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Marcello Ponsiglione ‡
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Abstract

An existence and uniqueness result, up to fattening, for a class of
crystalline mean curvature flows with natural mobility is proved. The
results are valid in any dimension and for arbitrary, possibly unbounded,
initial closed sets. The comparison principle is obtained by means of a
suitable weak formulation of the flow, while the existence of a global-in-
time solution follows via a minimizing movements approach.

1 Introduction

In this paper we consider the anisotropic mean curvature motion, that is, a flow
of sets t 7→ E(t) (formally) governed by the law

V (x, t) = −m(νE(t))κ
E(t)
φ (x), (1)

where V (x, t) stands for the (outer) normal velocity of the boundary ∂E(t)

at x, φ is a given norm on RN representing the surface tension, κ
E(t)
φ is the

anisotropic mean curvature of ∂E(t) associated with the anisotropy φ, and m
is a positive mobility which depends on the outer unit normal νE(t) to ∂E(t).
Such an evolution law may be regarded as the gradient flow (with respect to a
suitable formal Riemannian structure) of the anisotropic perimeter functional

Pφ(E) =

∫
∂E

φ(νE) dHN−1, (2)

the anisotropic curvature κEφ of ∂E being nothing but the first variation of (2)

at E. When φ is differentiable in RN \ {0}, then κEφ is given by

κEφ = div
(
∇φ(νE)

)
. (3)
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However, we are particularly interested in the case when φ is not differentiable,
for instance the crystalline case, when the unit ball Bφ := {φ ≤ 1}, known as
the Frank diagram, is a convex polytope. In the latter case, we will only consider
the natural mobility given by m = φ. With this choice, (1) has the interesting
property that the flow starting from a Wulff shape, that is, a level set of the
polar φ◦ of φ, consists in a one-parameter family of shrinking Wulff shapes that
extinguish in finite time. We recall that Wulff shapes are the only solutions to
the isoperimetric problem associated with Pφ (see [29]).

The law (1) is used to describe several phenomena in Materials Science and
Crystal Growth, see for instance [48, 38]. From the mathematical point of view,
the geometric motion is well defined in a classical sense in the smooth case,
that is, when φ is at least C3,α (as well as the initial surface, and except at
the origin) and “elliptic” (which means for instance that φ2 is strongly con-
vex) [2]. Of course, the classical mean curvature flow falls within this class and
corresponds to the choice φ = Euclidean norm. In the smooth case, the main
mathematical difficulties are related to the fact that singularities (like pinch-
ing) may form in finite time (see for instance [37]) in dimensions N ≥ 3. Thus,
the strong formulation of (1), which requires smoothness of the evolving sets,
is well defined only for short times and one needs a weaker notion of solution
that can handle the presence of singularities in order to define the flow for all
positive times. When φ is smooth, this task has been already accomplished and
different approaches have been proposed in the literature, starting from the pio-
neering work by Brakke [14], who suggested a weak formulation of the motion by
mean curvature yielding deep regularity results but lacking uniqueness. These
uniqueness issues have been subsequently overcome via the so-called level set ap-
proach [45, 27, 21, 34]. In particular, the case of (1) for m,φ of class C2 is covered
by [21]. The main idea is to represent the initial set as the zero sublevel set of
a function u0 and then to let all these level sets evolve according to the same
geometric law (which makes sense thanks to the fact that the evolutions which
we consider preserve inclusion). This procedure defines a time-dependent func-
tion u(x, t) and transforms the geometric equation into a (degenerate) parabolic
equation for u, which is shown to admit a unique viscosity solution with the pre-
scribed initial datum u0. The evolution of the zero sublevel set of such a solution
defines a generalized motion (see also [10]), which exists for all times and agrees
with the classical one for short times, before the appearance of singularities (see
[28]). Such a motion satisfies a comparison principle and is unique whenever the
level sets of u have zero Lebesgue measure, i.e., whenever the so-called fattening
phenomenon does not occurs. Fattening may in fact appear even for a smooth
initial datum E0 (see [7]), but its occurrence is in some sense very “rare”: for
instance, it is easy to understand that almost all the sublevels sets of the signed
distance function from any given set E0 will not generate any fattening.

A third approach is represented by the minimizing movements scheme de-
vised by Almgren, Taylor and Wang [2] and Luckhaus and Sturzenhecker [42]. It
consists in constructing a sequence of discrete-in-time evolutions by iteratively
solving suitable incremental minimum problems. Any limit of these evolutions
as the time step vanishes defines a motion, which exists for all positive times
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(and is shown to be Hölder-continuous in time for the L1 norm) and is usually
referred to as a “flat flow”. The connections between the generalized level set
motion and Brakke solutions has been investigated in [39]. A simple proof of
convergence of the Almgren-Taylor-Wang (ATW) to the generalized motion is
shown in [20], while a consistency result was already shown in [2]. See also [24]
for a similar convergence proof in a more general setting (allowing for unbounded
surfaces, as in the present paper), and [41] for new proofs and a generalization
to partitions of a related, but different minimizing movements scheme. Roughly
speaking, it turns out that whenever fattening does not occur, the generalized
level set motion coincides with the ATW flat flow and is also a solution in the
sense of Brakke.

Let us now consider a crystalline anisotropy. This case is more difficult, due
to the lack of smoothness in the involved differential operators. Indeed, the
crystalline normal ∇φ(νE) is not uniquely defined for some directions and one
needs to look at suitable selections of the (multivalued) subdifferential map, that
is, vector fields z : ∂E → RN , such that z(x) ∈ ∂φ(νE(x)) for a.e. x. If there
exists an admissible field z with tangential divergence div τz in L2(∂E), then
the crystalline curvature is given by the tangential divergence of z, where div τz
has minimal L2-norm among all admissible fields (see [12, 32]). In particular,
the crystalline curvature has a nonlocal character.

Showing (even local-in-time) existence and uniqueness for crystalline mean
curvature flows is somewhat harder and still largely open. In dimension 2, the
problem has been settled by developing a crystalline version of the viscosity
approach for the level-set equation, see [31]. If the initial set is itself an appro-
priate planar crystal, the evolution equation boils down to a system of ODEs
which has been studied in many former works, see in particular [3, 8, 30, 35],
while existence and uniqueness of strong solutions for initial “regular” (in an
appropriate sense) sets was shown recently in [17]. One advantage of the level-
set approach of [31] is the ability to address much more general equations where
the speed depends on the crystalline curvature and the normal in a nonlinear
way. This construction has been extended to the dimension 3 in a recent work
of Giga and Pozar [33], which was released while this paper was under review.

In dimension N ≥ 3, apart for the new result just mentioned, the only gen-
eral available notion of global-in-time solution we are aware of is the minimizing
movements motion provided by the ATW scheme; however, no general compar-
ison results have been established so far. In fact, higher-dimensional uniqueness
results deal with special classes of initial data (for instance convex initial data
as in [15, 13] or polyhedral sets as in [36]) or with very specific anisotropies (see
[32] where a comparison principle valid in all dimensions has been established
for the anisotropy φ(ν) = |ν′| + |νN |, with νN := ν · eN and |ν′| the Euclidean
norm of the orthogonal projection of ν onto e⊥N ).

In this paper we prove a global-in-time existence and uniqueness (up to
possible fattening) result for the crystalline mean curvature flow valid in all
dimensions, for arbitrary (possibly unbounded) initial sets, and for general crys-
talline anisotropies φ, but under the particular choice m = φ in (1). We do so
by providing a suitable weak formulation of the problem and then by showing
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that such a notion yields a comparison principle. We then implement a variant
of the ATW scheme to establish an existence result.

Le us describe our approach in more details. It is based on ideas of [47, 10,
6, 15] (see also [27]). In order to motivate our formulation, let us assume for a
moment that φ is smooth and that t 7→ E(t) is a regular flow obeying (1). Set
d(·, t) := dist(·, E(t)), where dist denotes the distance induced by the polar norm
φ◦ (see (6) and (8) below). Then it is easy to see that the time partial derivative
∂td of d on ∂E(t) equals −V/φ(νE(t)), with V denoting the outer normal velocity
of the moving boundary. The quantity V/φ(νE(t)) is nothing but the speed of
the moving boundary along the Cahn-Hoffmann normal ∇φ(νE(t)), see [38, 12].
By the above observations, (1) may be rewritten as

∂td = κ
E(t)
φ = div (∇φ(∇d)) on ∂E(t) = ∂{d(·, t) = 0}.

(Here and throughout the paper ∇ stands for the spatial gradient.) On the other
hand, if we look at a positive s-level set of d, the (weighted) normal velocity
of x ∈ {dist(·, t) = s} equals the normal velocity of its projection y on ∂E(t),

which is given by the anisotropic curvature κ
E(t)
φ (y) of ∂E(t) at y. Since (as

long as the surfaces are smooth)

κ
{d(·,t)≤s}
φ (x) = div (∇φ(∇d))(x, t) ≤ κE(t)

φ (y),

we deduce that
∂td ≥ div (∇φ(∇d)) in {d > 0} (4)

as long as E(·) is nonempty. In words, the positive level sets of the distance
function shrink with a velocity which is higher than that given by its anisotropic
curvature, and thus they may be regarded as superflows or supersolutions of the
geometric motion. Analogously, setting dc(·, t) := dist(·, Ec(t)), where Ec stands
for the complement of E, we have

∂td
c ≥ div (∇φ(∇dc)) in {dc > 0} (5)

as long as Ec(·) is nonempty. We may conclude that a smooth flow t 7→ E(t) of
sets solves (1) if and only if (4) and (5) are satisfied.

