) ∧ (B)η ⊆ G}

Example 3. Let B be defined as B = {(?d ;:service ; ?s), (?d ;: treats ; ?p)}. B
returns the doctors, their services and the patients they treat. The evaluation
of B on the example graph G0 of Fig. 1 is JBKG0

= {η}, where η is defined as
η : ?d 7→ :bob, ?s 7→ :onc and ?p 7→ :alice.

Formally, the definition of BGP evaluation captures the semantics of SPARQL
restricted to the conjunctive fragment of SELECT queries that do not use FILTER,
OPT and UNION operators (see [14] for further details).

Another key concept of the Semantic Web is named graphs in which a set of
RDF triples is identified using an IRI forming a quad. This allows to represent
meta-information about RDF data such as provenance information and context.
In order to handle named graphs, SPARQL defines the concept of dataset. A
dataset is a set composed of a distinguished graph called the default graph and
pairs comprising an IRI and an RDF graph constituting named graphs.

Definition 5. (RDF dataset) An RDF dataset is a set:

D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}

where Gi ∈ BGP, ui ∈ I, and n ≥ 0. In the dataset, G0 is the default graph, and
the pairs 〈ui, Gi〉 are named graphs, with ui the name of Gi.

Title Suppressed Due to Excessive Length 7

4 Access control semantics

AC4RDF semantics is defined using authorization policies. An authorization policy
P is defined as a pair P = (A, ch) where A is a set of authorizations and
ch : P(A) → A is a so called (abstract) conflict resolution function that picks
out a unique authorization when several ones are applicable. The semantics of the
access control model are given by means of the positive (authorized) subgraph
G+ obtained by evaluating P on a base RDF graph G.

4.1 Authorization semantics

Authorizations are defined using basic SPARQL constructions, namely basic
graph patterns, in order to facilitate the administration of access control and to
include homogeneously authorizations into concrete RDF stores without addi-
tional query mechanisms.

Definition 6. (Authorization) Let Eff = {+, –} be the set of applicable effects.
Formally, an authorization a = (e, h, b) is a element of Auth = Eff × TP ×
BGP. The component e is called the effect of the authorization a, h and b are
called its head and body respectively. The function effect : Auth→Eff (resp.,
head : Auth→TP, body : Auth→BGP) is used to denote the first (resp., second,
third) projection function. The set hb(a) = {head(a)} ∪ body(a) is called the
underlying graph pattern of the authorization a.

The concrete syntax “GRANT/DENY h WHERE b” is used to represent an autho-
rization a = (e, h, b). The GRANT keyword is used when e = + and the DENY

keyword when e = –. Condition WHERE ∅ is elided when b is empty.

Example 4. Consider the set of authorizations shown in Table. 1. Authorization
a1 grants access to triples with predicate :hasTumor . Authorization a2 states
that all triples of type :Cancerous are denied. Authorizations a3 and a4 state
that triples with predicate :service and : treats respectively are permitted. Au-
thorization a5 states that triples about admission to the oncology service are
specifically denied, whereas the authorization a6 states that such information
are allowed in the general case. Finally, authorization a9 denies access to any
triple, it is meant to be a default authorization.

Given an authorization a ∈ Auth and a graph G, we say that a is applicable
to a triple t ∈ G if there exists a substitution θ such that the head of a is
mapped to t and all the conditions expressed in the body of a are satisfied
as well. In other words, we evaluate the underlying graph pattern hb(a) =
{head(a)} ∪ body(a) against G and we apply all the answers of Jhb(a)KG to
head(a) in order to know which t ∈ G the authorization a applies to. In the
concrete system we implemented, this evaluation step is computed using the
mechanisms used to evaluate SPARQL queries. In fact, given an authorization
a, the latter is translated to a SPARQL CONSTRUCT query which is evaluated
over G. The result represents the triples over which a is applicable.