As already remarked before, when φ is crystalline ∇φ(∇d) may not be de-
fined and must be replaced in general by a suitable selection of the subdifferential
map, that is, by a vector-field z ∈ L∞({d > 0};RN ) such that z(x) ∈ ∂φ(∇d(x))
for a.e. x, where ∂φ denotes the subdifferential of φ. Any such z will be called
admissible for d.

The above discussion motivates the following weak formulation of the crys-
talline flow: we will say that a one-parameter family t 7→ E(t) of closed sets,
satisfying suitable continuity properties (see Definition 2.1 below) is a weak su-
persolution of (1) with initial datum E0 if E(0) ⊆ E0 and there exists a vector-
field z, admissible for d, such that (4) hold in the sense of distributions, with
∇φ(∇d) replaced by z. We will say instead that t 7→ E(t) is a weak-subsolution
of (1) if E(0) ⊇ E0 and t 7→ (E̊(t))c is weak supersolution. Finally, we will say
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that t 7→ E(t) is a weak solution if it is both a weak sub- and a supersolution
(with initial datum E0). Mostly for technical reasons, we will require in addition
that the positive part of div z is bounded in {d ≥ δ} for all δ > 0.

Let us notice that this formulation of the curvature flow in terms of the
distance function has been already exploited for the standard mean curvature
motion and its regular anisotropic variants. In fact, it is close in spirit to the
distance formulation proposed and studied in [47], the main difference being
that the differential inequalities are required to hold in a distributional sense,
rather than in the viscosity sense. In this respect, our formulation is reminiscent
of the approach developed in [15] where it was observed that the flat flow, in the
convex case, was satisfying similar inequalities. In smooth cases, we can show
it is more or less equivalent to the viscosity approach, cf Remark 2.3 and the
Appendix.

We now describe the plan of the paper. In Section 2, after recalling some
preliminaries definitions and introducing the main notation, we give the pre-
cise weak formulation of the sub- and supersolutions to the anisotropic mean
curvature flow. In Section 3 we establish a comparison principle between sub-
and supersolutions, which by standard arguments yields the uniqueness of the
crystalline flow whenever fattening does not occur. We remark that the distribu-
tional formulation described above allows for a proof of the comparison, which
is closer in spirit to the uniqueness proofs for standard parabolic equations.
In particular, our argument is more elementary than the typical “viscosity”
proof that is based on delicate regularization procedures and fine differentiabil-
ity properties of semiconvex functions. In Section 4 we provide an existence
result for the the weak formulation of the crystalline flow, which is based on the
reformulation of the minimizing movements scheme of Almgren-Taylor-Wang /
Luckhaus-Sturzenhecker introduced in [18, 15]. Such a variant can be consid-
ered as a combination of the ideas of [2] and the threshold dynamics algorithm
studied in [26], and has several advantages: for instance, it makes it easier to
establish a comparison principle for the discrete-in-time evolutions and it works
equally well for bounded and unbounded sets (as already exploited in [24]). In
the main theorem of the section (see Theorem 4.5) we establish the convergence
of the minimizing movements scheme to a weak solution, whenever no fattening
occurs.

We conclude this introduction by commenting on the restriction m = φ in
(1). Although such a mobility is rather natural (for instance it forces Wulff
shapes to evolve in a self-similar way), it is not the most general case and
different mobilities could be considered as physically interesting. However, at
the moment, in the crystalline case we are able to provide the right convergence
estimates for the minimizing movements scheme only under this assumption; the
main technical reason is related to the fact that if dist is the distance induced
by the polar norm φ◦, then the crystalline curvatures of the positive level sets
of dist(·, E) are bounded above (this can be easily understood since in this
case the sublevel sets of dist(·, E) admit an inner tangent Wulff shape at all
points of the boundary). Nevertheless, we remark that in the case of a smooth
elliptic anisotropy, all our results and methods would work with any mobility m,
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thus showing that the viscosity solutions already studied in [27, 21, 47] satisfy
in fact a stronger (distributional) formulation. The extension of our results to
more general mobilities in the crystalline case will be the subject of future
investigations.

2 A weak formulation of the crystalline mean
curvature flow

In this section we introduce a suitable weak formulation of the crystalline mean
curvature flow. Such a notion of solution resembles the formulation due to [47].
However, here we will not consider the viscosity setting of [47] and we will rather
be concerned with distributional solutions (which appear for instance in [15]).

2.1 Preliminaries

In this subsection we introduce the main objects and notation used throughout
the paper.

Let φ denote a fixed norm on RN , that is, a convex, even and 1-homogeneous
real-valued function, which will play the role of the anisotropic interfacial energy
density. In the terminology of crystal growth this is also called surface tension.
Note that we do not assume any further regularity on φ and in fact the main
case of interest is when φ is crystalline, that is, when the associated unit ball is
a convex polytope. The interfacial energy is then given by

Pφ(E) := sup

{∫
E

div ζ dx : ζ ∈ C1
c (RN ;RN ), φ◦(ζ) ≤ 1

}
,

where we recall that the polar norm φ◦ is defined as

φ◦(ξ) := sup
φ(η)≤1

η · ξ . (6)

It can be checked that Pφ(E) is finite if and only if E is a set of finite perimeter
and, in this case,

Pφ(E) =

∫
∂∗E

φ(νE) dHN−1 ,

where ∂∗E denotes the so-called reduced boundary of E (see for instance [5]).
More generally, given a function u ∈ BVloc(RN ) we may consider the anisotropic
total variation maesure of u, which on the open (bounded if u 6∈ BV (RN ))
subsets Ω ⊂ RN is defined as

φ(Du)(Ω) := sup

{∫
Ω

udiv ζ dx : ζ ∈ C1
c (Ω;RN ), φ◦(ζ) ≤ 1

}
.

Because of the homogeneity of φ it turns out that φ(Du) coincides with the non-

negative Radon measure in RN given by φ(∇u) dx+φ
(
Dsu
|Dsu|

)
|Dsu|, where ∇u
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stands for the absolutely continuous part of Du and Dsu
|Dsu| denotes the Radon-

Nykodim derivative of the singular part Dsu of Du with respect to its (isotropic)
total variation |Dsu|, see [5].

Among the important properties of φ and φ◦ let us mention the fact that
∂φ(0) = {ξ : φ◦(ξ) ≤ 1} while ∂φ◦(0) = {ξ : φ(ξ) ≤ 1}. Moreover, for η 6= 0

∂φ(η) = {ξ : φ◦(ξ) ≤ 1 and ξ ·η = φ(η)} = {ξ : φ◦(ξ) = 1 and ξ ·η = φ(η)} (7)

(and the symmetric statement for φ◦). An easy consequence of the above char-
acterization is that if η ∈ ∂φ◦(x) and x 6= 0, then x/φ◦(x) ∈ ∂φ(η).

The set
W (0, 1) := {y : φ◦(y) ≤ 1}

is called the Wulff shape associated with φ. More generally, for x ∈ RN and
R > 0, we will denote by

W (x,R) := {y : φ◦(y − x) ≤ R}

the Wulff shape of radius R and center x. In the Finsler metric framework
associated with φ◦, Wulff shapes play the same role as standard balls do in the
Euclidean setting. In particular, it is well-known that W (0, R) is the unique (up
to translations) solution of the anisotropic isoperimetric problem

min {Pφ(E) : |E| = |W (0, R)|} ,

see for instance [29].
Given a set E ⊆ RN , we denote by dist(·, E) the distance from E induced

by φ◦, that is, for any x ∈ RN

dist(x,E) := inf
y∈E

φ◦(x− y) (8)

if E 6= ∅ and dist(x, ∅) := +∞. Moreover, we denote by dE the signed distance
from E induced by φ◦, i.e.,

dE(x) := dist(x,E)− dist(x,Ec)

so that dist(x,E) = dE(x)+ and dist(x,Ec) = dE(x)− (here and throughout
the paper we adopt the standard notation t+ := t ∨ 0 and t− := (−t)+). Note
that φ(∇dE) = 1 a.e. in RN \ ∂E.

We finally recall the notion of Kuratowski convergence. We say that a se-
quence of closed sets En in Rm converges to a closed set E in the Kuratowki
sense, and we write

En
K−→ E,

if the following conditions are satisfied:

(i) if xn ∈ En, any limit point of {xn} belongs to E;

(ii) any x ∈ E is the limit of a sequence {xn}, with xn ∈ En.

One can easily see that En
K−→ E if and only if dist(·, En) → dist(·, E) locally

uniformly in Rm (here one may consider the distance associated to any norm).
In particular, by the Ascoli-Arzelà Theorem, any sequence of closed sets admits
a subsequence which converges in the Kuratowski sense.
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2.2 A weak formulation of the crystalline flow

In this subsection we introduce the weak formulation of the crystalline flow we
will deal with. We refer the reader to the introduction for the motivation behind
this definition.