8 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

Table 1: Example of authorizations

a1 = GRANT(?p ;:hasTumor ; ?t)
a2 = DENY (?p ; rdf : type ;:Cancerous)
a3 = GRANT(?d ;:service ; ?s)
a4 = GRANT(?d ;: treats ; ?p)
a5 = DENY (?p ;:admitted ; ?s)

WHERE {(?s ; rdf : type ;:Oncology)}
a6 = GRANT(?p ;:admitted ; ?s)
a7 = GRANT(?p ; rdfs :domain ; ?s)
a8 = DENY (?s ; ?p ;:Cancerous)
a9 = DENY (?s ; ?p ; ?o)

Definition 7. (Applicable Authorizations) Given a finite set of authorizations
A ∈ P(Auth) and a graph G ∈ BGP, the function ar assigns to each triple t ∈ G,
the subset of applicable authorizations from A :

ar(G,A)(t) = {a ∈ A | ∃θ ∈ Jhb(a)KG, t = (head(a))θ}

Example 5. Consider the graph G0 shown in Fig. 1 and the set of authorizations
A shown in Table 1. The applicable authorizations on triple t8 are computed to
ar(G0,A)(t8) = {a5,a6,a9}.

The set of triples in a given graphG to which an authorization a is applicable,
is called the scope of a in G.

Definition 8. (Authorization scope) Given a graph G ∈ BGP and an autho-
rization a ∈ Auth, the scope of a in G is defined by the following function
scope ∈ BGP× Auth→BGP:

scope(G)(a) = {t ∈ G | ∃θ ∈ Jhb(a)KG, t = (head(a))θ}

Example 6. Consider authorization a8 in Table 1, and the graph G0 in Fig. 1.
The scope of a8 is computed as follows : scope(G0)(a8) = {t1, t7}.

4.2 Policy and conflict resolution function

In the context of access control with both positive (grant) and negative (deny)
authorizations, policies must deal with two issues: inconsistency and incomplete-
ness. Inconsistency occurs when multiple authorizations with different effects are
applicable to the same triple. Incompleteness occurs when triples have no appli-
cable authorizations. Inconsistency is resolved using a conflict resolution strategy
which selects one authorizations when more than one applies. Incompleteness is
resolved using a default strategy which is an effect that is applied to the triples
with no applicable authorizations. In [3], the authors abstracted from the details
of the concrete resolution strategies by assuming that there exists a choice func-
tion that, given a finite set of possibly conflicting authorizations, picks a unique
one out.

Title Suppressed Due to Excessive Length 9

Definition 9. (Authorization Policy) An (authorization) policy P is a pair P =
(A, ch), where A is a finite set of authorizations and ch : P(A)→ A is a conflict
resolution function.

Example 7. An example policy is P = (A, ch) where A is the set of authoriza-
tions in Table 1 and ch is defined as follows. For all non-empty subset B of A,
ch(B) is the first authorization (using syntactical order of Table 1) of A that
appears in B. For B = ∅, ch(∅) = a9.

The semantics of policies are given by composing the functions ar, ch and then
effect in order to compute the authorized subgraph of a given graph.

Definition 10. (Policy Evaluation, Positive Subgraph) Given a policy P =
(A, ch) ∈ Pol and a graph G ∈ BGP, the set of authorized triples that con-
stitutes the positive subgraph of G according to P is defined as follows, writing
G+ when P is clear from the context:

G+
P = {t ∈ G | (effect ◦ ch)(ar(G,A)(t)) = +}

Example 8. Let us consider the policy P = (A, ch) defined in Example 7 and
the graph G0 of Fig. 1. Regarding the triple t8 = (:alice ;:admitted ;:onc),
ar(G0,A)(t8) = {a5,a6,a9}. Since a5 is the first among authorization in Ta-
ble 1 and its effect is –, we deduce that t8 6∈ G0

+
P . By applying a similar reasoning

on all triples in G0, we obtain G0
+
P = {t1, t4, t5, t6}.

5 Policy enforcement

To enforce AC4RDF model, we use an annotation approach which materializes the
applicable authorizations in an annotated graph denoted by GA. The latter is
computed once and for all at design time. The subjects’ queries are evaluated
over the annotated graph with respect to their assigned authorizations. In the
following, we show how the base graph triples are annotated and how the subjects
queries are evaluated.

5.1 Graph annotation

From a conceptual point of view, an annotated triple can be represented by
adding a fourth component to a triple hence obtaining a so called quad. From
a physical point of view, the annotation can be stored in the graph name of
the SPARQL dataset (Definition 5). To annotate the base graph, we use the
graph name IRI of the dataset to store a bitset representing the applicable
authorizations of each triple. First we need a bijective function authToBs which
maps a set of authorizations to an IRI representing its bitset. Authorizations
are simply mapped to their position in the syntactical order of authorization
definitions. In other words, given an authorization ai and a set authorizations
AS to be mapped, the i-th bit is set to 1 in the generated bitset if ai ∈ AS .
authToBs-1 is the inverse function of authToBs.