Definition 2.1. Let E0 ⊂ RN be a closed set. Let E be a closed set in RN ×
[0,+∞) and for each t ≥ 0 denote E(t) := {x ∈ RN : (x, t) ∈ E}. We say that
E is a supersolution of the curvature flow (1) with initial datum E0 if

(a) E(0) ⊆ E0;

(b) for all t ≥ 0 if E(t) = ∅, then E(s) = ∅ for all s > t;

(c) E(s)
K−→ E(t) as s↗ t for all t > 0 (left-continuity);

(d) setting d(x, t) := dist(x,E(t)) for (x, t) ∈ RN × (0, T ∗) \ E and

T ∗ := inf{t > 0 : E(s) = ∅ for s ≥ t} ,

then the inequality
∂td ≥ div z (9)

holds in the distributional sense in RN × (0, T ∗) \ E for a suitable z ∈
L∞(RN×(0, T ∗);RN ) such that z ∈ ∂φ(∇d) a.e., div z is a Radon measure
in RN×(0, T ∗)\E, and (div z)+ ∈ L∞({(x, t) ∈ RN×(0, T ∗) : d(x, t) ≥ δ})
for every δ > 0.

We say that A, open set in RN × [0,+∞), is a subsolution with initial datum
E0 if Ac is a supersolution with initial datum (E̊0)c.

Finally, we say that E, closed set in RN × [0,+∞), is a solution with initial
datum E0 if it is a supersolution and if E̊ is a subsolution, both with initial
datum E0.

Remark 2.2. Notice that the initial condition for subsolutions may be rewritten
as E̊0 ⊆ A(0). In particular, if ∂E0 = ∂E̊0 and E is a solution according to the
previous definition, then E(0) = E0.

Remark 2.3. If φ is C2, then one can check that this definition is stronger than
the definition in the viscosity sense (see in particular [47, 10]). If in addition φ2

is strongly convex, this is an equivalence, see Proposition A.1 in the Appendix.

We start by observing some useful continuity properties of the map d intro-
duced in the previous definition.

Lemma 2.4. Let E be a supersolution. Then, for each t ∈ [0, T ∗), d(·, s) con-
verges locally uniformly in {x : d(x, t) > 0} as s ↘ t to for some function dr

with dr ≥ d(·, t) in {x : d(x, t) > 0}.

Proof. By condition (d) of Definition 2.1, the distributional derivative ∂td is
a Radon measure in RN × (0, T ∗) \ E, so that d is locally a function with
bounded variation in this (open) domain. In particular, for a.e. x ∈ RN the map
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s 7→ d(x, s) has a right limit dr(x, t) at each time t ∈ [0, T ∗) such that d(x, t) > 0.
Since the functions d(·, s) are also equi-Lipschitz in space as s varies, we may
conclude that the right limit is in fact locally uniform in {x : d(x, t) > 0}.

Since E is closed, for every t ∈ [0, T ∗] we clearly have that all Kuratowski
cluster points of E(s) as s → t are contained in E(t). In other words, one has
d(x, t) ≤ lim infs→t d(x, s). Thus, dr ≥ d(·, t) in {x : d(x, t) > 0}.

Remark 2.5. Observe that by condition (c) in the definition (which is mostly
technical and forbids artificial constructions such as a supersolution which jumps
to E(t) = RN at a given time t > 0), t 7→ d(·, t) := d(·, E(t)) is left-continuous
with respect to the local uniform convergence.

3 Comparison results

In this section we prove the main comparison principle between sub- and su-
persolutions (see Theorem 3.3). In Lemma 3.2 below, we establish a first (sub-
optimal) comparison result between a supersolution and a suitable anisotropic
total variation flow (see [11, 44]). To this aim, we give an explicit solution to
the anisotropic total variation flow with initial datum φ◦.

Lemma 3.1. The pair (f, ζ) defined by

f(x, t) :=

{
r(t) + tN−1

r(t) if φ◦(x) ≤ r(t) :=
√

(N + 1)t,

φ◦(x) + t N−1
φ◦(x) otherwise

(10)

and

ζ(x, t) :=

{
x
r(t) if φ◦(x) ≤ r(t),
x

φ◦(x) if φ◦(x) ≥ r(t),
(11)

solve the following Cauchy problem for the φ-total variation flow in RN :
∂tf = div ζ a.e. in RN × (0,+∞),

ζ ∈ ∂φ(∇f) a.e. in RN × (0,+∞),

f(·, 0) = φ◦.

(12)

Moreover, given λ > 1, the pair (fλ, ζλ) given by

fλ(x, t) := λf(x, t/λ) ζλ(x, t) := ζ(x, t/λ)

for (x, t) ∈ RN × (0,+∞) solves (12), with the initial datum φ◦ replaced by λφ◦.

Proof. Recalling that ζ ∈ ∂φ(∇f) is equivalent to φ◦(ζ) ≤ 1, ζ · ∇f = φ(∇f)
(see (7)), the proof follows by direct verification. The details are left to the
reader.

Next lemma provides a first comparison estimate, which is far from being
sharp. However, the optimal estimate can be established a posteriori as a con-
sequence of our main comparison theorem (see Theorem 3.3 below).
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Lemma 3.2. Let E be a supersolution and d := dist(·, E(·)) the associated one
parameter family of distance functions. Assume that for some (x̄, t̄) ∈ RN ×
[0,+∞) we have d(x̄, t̄) ≥ R > 0. Then, there exists a constant χN > 0 such
that d(x̄, t̄+ s) ≥ R− χN

√
s for all s ∈ [0, R2/(16χ2

N )].

Proof. Observe first that thanks to Lemma 2.4, since d(·, t̄) ≥ R/4 in {x :
φ◦(x − x̄) ≤ 3R/4} = W (x̄, 3R/4), there exists a (unknown) time t∗ such that
d(·, t̄+ s) > α > 0 in W (x̄, 3R/4) for all s ∈ [0, t∗] for some positive α. We will
compare d with the solution δ of the φ-total variation flow starting from

δ(·, 0) := R− 4

3
φ◦(· − x̄) .

More precisely, if we introduce δ(x, s) := R − f4/3(x − x̄, s), where for any
β > 0, fβ(x, t) := βf(x, t/β) and f is given by (10), by Lemma 3.1 the function
δ satisfies {

∂tδ = div ξ in RN × (0,+∞),

ξ ∈ ∂φ(∇δ) a.e. in RN × (0,+∞),
(13)

where ξ(x, t) = −ζ(x, 3t/4), with ζ defined by (11). Note that δ is negative
outside W (x̄, 3R/4) for all positive times.

Let Ψ(s) be a smooth, convex, nonnegative function, which vanishes only for
s ≤ 0, and consider the function w(x, s) := Ψ(δ(x, s)−d(x, t̄+ s)). Without loss
of generality, we assume to simplify the notation that t̄ = 0. By construction,
w(x, 0) ≡ 0 in W (x̄, 3R/4) and w(·, s) ≡ 0 on ∂W (x̄, 3R/4) for 0 ≤ s ≤ t∗.

Since φ(∇d) ≤ 1 a.e. and ∂td is a measure wherever d is positive, it follows
that d is a function in BVloc(W (x̄, 3R/4) × (0, t∗)) and its distributional time
derivative has the form

∂td =
∑
t∈J

[d(·, t+ 0)− d(·, t− 0)]dx+ ∂dt d

where J is the (countable) set of times where d jumps and ∂dt d is the diffuse
(Cantor+absolutely continuous) part of the derivative. It turns out that d(·, t+
0)− d(·, t− 0) ≥ 0 for each t ∈ J (cf Lemma 2.4). Moreover, since the positive
part of div z is absolutely continuous with respect to the Lebesque measure, (9)
entails

∂dt d ≥ div z.

Using the chain rule for BV functions, see [4]), one has

∂tw =
∑
t∈J

[Ψ(δ(·, t)− d(·, t+ 0))−Ψ(δ(·, t)− d(·, t− 0))]dx

+ Ψ′(δ − d)(∂tδ − ∂dt d) ≤ Ψ′(δ − d)(div ξ − div z).

Hence, for a.e. t ≤ t∗, using the fact that φ and Ψ are convex, Ψ′(δ−d) vanishes

10



on ∂W (x̄, 3R/4) and recalling (13), we have

∂t

∫
W (x̄,3R/4)

wdx ≤
∫
W (x̄,3R/4)

Ψ′(δ − d)(div ξ − div z)

= −
∫
W (x̄,3R/4)

(ξ − z) · (∇δ −∇d)Ψ′′(δ − d) ≤ 0.

It follows that w = Ψ(δ − d) = 0, that is, d ≥ δ a.e. at all times less than t∗.
More precisely, for 0 ≤ s ≤ t∗ we have

d(x̄, t̄+ s) ≥ R− f4/3(x− x̄, s) = R− 4N√
3

√
s

N + 1
=: R− χN

√
s. (14)

It follows that d(x̄, t̄ + s) > 3R/4 and, in turn, d(·, t̄ + s) > 0 on ∂W (x̄, 3R/4)
for all s < min{t∗, R2/(16χ2

N )}. But then we can restart the argument above
to find that (14) remains valid for slightly larger times. Thus, we may conclude
that (14) holds at least for all 0 ≤ s ≤ R2/(16χ2

N ). This concludes the proof of
the lemma.

Now we can state the main result of this section, which is a comparison
result between sub- and supersolutions.

Theorem 3.3. Let E be a supersolution with initial datum E0 and F be a
subsolution with initial datum F 0. Assume that dist(E0, F 0c) =: ∆ > 0. Then
for each t ≥ 0, dist(E(t), F c(t)) ≥ ∆.

Proof. Let T ∗E and T ∗F be the maximal existence time for E and F . For all
t > min{T ∗E , T ∗F } we have that either E or F c is empty. In this case, clearly the
conclusion holds true.

Now, consider the case t ≤ min{T ∗E , T ∗F } (and assume without loss of gener-
ality that T ∗E , T

∗
F > 0). Let us fix 0 < η1 < η′1 < η′′1 < η′′2 < η′2 < η2 < ∆. We

will show the conclusion of the theorem for a time interval (0, t∗) for a suitable
t∗ depending only on η1, η′1, η′′1 , η′′2 , η′2, η2, and ultimately only on ∆. It is
clear then that reiterating the argument yields the conclusion of the theorem
for all times. We recall that dE(x, t) := dist(x,E(t)) − dist(x,Ec(t)) and dF is
defined analogously. We denote by zE and zF the fields appearing in the defini-
tion of super- and subsolutions (see Definition 2.1), corresponding to E and F ,
respectively. Define

S := {x ∈ RN : η1 < dE(x, 0) < η2}

and note that by Lemma 3.2 there exists t∗ > 0 depending only on η1, ∆ − η2

such that

dE(x, t) ≥ dE(x, 0)− χN
√
t

dF (x, t) ≤ dF (x, 0) + χN
√
t

for all x ∈ S and t ∈ (0, t∗). (15)
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We now set

d̃E := dE ∨ (η′1 + χN
√
t) ,

d̃F := (dF + ∆) ∧ (η′2 − χN
√
t) .

Clearly, by our assumptions d̃E(·, 0) ≥ d̃F (·, 0). We claim that

d̃E ≥ d̃F on ∂S × (0, t∗) . (16)

Here and in the rest of the proof we may assume without loss of generality that
t∗ is as small as needed (but still depending only on ∆). To this aim, write
∂S = Γ1 ∪ Γ2, where Γ1 := {dE(·, 0) = η1} and Γ2 := {dE(·, 0) = η2}. Since
dF (·, 0) + ∆ ≤ dE(·, 0) = η1 on Γ1, we deduce

d̃F ≤ dF + ∆ ≤ η1 + χN
√
t ≤ η′1 ≤ d̃E

on Γ1 × (0, t∗). Similarly one can show that the inequality d̃E ≥ d̃F holds on
Γ2 × (0, t∗).

Again by (15) we have

dE ≥
η′′1
2
> 0 in {dE(·, 0) ≥ η′′1} × (0, t∗) (17)

and, observing that dF (·, 0) ≤ η′′2 −∆ in {dE(·, 0) ≤ η′′2},

dF ≤
η′′2 −∆

2
< 0 in {dE(·, 0) ≤ η′′2} × (0, t∗) . (18)

In particular
E(t) ⊂⊂ F (t) for t ∈ (0, t∗) .

We now claim that, setting

S′′ := {x ∈ RN : η′′1 < dE(x, 0) < η′′2},

we have
d̃E = dE and d̃F = dF + ∆ in S′′ × (0, t∗) . (19)

Indeed by (15) we have

dE(x, t) ≥ η′′1 − χN
√
t ≥ η′1 + χN

√
t for (x, t) ∈ S′′ × (0, t∗)

and thus d̃E = dE in S′′ × (0, t∗). The proof of the second identity in (19) is
analogous.

Now we will use quite standard parabolic maximum principles, like in the
proof of Lemma 3.2. Notice that

∂td̃E =
∑
t∈J

[d̃E(·, t+ 0)− d̃E(·, t− 0)]dx+ ∂dt d̃E ,

12



where J is the (countable) set of times where dE possibly jumps and ∂dt d̃E is
the diffuse part of the distributional derivative. Using for instance the chain rule
proved in [4], in S × (0, t∗) we have that

∂dt d̃E =

{
χN

2
√
t

a.e. in {(x, t) : η′1 + χN
√
t > dE(x, t)} ,

∂dt dE |∂dt dE |-a.e. in {(x, t) : η′1 + χN
√
t ≤ dE(x, t)} .

An analogous formula holds for ∂dt d̃F . Recalling that (div zE)+ and (div zF )−

belong to L∞(S × (0, t∗)) it follows that (possibly modifying t∗)

∂dt d̃E ≥ div zE and ∂dt d̃F ≤ div zF (20)

in the sense of measures in S × (0, t∗). Note also that a.e. in S × (0, t∗)

zE ∈ ∂φ(∇d̃E) and zF ∈ ∂φ(∇d̃F ) . (21)

Fix p > N and set Ψ(s) := (s+)p and w := Ψ(d̃F − d̃E). By (16) we have

w = 0 on ∂S × (0, t∗) . (22)

Using as before the chain rule for BV functions, recalling (20) and the fact that
the jump parts of ∂td̃E and ∂td̃F are nonnegative and nonpositive, respectively,
we have

∂tw ≤ Ψ′(d̃F − d̃E)(∂dt d̃F − ∂dt d̃E) ≤ Ψ′(d̃F − d̃E)(div zF − div zE) (23)

in S × (0, t∗). Choose a cut-off function η ∈ C∞c (RN ) such that 0 ≤ η ≤ 1 and
η ≡ 1 on B1. For every ε > 0 we set ηε(x) := η(εx). Using (22) and (23), we
have

∂t

∫
S

wηpεdx ≤
∫
S

ηpεΨ′(d̃F − d̃E)(div zF − div zE)

= −
∫
S

ηpεΨ′′(d̃F − d̃E)(zF − zE) · (∇d̃F −∇d̃E) dx+

p

∫
S

ηp−1
ε Ψ′(d̃F − d̃E)∇ηε · (zF − zE) dx

≤ p
∫
S

ηp−1
ε Ψ′(d̃F − d̃E)∇ηε · (zF − zE) dx,

where we have also used the inequality (zF − zE) · (∇d̃F − ∇d̃E) ≥ 0, which
follows from (21) and the convexity of φ. By Hölder Inequality and using the
explicit expression of Ψ and Ψ′, we get

∂t

∫
S

w ηpεdx ≤ Cp2‖∇ηε‖Lp(RN )

(∫
S

w ηpεdx

)1− 1
p

,

for some constant C > 0 depending only on the L∞-norms of zE and zF . Since
w = 0 at t = 0, a simple ODE argument then yields∫

S

w ηpεdx ≤
(
Cp‖∇ηε‖Lp(RN )t

)p
13



for all t ∈ (0, t∗). Observing that ‖∇ηε‖pLp(RN )
= εp−N‖∇η‖p

Lp(RN )
→ 0 and

ηε ↗ 1 as ε→ 0+, we conclude that w = 0, and in turn d̃E ≥ d̃F in S × (0, t∗).
In particular, by claim (19), we have shown that dE ≥ dF +∆ in S′′×(0, t∗). We
finally claim that dist(E(t), F c(t)) ≥ ∆ for t ∈ (0, t∗). To see this, fix ε ≥ 0, and
let let x ∈ ∂E(t) and y ∈ ∂F (t) be such that φ◦(x− y) ≤ dist(E(t), F c(t)) + ε.
Note that by (17) and (18) we have dE(x, 0) < η′′1 and dE(y, 0) > η′′2 . Thus there
exists z ∈ S′′ ∩ [x, y], where [x, y] denotes the segment joining x and y. Since
dE(·, t) ≥ dF (·, t) + ∆ in S′′, we have

dist(E(t), F c(t)) ≥ φ◦(x− y)− ε = φ◦(x− z) + φ◦(z − y)− ε ≥
− dF (z, t) + dE(z, t)− ε ≥ ∆− ε. (24)

The claim follows by the arbitrariness of ε, and this concludes the proof of the
theorem.

4 Existence via minimizing movements

In this section we prove an existence result for the crystalline curvature flow,
according to Definition 2.1. Such a solution is obtained via a variant of the
Almgren-Taylor-Wang minimizing movements scheme ([2]) introduced in [18,
15, 16].