10 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

Next we define a function arsg which takes a set of authorizations A′ ⊆ A

and a graph G as parameters, and returns the subgraph of G containing triples
which have A′ as applicable authorizations. The function arsg is formally defined
as follows:

arsg(A′, G) = {t ∈ G | ar(G,A)(t) = A′}

Example 9. Consider the policy P = (A, ch) defined in Example 7 and the graph
G0 of Fig. 1. authToBs({a1,a9}) = 100000001, arsg({a1,a9}, G0) = {t4}.

Now we are ready to define the dataset representing the annotated graph.

Definition 11. (Annotated graph) Given a set of authorizations A and a graph
G, the dataset that represents the annotated graph denoted by GA, is defined by:

GA =
{
〈authToBs(A′), arsg(A′, G)〉 |
A′ ∈ P(A) ∧ arsg(A′, G) 6= ∅

}
Definition 11 defines how to annotate the base graph G given a set of autho-

rization. The following Lemma 1 ensures that GA forms a partition of the base
graph G.

Lemma 1. Given an annotated graph GA = {〈u1, G1〉, . . . , 〈un, Gn〉}, the fol-
lowing properties hold:

– ∀i, j ∈ 1..n : i 6= j =⇒ Gi ∩Gj = ∅
–
⋃

i∈1..nGi = G

5.2 Subject’s query evaluation

The subject is the entity requesting access to the triple store. The determination
of the objects accessible by the subject could be based on the subject identity,
role or attributes. Given a global set of authorizations A we suppose that the
subset As assigned to the subject is known in advance. The upstream authen-
tication and determination of the authorizations assigned to the subjects is out
of the scope of this paper.

Following Definition 10, given a global policy authorization set A, the posi-
tive subgraph of a subject having As ⊆ A as applicable authorizations, is given
by the following : G+

s = {t ∈ G | (effect ◦ ch)(ar(G,As)(t)) = +}. Since we mate-
rialized the set of applicable authorizations in GA, we need to define the subject’s
positive subgraph from the graph annotation, more precisely from ar(G,A). The
following lemma shows that ar(G,As) can be computed from As and ar(G,A).

Lemma 2. Given a graph G, a set of policy authorizations A and a subset of
subject’s authorizations As, the following holds for any t ∈ G:

As ∩ ar(G,A)(t) = ar(G,As)(t)

Similarly to the triples, subjects are assigned to bitsets representing autho-
rizations applicable to them. If a subject authorization set is As, then she/he is
assigned a bitset ubs where the i-th bit is set to 1 if ai ∈ As.

Title Suppressed Due to Excessive Length 11

Table 2: Example of annotated graph and users bitsets
GA

0 ubs & u

u G
Eve Dave

100001001 001100001
000000111 {t1} 000000001 000000001
000000001 {t2, t3, t9} 000000001 000000001
100000001 {t4} 100000001 000000001
001000001 {t5} 000000001 001000001
000100001 {t6} 000000001 000100001
010000011 {t7} 000000001 000000001
000011001 {t8} 000001001 000000001

Example 10. Given the set of authorizations A in Table 1. Eve is a nurse who
can see information about patients having tumors (a1) and which service they
are admitted to (a6). She is denied anything else (a9). Her assigned bitset is
the bitset 100001001 of Table 2. Dave belongs to the administrative staff, he can
access doctors services assignment (a3) and the patients they treat (a4). He is
denied anything else (a9). His assigned bitset is the bitset 001100001 of Table 2.

Once the graph is annotated, it is made available to the subjects with a filter
function which prunes out the inaccessible triples given the subjects’s autho-
rization set. In other words, the filter function returns the subjects’s positive
subgraph by applying the ch function on the subject’s assigned authorizations
ar(G,As)(t). We showed in Lemma 2 that this subset can be obtained from the
applicable authorizations in GA by computing a bitwise logical and (denoted by
&) between the subject’s and triples’ bitsets.

Definition 12. (Filter function) Given a subject’s bitset ubs and an annotated
graph GA, filter is defined as follows:

filter(GA)(ubs) =
⋃
{Gi | 〈ui, Gi〉 ∈ GA∧

(effect ◦ ch)(authToBs-1(ui & ubs)) = +}

Once the subject’s positive subgraph computed with filter, the subject’s query
Q is then evaluated over it returning JQKfilter(GA)(ubs) to the subject.

Example 11. Let us consider the policy P = (A, ch) of Example 7. Table 2
illustrates the annotated graph obtained from G0 shown in Fig. 1, as well as the
two users of Example 10 with their assigned authorizations. The filter function
will compute the positive subgraph of Eve as follows: filter(GA

0)(100001001) =
{t4, t8}. Similarly, Dave’s positive subgraph equals {t5, t6}.

12 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

6 Implementation

Our system is implemented using the Jena Java API on top of the Jena TDB3

(quad) store. Apache Jena is an open source Java framework which provides
an API to manage RDF data. ARQ4 is a SPARQL query engine for Jena which
allows querying and updating RDF models through the SPARQL standards.
ARQ supports custom aggregation and GROUP BY, FILTER functions and path
queries. Jena TDB is a native RDF store which allows to store and query RDF
quads.

To generate GA, the dataset of annotated triples, we use SPARQL CONSTRUCT

queries to obtain authorizations scopes (see Definition 8). An authorization a is
transformed into Qa = CONSTRUCT head(a) WHERE hb(a). We use an in-memory
hash map in which we store the ids of the triples and the correspondent bitset.
For every authorization ai, a CONSTRUCT query Qai is run over the raw dataset,
and the result triples are added/updated to the hash map with the bit i set to
1. Once the hash map is computed, it is written into a dataset which represents
GA. Note that we could have used the dataset directly instead of a hash map,
but this would be time consuming due to the high number of disk accesses.
In case of a high number of triples that can’t hold in memory, we could use a
hybrid approach by loading the triples partially, but this extension is left for
future work.

During query evaluation, on the fly filtering is applied to the accessed triples.
Jena TDB provides a low level quad filter hook5 that we use for implementation.
For each accessed quad, let u be the quad’s graph IRI, t its triple and ubs
be the subject’s bitset. A bitwise logical and is performed between (the bitset
represented by) u and ubs. The ch function on the authorizations obtained by
authToBs-1 is then applied in order to allow or deny access to t. If t is allowed,
then it is transmitted to the ARQ engine to be used by query Q. Otherwise, it
will be hidden to the ARQ engine. An in-memory cache is used to map quad
graph IRIs to grant/deny decisions in order to speedup the filtering process.

6.1 Experiments

The key input factors for the benchmarking of our solution are the sizes of
the base graphs, the sizes of the access control policies, the sizes of positive
subgraphs, the sizes of subjects’ policies and the subjects’ queries. The factors
are reported in Table 3. The base graphs are synthetic graphs generated by
the Lehigh University Benchmark (LUBM)6. Their sizes (|G|) vary from 126k
to 1,591k triples. The access control policies are randomly generated using the
LUBM vocabulary (about universities and people therein), with three control
parameters. The first control parameter is the number of authorizations (|A|)
3 https://jena.apache.org/documentation/tdb/
4 https://jena.apache.org/documentation/query/
5 http://jena.apache.org/documentation/tdb/quadfilter.html
6 http://swat.cse.lehigh.edu/projects/lubm/

https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/query/
http://jena.apache.org/documentation/tdb/quadfilter.html
http://swat.cse.lehigh.edu/projects/lubm/

Title Suppressed Due to Excessive Length 13

Table 3: Summary of notations

in |G| Size of the LUBM dataset
in |A| Number of authorizations
in |G+||G| Positive subgraph size w.r.t raw dataset size
in |As| Number of authorizations assigned to the subject
in Qs LUBM test Query

out tA Time to build GA in memory
out tW Time to write GA to disk

out tG+ Time to evaluate Q on materialized G+

out tGA Time to evaluate Q on GA

out tG Time to evaluate Q on (raw) G

and varies from 50 to 200 authorizations. The second control parameter is the
scope average of the policy with respect to the G. In other words, the percentage
of triples in G which are under the influence of the policy authorizations. The last
control parameter is the size of the body of each (atomic) authorization a ∈ A.
For the sake of brevity, the results we report here are for fixed scope (about 4%
by authorization) and fixed sizes of bodies (set to 2 for each authorization). The
size of positive subgraph parameter |G+||G| varies from 10 to 100% of |G| and the
number of subject’s authorizations |As| from 50 to 200. Regarding the subject
query parameter Qs, we used a subset of LUBM test queries. We analyzed both
the static (creation time) and the dynamic (evaluation time) performance of our
solution. Each experiment is run 6 times on 2 cores and 4 GB RAM virtual
machines running on OpenStack.