4.1 Minimizing movements

Let E0 ⊂ RN be closed. Fix a time-step h > 0 and set E0
h = E0. We then

inductively define Ek+1
h (for all k ∈ N) according to the following procedure: If

Ekh 6= ∅, RN , then let (uk+1
h , zk+1

h ) : RN → R× RN satisfy{
−hdiv zk+1

h + uk+1
h = dEk

h
,

zk+1
h ∈ ∂φ(∇uk+1

h ) a.e. in RN ,
(25)

and set Ek+1
h := {x : uk+1

h ≤ 0}. If either Ekh = ∅ or Ekh = RN , then set

Ek+1
h := Ekh. We denote by T ∗h the first discrete time hk such that Ekh = ∅, if

such a time exists; otherwise we set T ∗h = +∞. Analogously, we denote by T ′h
∗

the first discrete time hk such that Ekh = RN , if such a time exists; otherwise we
set T ′h

∗
= +∞. In Proposition 4.1 below we will show that this construction is

well defined, since problem (25) admits a unique solution uk+1
h that is Lipschitz

continuous. In particular, Ek+1
h is a closed set for all k.

Before stating the main facts about the differential problem (25), we re-
call that given z ∈ L∞(RN ;RN ) with div z ∈ L2

loc(RN ) and w ∈ BVloc(RN ) ∩
L2
loc(RN ), z · Dw denotes the Radon measure associated with the linear func-

tional

Lϕ := −
∫
RN

wϕdiv z dx−
∫
RN

w z · ∇ϕdx for all ϕ ∈ C∞c (RN ),

see [9].
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Proposition 4.1. Let g ∈ L2
loc(RN ). There exists a field z ∈ L∞(RN ;W (0, 1))

and a unique function u ∈ BVloc(RN ) ∩ L2
loc(RN ) such that the pair (u, z) sat-

isfies  −hdiv z + u = g in D′(RN ),
φ◦(z) ≤ 1 a.e. in RN ,
z ·Du = φ(Du) in the sense of measures.

(26)

Moreover, for any R > 0 and v ∈ BV (BR) with Supp (u− v) b BR,

φ(Du)(BR) +
1

2h

∫
BR

(u− g)2 dx ≤ φ(Dv)(BR) +
1

2h

∫
BR

(v − g)2 dx,

and for every s ∈ R the set Es := {x ∈ RN : u(x) ≤ s} solves the minimization
problem

min
F∆EsbBR

Pφ(F ;BR) +
1

h

∫
F∩BR

(g(x)− s) dx.

If g1 ≤ g2 and if u1, u2 are the corresponding solutions to (26) (with g
replaced by g1 and g2, respectively), then u1 ≤ u2.

Finally if in addition g is Lipschitz with φ(∇g) ≤ 1, then the unique solution
u of (26) is also Lipschitz and satisfies φ(∇u) ≤ 1 a.e. in RN . As a consequence,
(26) is equivalent to {

−hdiv z + u = g in D′(RN ) ,

z ∈ ∂φ(∇u) a.e. in RN
(27)

Proof. See [15, Theorem 2], [1, Theorem 3.3].

Remark 4.2 (Consistency with the ATW scheme). When ∂E0 is bounded, the
minimality property of the level sets stated above shows, in particular, that the
sets Ekh are constructed according to the Almgren-Taylor-Wang scheme [2].

Since by the previous proposition φ(∇uk+1
h ) ≤ 1 a.e. in RN , one deduces, in

particular, that

uk+1
h ≤ dEk+1

h
in {x : dist(x,Ek+1

h ) > 0} ,
uk+1
h ≥ dEk+1

h
in {x : dist(x,Ek+1

h ) < 0} . (28)

We are now in a position to define the time discrete evolutions. Precisely,
we set

Eh := {(x, t) : x ∈ E[t/h]
h },

Eh(t) := E
[t/h]
h = {x : (x, t) ∈ Eh},

dh(x, t) := dEh(t)(x),

uh(x, t) := u
[t/h]
h (x),

zh(x, t) := z
[t/h]
h (x),

(29)

where [·] stands for the integer part of its argument.
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Remark 4.3 (Discrete comparison principle). The last part of Proposition 4.1
implies that the scheme is monotone, that is, the discrete evolutions satisfy
the comparison principle. More precisely, if E0 ⊆ F 0 are closed sets and if we
denote by Eh and Fh the discrete evolutions with initial datum E0 and F 0,
respectively, then Eh(t) ⊆ Fh(t) for all t ≥ 0. Analogously, if E0 ⊂ (F 0)c, then
Eh(t) ⊂ (Fh(t))c for all t ≥ 0.

4.2 Comparison with the Wulff shape

In this subsection, we exploit Remark 4.3 to compare the discrete evolutions (29)
with the minimizing movements of the Wulff shape and derive an estimate, which
will be useful in the convergence analysis. The evolution starting from a Wulff
shape W (0, R) is explicitly known. Indeed, from [15, Appendix B, Eq. (39)], the
solution of (26), with g replaced by dW (0,R) = φ◦ −R, is given by (φ◦h −R, zh),
where

φ◦h(x) :=

{√
h 2N√

N+1
if φ◦(x) ≤

√
h(N + 1),

φ◦(x) + h N−1
φ◦(x) otherwise,

(30)

and

zh(x) :=


(

2
√
h(N+1)−φ◦(x)

)
x

h(N+1) if φ◦(x) ≤
√
h(N + 1),

x
φ◦(x) otherwise.

This can be checked by direct computation. It follows that if E0 = W (0, R),
one has Eh(t) = W (0, rRh (t)) for a function rRh that satisfies

rRh (h) =
R+

√
R2 − 4h(N − 1)

2

if h ≤ R2/(4(N + 1)). In particular,

rRh (h) ≥
√
R2 − 4h(N − 1)

for the same h’s. By iteration, we have rRh (t) ≥
√
R2 − 4t(N − 1) ≥ R√

2
for

0 ≤ t ≤ R2/(8(N − 1)) and h ≤ R2/(8(N + 1)). Since rRh (t) = R for t ∈ [0, h),
we infer

rRh (t) ≥
√
R2 − 4t(N − 1) (31)

for 0 ≤ t ≤ R2/(8(N + 1)) and for all h.
Now we return to the motion from an arbitrary set E0. If for some (x, t) ∈

RN × [0, T ′h
∗
) we have dh(x, t) > R, then W (x,R) ∩ Eh(t) = ∅. Hence, by the

comparison principle stated in Remark 4.3 and by (31) we have

dh(x, s) ≥
√
R2 − 4(N − 1)(s− t+ h)

for t < s and s+ h− t < R2/(8(N + 1)).
By letting R↗ dh(x, t) we obtain

dh(x, s) ≥
√
d2
h(x, t)− 4(N − 1)(s− t+ h) (32)
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for t < s and s+ h− t < d2
h(x, t)/(8(N + 1)).

By the same argument, if dh(x, t) < −R for some (x, t) ∈ RN × [0, T ∗h ), then
W (x,R) ⊂ Eh(t) and thus, again by the discrete comparison principle and by
(31) we have

dh(x, s) ≤ −
√
R2 − 4(N − 1)(s− t+ h)

for t < s and s+ h− t < R2/(8(N + 1)). Letting R↗ −dh(x, t) we obtain

dh(x, s) ≤ −
√
d2
h(x, t)− 4(N − 1)(s− t+ h) (33)

for t < s and s+ h− t < d2
h(x, t)/(8(N + 1)).

4.3 Convergence of the scheme

Up to a subsequence we have

Ehl

K−→ E and (E̊hl
)
c K−→ Ac

for a suitable closed sets E and a suitable open set A ⊂ E. Define E(t) and A(t)
as in (29).

Observe that if E(t) = ∅ for some t ≥ 0, then (32) implies that E(s) = ∅ for
all s ≥ t so that we can define, as in Definition 2.1, the extinction time T ∗ of
E, and similarly (in view of (33)) the extinction time T ′

∗
of Ac. Notice that at

least one between T ∗ and T ′
∗

is +∞. Possibly extracting a further subsequence,
we have the following result:

Proposition 4.4. There exists a countable set N ⊂ (0,+∞) such that dhl
(·, t)+ →

dist(·, E(t)) and dhl
(·, t)− → dist(·, Ac(t)) locally uniformly for all t ∈ (0,+∞)\

N .
Moreover, for every x ∈ RN the functions dist(x,E(·)) and dist(x,Ac(·)) are

left continuous and right lower semicontinuous. Equivalently, the functions E(·)
and Ac(·) are left continuous and right upper semicontinuous with respect to the

Kuratowski convergence. Finally, E(0) = E0 and A(0) = E̊0.

Proof. By the Ascoli-Arzelà Theorem and a standard diagonal argument, we
may extract a further (not relabeled) subsequence such that dhl

(·, t) → d(·, t)
locally uniformly for all t ∈ Q ∩ (0,+∞), where d(·, t) is either a Lipschitz
function or infinite everywhere. In the latter case, either d(·, t) ≡ +∞ or d(·, t) ≡
−∞.

We observe that for all t ∈ (0, T ∗) ∩Q we have d(·, t) < +∞. To see this we
argue by contradiction assuming that for every x ∈ RN and for every M > 0
we have dhl

(x, t) > M for all l large enough. We may now apply (32) to deduce
that there exists a right interval (t, t′) independent of l such that dhl

(x, s) > M
2

for l large enough and for all s ∈ (t, t′); that is, dhl
(·, s)→ +∞ for all s ∈ (t, t′).