Static performance We distinguish the time needed to compute GA between
the time required for its building and the time required for its writing. The time
to build the authorization bitset ar(G, t) associated with each triple t ∈ G in
memory is referred to as tA in Table 3. The time to write the annotated graph

0

50

100

150

200

250

300

350

0 500 1000 1500

ti
m
e
(s
)

t_w

t_A

Fig. 2: Annotation and writing times

0

100

200

300

400

500

0 50 100 150 200

ti
m
e
(s
) t_w

t_A

Fig. 3: Annotation and writing times

14 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

GA from the memory to the quad store is referred to as tW in Table 3. Fig. 2
shows tA and tW with |A| being set to 100 authorizations. Fig. 3 shows tA and
tW with |G| being set to 1,591k triples. As each a ∈ A is mapped to a SPARQL
CONSTRUCT query, the results show that tA grows linearly when |G| or |A| gets
bigger. The annotation time is not negligible but we argue that it is not an issue:
GA is computed once, as long as A is not modified. The ratio tA/tW is about 3.4
on average for fixed value of G in Fig. 2. In other words, for 100 authorizations,
our method is is amortized if the sum of triples in the materialized named graphs
is approximatively 5 times greater then the number of triples in base graph. Fig. 3
shows that tA grows linearly when |A| grows. However, as expected the results
show that tW is independent of |A|: the overhead incurred by the growing size of
the bitsets is negligible for |A| ∈ {50, 100, 150, 200}. On average, the annotated
graph GA requires 50% more space than G.

Dynamic performance To evaluate the performance of our solution at run-
time, we compare our approach to two extreme methods. Each method computes
the positive subgraph G+ obtained by filtering the result of query Q on a base
graph G according to a set A of authorizations.

The first extreme (naive) method gives an upper bound on the overhead
incurred by the filtering process. Indeed, in the post-processing approaches, the
access control consists in two steps : (1) compute the full answer Q(G) and (2)
filter out the denied triples from Q(G) as a post-processing step. This method
avoids duplication of the base graph G at the price of high overhead at runtime.
In our experiments, we considered the step (1) only, by computing the full answer
Q(G). We refer to this method as tG in Table 3. The second extreme method
gives a lower bound on the overhead incurred by the filtering process. The idea
is to materialize G+ for each user profile and then compute Q(G+). We refer to
this method as tG+ in Table 3. This method avoids the filtering post-process at
the price of massive duplication and storage overhead. In contrast, our approach,
namely tGA in Table 3, is a trade-off between the extreme ones: it needs some
static computation while offering competitive runtime performance. Our results
are shown in Fig. 4 for varying sizes of |G| with |A| and |As| set to 100, and

0

2

4

6

8

10

0 500 1000 1500

ti
m
e
(s
)

t_G

t_f

t_gp

Fig. 4: Query evaluation time

0

2

4

6

8

10

0 50 100 150 200

ti
m
e
(s
)

t_G

t_f

t_gp

Fig. 5: Query evaluation time

Title Suppressed Due to Excessive Length 15

0

2

4

6

8

10

12

0 20 40 60 80 100

ti
m
e
(s
)

t_G

t_f

t_gp

Fig. 6: Query evaluation time

0

500

1000

1500

2000

2500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

ti
m
e
(m

s)

t_gp

t_f

Fig. 7: Query evaluation time

|G+||G| set to 40%. The subject query Qs is set to the worst case which is the
select all query. The key insight from these experiments is that the overhead
is independent from |G| and is about 50% as confirmed by the R statistical
software.

Another advantage of our approach is its independence from the number of
authorizations of both the policy and those assigned to the subject. In Fig. 5
we vary the number of policy authorizations (|A|) with |G| set to 1,591k triples
and Qs to the select all query. The experiments show a constant overhead while
changing |A|.

Regarding |G+||G|, the size of the positive subgraph with respect to the size
of the annotated graph, the experiments in Fig. 6 show that the query answer
time tGA grows linearly when |G+||G| grows, with |G| fixed to 1,591k and |A|
and |As| fixed to 100. Qs being the select all query. This shows that the overhead
w.r.t. a materialized Q(G+) does not depend on the size of the positive subgraph.
Note that tG does not vary since we did not consider the filtering step of post-
processing approaches, otherwise it would grow linearly when |G+||G| grows.

In Fig. 7 we run experiments on our system with a subset of LUBM test
queries used by [4] with |A| and |As| set to 100, and |G+||G| set to 40%..
Q1 and Q3 are more complex queries having a high number of initial triples
associated with the triple patterns, but the final number of results is quite small
(28 and 0 respectively). Fig. 7 shows that the time to evaluate query Q3 in
presence of the filter tGA is smaller than the evaluation time over materialized
positive subgraph tG+ . The reasons could be the empty result of Q3 or different
execution plans. In the rest of the queries, the overhead was between 6 and 40%.

7 Conclusion

In this paper, we proposed an enforcement framework to the access control model
for RDF defined in [3]. We used an annotation approach where the base graph
is annotated at the policy design time. Each triple is annotated with a bitset
representing its applicable authorizations. The subjects’ queries are evaluated
over their positive subgraph constructed using the the her/his bitset and the

16 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

triples’ bitset. The experiments showed that the annotation time is not negligible,
but we argue that it is not an issue since this operation is done once and for all
during policy design time. We showed that the overhead of the subject query
evaluation is independent from size of the base graph, and it is about 50%.
Moreover, we showed that our approach is independent from the number of
policy authorizations as well as the used query language in contrast to the query
rewriting techniques.

Ongoing work on this platform includes the design of an algorithm for the
incremental update of GA when G is modified, high-level optimizations for the
construction of GA using the partial order between authorizations induced by ba-
sic graph pattern containment and new empirical evaluations on both synthetic
and real-life data.

References

1. Abel, F., De Coi, J.L., Henze, N., Koesling, A.W., Krause, D., Olmedilla, D.:
Enabling advanced and context-dependent access control in RDF stores. In: The
Semantic Web, pp. 1–14. Springer (2007)

2. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1) (2008)

3. Anonymous 2015: Details omitted for double-blind reviewing.
4. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix ”bit” loaded: a scalable

lightweight join query processor for RDF data. In: WWW. pp. 41–50 (2010)
5. Berners-Lee, T.: Linked data-design issues (2006), https://www.w3.org/

DesignIssues/LinkedData.html

6. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

7. Costabello, L., Villata, S., Delaforge, N., Gandon, F., et al.: Linked data access
goes mobile: Context-aware authorization for graph stores. In: LDOW-5th WWW
Workshop (2012)

8. Flouris, G., Fundulaki, I., Michou, M., Antoniou, G.: Controlling access to rdf
graphs. In: Future Internet-FIS 2010, pp. 107–117. Springer (2010)

9. Hayes, P.J., Patel-Schneider, P.F.: Rdf 1.1 semantics. W3C Recommendation
(2014), http://www.w3.org/TR/rdf11-mt/

10. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the OWL vocabulary. J. Web Sem.
3(2-3), 79–115 (2005)

11. Jain, A., Farkas, C.: Secure resource description framework: an access control
model. In: SACMAT. pp. 121–129. ACM (2006)

12. Lopes, N., Kirrane, S., Zimmermann, A., Polleres, A., Mileo, A.: A logic program-
ming approach for access control over RDF. In: ICLP. pp. 381–392 (2012)

13. Papakonstantinou, V., Michou, M., Fundulaki, I., Flouris, G., Antoniou, G.: Access
control for RDF graphs using abstract models. In: SACMAT. pp. 103–112 (2012)

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (Sep 2009)

15. Polleres, A.: From SPARQL to rules (and back). In: WWW. pp. 787–796 (2007)
16. Reddivari, P., Finin, T., Joshi, A.: Policy-based access control for an RDF store.