This in turn would imply E(s) = ∅ for all s ∈ (t, t′), which is impossible since
t < T ∗. Using (33) instead of (32) and arguing similarly, one can show that for
all t ∈ (0, T ′

∗
)∩Q we have d(·, t) > −∞.
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Assume that d(x, t) > 0, t ∈ Q ∈ (0,∞). Then, dhl
(x, t) > 0 for l large

enough, so that by (32) dhl
(x, s) ≥

√
d2
hl

(x, t)− 4(N − 1)(s− t+ hl) for t < s

and s + hl − t < C(N)d2
hl

(x, t), where we have set C(N) := 1/(8(N + 1)). In
turn, sending l→∞, we obtain

d(x, s) ≥
√
d2(x, t)− 4(N − 1)(s− t)

for t, s ∈ Q s.t. 0 < s− t < C(N)d2(x, t). (34)

Symmetrically, using (33) in place of (32), we can deduce that if d(x, t) < 0,
then

d(x, s) ≤ −
√
d2(x, t)− 4(N − 1)(s− t)

for t, s ∈ Q s.t. 0 < s− t < C(N)d2(x, t). (35)

Suppose now that lim sups∈Q,s→t+ d(x, s) =: R > 0, and let tk → t+ be a
sequence of rational numbers such that d(x, tk) → R. Fix s ∈ Q such that

0 < s − t < C(N)
4 R2. Since for k large enough we have t < tk < s and

d(x, tk) ≥ R
2 , we may apply (34) to deduce that for all such k’s we have

d(x, s) ≥
√
d2(x, tk)− 4(N − 1)(s− tk). Sending k → ∞ we obtain d(x, s) ≥√

R2 − 4(N − 1)(s− t) and, in turn,

lim inf
s∈Q,s→t+

d(x, s) ≥ lim sup
s∈Q,s→t+

d(x, s) . (36)

If lim infs∈Q,s→t+ d(x, s) < 0, then we may argue in a similar way, using (35)
instead of (34), to conclude that also in this case (36) holds. Summarizing, we
have shown that lims∈Q,s→t+ d(x, s) exists at all t. We denote by d(x, t+0) such
a right limit.

Assume now that lim sups∈Q,s→t− d(x, s) =: R > 0. Let tk → t− be a se-

quence of rational numbers such that d(x, tk) → R, d(x, tk) ≥ R
2 and 0 <

t − tk ≤ C(N)
4 R2 for all k. Analogously, let sj → t− be a sequence of ratio-

nal numbers such that d(x, sj) → lim infs∈Q,s→t− d(x, s). Fix k ∈ N. Then,
for all j large enough we have tk < sj < t, so that we may apply (34) and

get d(x, sj) ≥
√
d2(x, tk)− 4(N − 1)(sj − tk). Sending first j → ∞ and then

k →∞ we arrive at

lim inf
s∈Q,s→t−

d(x, s) ≥ lim sup
s∈Q,s→t−

d(x, s) .

The same conclusion can be reached if lim infs∈Q,s→t− d(x, s) < 0, by arguing
similarly and using (35) instead of (34). Summarizing, we have shown that also
lims∈Q,s→t− d(x, s) exists at all t. We will denote by d(x, t− 0) such a left limit.

Suppose now that lim supl→∞,s→t dhl
(x, s) =: R > 0 and let lk → ∞ and

tk → t be such that dhlk
(x, tk) → R. Let s ∈ Q be such that 0 < s − t <

C(N)
8 R2. Then, for k sufficiently large we have that tk < s, |tk − t| < C(N)

8 R2,
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dhlk
(x, tk) ≥ R

2 , and s + hlk − tk ≤ s + hlk − t + |tk − t| < C(N)
4 R2. We may

then apply (32) to get dhlk
(x, s) ≥

√
d2
hlk

(x, tk)− 4(N − 1)(s+ hlk − tk) for k

sufficiently large. Sending k →∞ we deduce d(x, s) ≥
√
R2 − 4(N − 1)(s− t).

In turn, passing to the limit as s → t+, s ∈ Q, we conclude that d(x, t + 0) ≥
R = lim supl→∞,s→t dhl

(x, s). A similar argument shows that if d(x, t− 0) > 0,
then lim inf l→∞,s→t dhl

(x, s) ≥ d(x, t − 0). Arguing symmetrically (and using
(33) instead of (32)), we can also show that if lim inf l→∞,s→t dhl

(x, s) < 0,
then d(x, t + 0) ≤ lim inf l→∞,s→t dhl

(x, s) and that if d(x, t − 0) < 0, then
lim supl→∞,s→t dhl

(x, s) ≤ d(x, t− 0). All the above discussion can be summa-
rized as follows:

d(x, t+ 0)± ≥ lim sup
l→∞,s→t

dhl
(x, s)±

≥ lim inf
l→∞,s→t

dhl
(x, s)± ≥ d(x, t− 0)±.

(37)

Let N be the set of all times t such that the left and right limits of d differ
at (x, t), for some x ∈ RN (we also assume 0 ∈ N ). Notice that N is countable,
since it can be written as the union over k ∈ N and x ∈ QN of the times such
that the gap between the right and left limit of d(x, ·) is larger than 1/k (which
for k and x fixed cannot have cluster points). We denote by d(x, t) the common
value of the right and left limits of d(x, ·) at t 6∈ N .

By (37) we immediately have that liml→∞ dhl
(·, t) = d(·, t) for all t 6∈ N .

We now show that for t 6∈ N , we have d(·, t)+ = dist(·, E(t)). This is equivalent
to showing that E(t) coincides with the Kuratowski limit K of Ehl

(t), since
d(·, t)+ = dist(·,K). Clearly, K ⊆ E(t). Conversely, if x 6∈ K, then d(x, t)+ =:
R > 0. Since d is continuous at t, we may find ε so small that liml→∞ dhl

(x, t−
ε) ≥ d(x, t− ε) > R/2 and in turn, by (32), W (x,R/4)× [t− ε, t+ ε]∩Ehl

= ∅
for l large enough. Thus x 6∈ E(t), showing that E(t) = K and d(x, t)+ =
dist(x,E(t)). A similar argument (now relying on (33)) yields that d(x, t)− =
dist(x,Ac).

Always by (32), one can easily prove that E(0) ⊆ E0. Since Ehl
(0) = E0 for

all l, we infer the equality E(0) = E0. Symmetrically, using (33) one can show

that A(0) = E̊0.
Finally, we prove the continuity properties of E(t) (the proof of the continuity

properties of Ac(t) being fully analogous). The right upper semicontinuity with
respect to the Kuratowski convergence is a consequence of the fact that E is
closed. Let us prove now the left continuity. To this aim, denote by K̂ the
Kuratowski limit of E(s) as s ↗ t. Clearly K̂ ⊆ E(t). Let now x 6∈ K̂. Then
lims↗t dist(x,E(s)) = dist(x, K̂) =: R > 0. Arguing exactly as before we may
choose ε so small that lim inf l dist(x,Ehl

(t− ε)) ≥ dist(x,E(t− ε)) > R/2 and
W (x,R/4) × [t − ε, t + ε] ∩ Ehl

= ∅ for all l large enough, so that x 6∈ E(t).

Hence K̂ = E(t). This establishes the Kuratowski left-continuity of E(·) and
concludes the proof of the proposition.

Theorem 4.5. The set E is a supersolution in the sense of Definition 2.1 with
initial datum E0, while A is a subsolution with initial datum E0.
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Proof. Points (a), (b) and (c) of Definition 2.1 follow from Proposition 4.4.
It remains to show (d). Possibly extracting a further subsequence and setting
zhl

(·, t) := 0 for t > T ∗hl
if T ∗hl

< T ∗, we may assume that zhl
converges weakly-

∗ in L∞(RN × (0, T ∗);RN ) to some vector-field z satisfying φ◦(z) ≤ 1 almost
everywhere. Recall that by (28) we have uk+1

h ≤ dEk+1
h

, whenever dEk+1
h
≥ 0. In

turn, it follows from (25) that

div zk+1
h ≤

dEk+1
h
− dEk

h

h
a.e. on {dEk+1

h
≥ 0}. (38)

Consider a nonnegative test function η ∈ C∞c ((RN × (0, T ∗)) \ E). If l is large
enough, then the distance of the support of η from Ehl

is bounded away from
zero. In particular, dhl

is finite and positive on Supp η. We deduce from (38)
that∫ ∫

η(x, t)

(
dhl

(x, t+ hl)− dhl
(x, t)

hl
− div zhl

(x, t+ hl)

)
dtdx

= −
∫ ∫ (

η(x, t)− η(x, t− hl)
hl

dhl
(x, t)− zhl

(x, t+ hl) · ∇η(x, t)

)
dtdx ≥ 0.

Passing to the limit l→∞ we obtain (9).
Next, we establish an upper bound for div zhl

away from Ehl
. To this aim

observe that
dEk

h
= min
y∈Ek

h

φ◦(· − y)

so that, by (25) and the comparison principle stated at the end of Proposi-
tion 4.1,

uk+1
h ≤ min

y∈Ek
h

φ◦h(· − y)

where φ◦h is given in (30). Thus, if dEk
h
(x) ≥ R > 0, then

uk+1
h (x) ≤ min

y∈Ek
h

φ◦(x− y) + h
N − 1

R
= dEk

h
(x) + h

N − 1

R
,

provided h ≤ R2/(N + 1). As a consequence of (25), we obtain

div zk+1
h ≤ N − 1

R
a.e. in {x : dEk

h
(x) ≥ R}. (39)

It is then easy to deduce from the convergence properties of Ehl
and dhl

that

div z ≤ N − 1

R
in {(x, t) ∈ RN × (0, T ∗) : d(x, t) > R}

in the sense of distributions. It follows that div z is a Radon measure in RN ×
(0, T ∗) \ E, and (div z)+ ∈ L∞({(x, t) ∈ RN × (0, T ∗) : d(x, t) ≥ δ}) for every
δ > 0.
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We now provide a lower (h-dependent) bound for div zhl
. To this aim, note

that if dEk
h
(x) =: R > 0, then dEk

h
≥ R − φ◦(· − x). Thus, by comparison as

before,

uk+1
h (x) ≥ R− φ◦h(0) = R−

√
h

2N√
N + 1

.

In turn, by (25), we deduce

div zk+1
h ≥ − 1√

h

2N√
N + 1

a.e. in {x : dEk
h
(x) > 0}.

Combining the above inequality with (39) and using (25) again, we deduce that
for all t ∈ (0, T ∗)\N (where recall that N is introduced in Proposition 4.4) and
any δ > 0

‖uhl
(·, t)− dhl

(·, t− hl)‖L∞({x:dhl
(x,t−hl)≥δ}) ≤

√
hl

2N√
N + 1

,

provided that l is large enough. In particular, recalling the convergence proper-
ties of Ehl

and dhl
(see also (37)), we deduce that

uhl
→ d a.e. in RN × (0, T ∗) \ E, (40)

with the sequence {uhl
} locally (in space and time) uniformly bounded.

Consider now, as before, a nonnegative test function η ∈ C∞c ((RN×(0, T ∗))\
E). Then, recalling (40), we have by lower semicontinuity∫ ∫

φ(∇d)η dxdt ≤ lim inf
l

∫ ∫
φ(∇uhl

)η dxdt = lim inf
l

∫ ∫
(zhl
·∇uhl

)η dxdt.

On the other hand,∫ ∫
(zhl
· ∇uhl

)η dxdt =

∫ ∫
(zhl
· ∇d)η dxdt+

∫ ∫
zhl
· ∇(uhl

− d)η dxdt,

with ∫ ∫
(zhl
· ∇d)η dxdt

l→∞−→
∫ ∫

(z · ∇d)η dxdt.

Hence, we obtain ∫ ∫
φ(∇d)η dxdt ≤

∫ ∫
(z · ∇d)η dxdt, (41)

provided we show that

lim
l

∫ ∫
zhl
· ∇(uhl

− d)η dxdt = 0. (42)

For each t, set

ml(t) := min
x∈Supp η(·,t)

(
uhl

(x, t)−d(x, t)
)
, Ml(t) := max

x∈Supp η(·,t)

(
uhl

(x, t)−d(x, t)
)
.
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Recall that these quantities are uniformly bounded and converge to 0 at all
t 6∈ N . Then, we can write∫ ∫

zhl
· ∇(uhl

− d)η dxdt =

∫ ∫
zhl
· ∇(uhl

− d−ml)η dxdt

= −
∫ ∫

(uhl
− d−ml)(zhl

· ∇η + ηdiv zhl
) dxdt. (43)

For l large enough, since the support of η is at positive distance from E there
exists δ > 0 such that dhl

≥ δ everywhere on this support, so that div zhl
≤

(N − 1)/δ. It follows that

−
∫ ∫

(uhl
− d−ml)ηdiv zhl

dxdt ≥ −N − 1

δ

∫ ∫
(uhl
− d−ml)η dxdt

l→∞−→ 0,

thanks also to (40). Recalling (43), we can conclude that

lim inf
l

∫ ∫
zhl
· ∇(uhl

− d)η dxdt ≥ 0.

In the same way, writing now∫ ∫
zhl
· ∇(uhl

− d)η dxdt =

∫ ∫
zhl
· ∇(uhl

− d−Ml)η dxdt

and using uhl
− d−Ml ≤ 0 a.e. on Supp η, one can show that

lim sup
l

∫ ∫
zhl
· ∇(uhl

− d)η dxdt ≤ 0

so that (42) follows. In turn, (41) holds, that is, φ(∇d) ≤ z · ∇d a.e. in RN ×
(0, T ∗) \E. On the other hand, recalling that φ◦(z) ≤ 1 a.e. in RN × (0, T ∗), we
have

z · ∇d ≤ φ(∇d)

a.e. in RN × (0, T ∗). We conclude that φ(∇d) = z ·∇d and, in turn, z ∈ ∂φ(∇d)
a.e. in RN × (0, T ∗)\E. This concludes the proof that E is a supersolution. The
proof that A is a subsolution is identical.

Corollary 4.6. Let u0 be a bounded, uniformly continuous in RN . Then for all
s ∈ R but a countable number, the minimizing movement scheme starting from
E0
s = {u0 ≤ s} converges to the unique solution of the curvature flow in the

sense of Definition 2.1, with initial datum E0
s .

Proof. The arguments are standard and rely on the comparison theorem 3.3.
The essential point is that since u0 is uniformly continuous, then for s 6= s′

the sets ∂E0
s and ∂E0

s′ are at positive distance, so that thanks to Theorems 4.5
and 3.3, limits of discrete flows starting from each of these two sets also remain at
(the same) positive distance. The bad set is the set of levels for which “fattening”
occurs, that is, |E \ A| > 0. The embedding of the level sets (and the fact that
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the fattening must last for a positive time) yields that this may happen only for
a countable number of levels. For any other level there is only one possible limit,
showing that the minimizing movement scheme is converging. This construction
also provides a unique level-set solution u(x, t) starting from u0, which shares
the same spatial modulus of continuity and is also uniformly continuous in time.
(cf for instance [16, 19]).

Remark 4.7 (Star-shaped initial sets and graphs). A natural issue is to under-
stand under which circumstances fattening does not occur. To our knowledge,
there is no general result, even for the classical mean curvature flow. On the
other hand, it is classical [47, Sec. 9] that strictly star-shaped sets do not de-
velop fattening and the proof in [47] is valid in our setting. In the same way,if
∂E0 is the graph of a uniformly continuous functions, similar arguments will
show that it cannot develop fattening and that the evolution from E0 is unique
and remains a graph (with the same modulus of continuity) for all time, as in
the classical case [23, 25].

5 Conclusion and perspectives

In this paper we have shown the existence and uniqueness of a mean curvature
flow (namely, the “natural” flow by mean curvature along the Cahn-Hoffmann
vector field) with a technique which does not require any type of regularity on the
surface tension, and thus have provided the first sound definition of a crystalline
curvature flow in any dimension. It does not require that the initial surface is
bounded and applies, in particular, also to the case of graphs. The uniqueness
result is based on a very standard parabolic comparison principle. The general
approach, based on the fact that the level sets of the distance functions have
nonincreasing curvatures as the distance increases (as was exploited as early as
in [27, 47] in the viscosity setting), can quite probably be used in more general
situations, and even maybe for motions which are not necessarily variational.
However, it should need substantial adaption. For instance, if replacing the
mobility m = φ◦ in our approach by other (convex) functions is in principle
easy (it is enough to consider, for the distance functions, the m-distance function
instead of the φ◦-distance), in the nonsmooth case it yields difficulties which still
require further investigation. Indeed, if m is smooth and φ is not, then it will
not be true anymore that the level sets of the distance function have globally
bounded curvature as the distance increases, so that Definition 2.1 needs to be
changed. It is not yet clear what assumption on (div z)± is then useful in order
to be able to derive both existence and uniqueness. We will address this issue
in a forthcoming paper.

A Superflows and viscosity supersolutions

In this Appendix, we prove briefly the assertion in Remark 2.3: when φ ∈
C2(RN \ {0}), we claim that a superflow/supersolution in our sense is also a
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viscosity supersolution of the corresponding geometric partial differential equa-
tion:

∂td = φ(∇d)div∇φ(∇d). (44)

In particular, in that case, comparison and existence of solutions follows from
the standard theory [21]. In fact, the following holds:

Proposition A.1. Assume φ ∈ C2(RN \ {0}). Then, if E is a superflow in
the sense of Definition 2.1, with extinction time T ∗ ∈ (0,+∞], the function
d(x, t) := dist(x,E(t)) is a lower semicontinuous viscosity supersolution of (44)
in RN × (0, T ∗). If in addition, φ◦ ∈ C2(RN \ {0}), then the converse holds.