In: WWW. pp. 78–81 (2005)

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf11-mt/

Title Suppressed Due to Excessive Length 17

A Appendix

This appendix presents the proofs of Lemma 1 and 2 as well as the LUBM queries
used in experiments.

A.1 Proofs

Proof (Proof of Lemma 1). In the following, we prove that ∀i, j ∈ 1..n : i 6=
j =⇒ Gi ∩Gj = ∅.

We prove that ∀i, j ∈ 1..n : Gi ∩ Gj 6= ∅ =⇒ i = j. Gi ∩ Gj 6= ∅ means
that there exists t such that t ∈ Gi and t ∈ Gj . Since t ∈ Gi then ui =
authToBs(ar(G,A)(t)). Similarly, since t ∈ Gj then uj = authToBs(ar(G,A)(t)).
Which means that ui = uj , hence i = j.

In the following we prove that
⋃

i∈1..nGi = G
First we prove that ∀t ∈

⋃
i∈1..nGi =⇒ t ∈ G.

∀t ∈
⋃

i∈1..nGi means that ∃〈u,G′〉 ∈ GA | t ∈ G′. Since by definition,
G′ ⊆ G then t ∈ G.

We prove that ∀t ∈ G =⇒ t ∈
⋃

i∈1..nGi.
Since au ∈ A then ∀t ∈ G, ar(G,A)(t) 6= ∅, hence ∃〈u′, G′〉 ∈ GA s.t. t ∈ G′.

Which means that t ∈
⋃

i∈1..nGi.

Proof (Proof of Lemma 2). By Definition 7, ar(G,A)(t) = {a ∈ A | ∃θ ∈
Jhb(a)KG.t = (head(a))θ}, hence As ∩ ar(G,A)(t) = {a ∈ As ∩ A | ∃θ ∈
Jhb(a)KG.t = (head(a))θ}. Since As ⊆ A then As∩A = As. Which means that
As ∩ ar(G,A)(t) = {a ∈ As | ∃θ ∈ Jhb(a)KG.t = (head(a))θ} = ar(G,As)(t).

A.2 LUBM Queries

Q1: SELECT ?x ?y ?z WHERE

{ ?z ub :subOrganizationOf ?y . ?y rdf : type ub :University .
?z rdf : type ub :Department . ?x ub :memberOf ?z .
?x rdf : type ub :GraduateStudent . ?x ub :undergraduateDegreeFrom ?y . }

Q2: SELECT ?x WHERE

{ ?x rdf : type ub :Course. ?x ub :name ?y . }

Q3: SELECT ?x ?y ?z WHERE

{ ?x rdf : type ub :UndergraduateStudent . ?y rdf : type ub :University .
?z rdf : type ub :Department . ?x ub :memberOf ?z .
?z ub :subOrganizationOf ?y . ?x ub :undergraduateDegreeFrom ?y . }

Q4: SELECT ?x WHERE

{ ?x ub :worksFor <http://www.Department0.University0.edu>.
?x rdf : type ub :FullProfessor . ?x ub :name ?y1 .

18 Sayah, T., Coquery, E., Thion, R., Hacid, M.S.

?x ub :emailAddress ?y2 . ?x ub : telephone ?y3 . }

Q5: SELECT ?x WHERE

{ ?x ub :subOrganizationOf <http://www.Department0.University0.edu>.
?x rdf : type ub :ResearchGroup }

Q6: SELECT ?x ?y WHERE

{ ?y ub :subOrganizationOf <http://www.University0.edu>.
?y rdf : type ub :Department . ?x ub :worksFor ?y .
?x rdf : type ub :FullProfessor . }

Q7: SELECT ?x ?y ?z WHERE

{ ?y ub : teacherOf ?z . ?y rdf : type ub :FullProfessor .
?z rdf : type ub :Course. ?x ub :advisor ?y .
?x rdf : type ub :UndergraduateStudent . ?x ub : takesCourse ?z }

	Access Control Enforcement for Selective Disclosure of Linked Data – Authors' Version
	Introduction
	Related work
	RDF data model
	SPARQL

	Access control semantics
	Authorization semantics
	Policy and conflict resolution function

	Policy enforcement
	Graph annotation
	Subject's query evaluation

	Implementation
	Experiments
	Static performance
	Dynamic performance

	Conclusion
	Appendix
	Proofs
	LUBM Queries