Proof. Consider a supersolution in the sense of Definition 2.1. A first remark
is that (see Lemma 2.4) d is lower semicontinuous. Let ψ be a smooth test
function and assume d − ψ has a strict local minimum at a point (x̄, t̄), with
d(x̄, t̄) = ψ(x̄, t̄) > 0. First of all, it is standard that in this case one must be at
a point of differentiability for d, where φ(∇ψ(x̄, t̄)) = φ(∇d(x̄, t̄)) = 1. Let us
assume, by contradiction, that in (x̄, t̄),

∂tψ < φ(∇ψ)div∇φ(∇ψ) = div∇φ(∇ψ),

so that by continuity of ψ and∇φ, D2φ we may assume that the strict inequality
also holds in a neighborhood B = Bδ(x̄, t̄) of (x̄, t̄). Assume in addition δ and
ε > 0 are such that d(x, t) − ψ(x, t) ≥ 2ε in Bδ(x̄, t̄) \ Bδ/2(x̄, t̄) and consider,
given Ψ ∈ C∞(R), nonincreasing, convex, vanishing on R+ and positive on
(−∞, 0), the function w = Ψ(d − ψ − ε)χB . It is BV in time, Lipschitz in
space, and compactly supported in Bδ/2(x̄, t̄), moreover w(x̄, t̄) = Ψ(−ε) > 0
(and this also holds in a neighborhood of x̄, by continuity). As in the proofs of
Lemma 3.2 and Theorem 3.3, we can compute (using Ψ′ ≤ 0 and the chain rule
for BV functions)

∂tw ≤ Ψ′(d− ψ − ε)(∂dt d− ∂tψ) ≤ Ψ′(d− ψ − ε)(div∇φ(∇d)− div∇φ(∇ψ))

where the inequality holds as measures in B. Hence,

∂t

∫
w dx ≤

∫
χBΨ′(d− ψ − ε)div (∇φ(∇d)−∇φ(∇ψ))

= −
∫
χBΨ′′(d− ψ − ε)(∇φ(∇d)−∇φ(∇ψ) · (∇d−∇ψ) dx ≤ 0.

However, for t = t̄− δ/2, w(·, t) ≡ 0, hence one cannot have w(·, t̄) > 0 near x̄:
a contradiction. We deduce

∂tψ(x̄, t̄) ≥ φ(∇ψ(x̄, t̄))div∇φ(∇ψ)(x̄, t̄) (45)

so that we have shown that d is a viscosity supersolution in {d > 0}.
If now, d− ψ has a strict local minimum at (x̄, t̄) with d(x̄, t̄) = ψ(x̄, t̄) = 0,

there are two situations. In case ∇ψ(x̄, t̄) = 0, it is standard that one may also
assume that D2ψ vanishes at this point (see [40]). Then, one can prove that
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the estimate in Lemma 3.2 will lead to a contradiction if ∂tψ(x̄, t̄) < 0. Hence
∂tψ(x̄, t̄) ≥ 0.

In case p̄ = ∇ψ(x̄, t̄) 6= 0, then near this point, {ψ ≤ 0} is a smooth set
which contains E, with a contact at (x̄, t̄). Then, δ(x, t) = dist(x, {ψ ≤ 0}) is
a new, smooth function near (x̄, t̄) such that d − δ has a local minimum, not
only at (x̄, t̄), but also at (x̄s, t̄) for x̄s = x̄+ s∇φ(p̄), s > 0 small. It follows (as
in (45)) that ∂tδ(x̄s, t̄) ≥ div∇φ(∇δ)(x̄s, t̄) and letting then s → 0, we deduce
that (45) holds again. Hence, d is a viscosity supersolution of the geometric
equation (44).

Conversely, assuming now that φ◦ is also C2, consider E ⊂ RN × [0, T )
such that d(x, t) := dE(t)(x) is a (lower semicontinuous) viscosity supersolution
of (45).

A first step is to show, by standard comparison (with explicit solutions) that
an inequality such as (33) still holds: for any t, τ, x:

d(x, t+ τ)2 ≥ d(x, τ)2 − cτ

for some constant c (in other words the function d(·, t)2 + ct is nondecreasing).
We omit the proof of this point. One can deduce that ∂td ≥ −c/δ in {d > δ},
for some constant c, in the distributional sense. Property (c) in Definition 2.1
easily follows, using the fact that d is lower semicontinuous. We need now to
show (d).

As the property is local, we can work in a small ball B ⊂⊂ {d > δ}. A first
observation is that the regularity of φ◦ implies that d is semiconcave in the x
variable in B, thanks to the inequality:

d(x+h, t)− 2d(x, t) + d(x−h, t) ≤ φ◦(x+h− y)− 2φ◦(x− y) +φ◦(x−h− y)

=

∫ 1

−1

(1− |s|)(D2φ◦(x− y + sh)h) · h ds

≤ c|h|2
∫ 1

−1

1− |s|
φ◦(x− y + sh)

ds ≤ c

δ
|h|2,

where y is the projection of x on ∂E(t) provided h is small enough (φ◦(h) ≤ δ/2).
We have used here the fact that φ◦D2φ◦ is zero-homogeneous and bounded.

For ε > 0, we introduce

dε(x, t) = min
s≤t

d(x, t− s) +
s2

2ε
. (46)

We assume ε is small enough, so that the minimum is always reached at a point
(x, t − s) ∈ {d > δ}, for (x, t) ∈ B. Then it is standard that dε is semiconcave
in B: if (x± h, t± τ) ∈ B and s reaches the minimum in (46), we have now

dε(x+ h, t+ τ)− 2dε(x, t) + dε(x− h, t− τ)

≤ d(x+ h, t− s) +
(s+ τ)2

2ε
− 2d(x, t− s)− s2

ε
+ d(x− h, t− s) +

(s− τ)2

2ε

≤ c

δ
h2 +

1

ε
τ2,
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again if φ◦(h) is small enough. As an infimum of supersolutions, it is also a
viscosity supersolution (at least if ε is small enough, so that the minimum in (46)
is reached for t−s > 0). Using Aleksandrov’s theorem (see [22] and the versions
in [46] and [43]), one has at a.e. (x, t) ∈ B a second order jet:

dε(x+ h, t+ τ) = dε(x, t) + ∂td
ε(x, t)τ +∇dε(x, t) · h+

1

2
(D2dε(x, t)h) · h

+
1

2
∂2
ttd

ε(x, t)τ2 + τ∂t∇dε(x, t) · h+ o(τ2 + |h|2) (47)

= dε(x, t) + ∂td
ε(x, t)τ +∇dε(x, t) · h+

1

2
(∇2dε(x, t)h) · h

+ o(|τ |+ |h|2).

(Clearly, the corresponding functions∇dε(x, t),∇2dε(x, t), ∂td
ε(x, t) and ∂t∇dε(x, t),

defined a.e. in B, must be measurable.)
Being dε a viscosity supersolution, it follows at such a point that

∂td
ε(x, t) ≥ φ(∇dε)D2φ(∇dε(x, t)) : ∇2dε(x, t). (48)

On the other hand, letting zε(x, t) := ∇φ(∇dε(x, t)), if ρη is a (spatio-temporal)
smoothing kernel and dεη = ρη ∗ dε, zεη = ∇φ(∇dεη), we have

div zεη = D2φ(∇dεη) : D2dεη.

Since zεη → zε as η → 0 (for instance in any Lp, p < ∞), then div zεη → div zε

in D′(B). On the other hand, as D2dε is a Radon measure which is bounded
from above, its singular part is nonpositive and it follows from (47) and Radon-
Nykodym’s theorem that

D2dε = ∇2dε(x, t)dxdt+ (D2dε)s ≤ ∇2dε(x, t)dxdt.

Hence,
D2φ(∇dεη) : D2dεη ≤ D2φ(∇dεη) : (ρη ∗ ∇2dε)

and in the limit we obtain that

div zε ≤ D2φ(∇dε(x, t)) : ∇2dε(x, t)dxdt

as measures in B. Then, (48) implies

∂td
ε(x, t) ≥ φ(∇dε)div zε. (49)

Observe that, given (x, t) ∈ B, if s reaches the minimum in (46) and if p ∈
∂+d(x, t− s) (the supergradient at x of d(·, t− s), which is semiconcave), then
for any h small,

dε(x+ h, t) ≤ d(x+ h, t− s) +
s2

2ε

≤ d(x, t− s) + p · h+
c

δ
|h|2 +

s2

2ε
= dε(x, t) + p · h+

c

δ
|h|2
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so that p ∈ ∂+dε(x, t). If in addition dε(·, t) is differentiable at x, it follows that
p = ∇dε(x, t) must be the unique point in ∂+d(x, t− s), and therefore equal to
∇d(x, t− s). As a consequence, φ(∇dε(x, t)) = 1 a.e. in B.

Sending ε to zero in (49), we deduce that, still as measures in B,

∂td ≥ div z̃

where z̃ is a L∞ weak-∗ limit of zε as ε → 0. It remains to check that z̃ = z:
in fact, this easily follows from simple convexity arguments. At a continuity
point t of d, one has that dε(·, t)→ d(·, t), as ε→ 0, uniformly in space (in B),
moreover these functions are semiconcave all with the same constant. It follows
that ∇dε(·, t) → ∇d(·, t) a.e. as ε → 0. Lebesgue’s theorem ensures then that
∇dε → ∇d in Lp(B) for all p < ∞. By continuity of ∇φ, it follows zε → z.
Hence z̃ = z.

It is unclear whether this is still true without the assumption that φ◦ is C2.
However, as we still expect that div z ≤ (N − 1)/d in this case, it could hold as
well.
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