
HAL Id: hal-01371344
https://hal.science/hal-01371344v1

Submitted on 25 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Voicing of Animated GIF by Data Hiding A Technique
to Add Sound to the GIF Format

Sonia Djaziri-Larbi, Awatef Zaien, Sylvie Sevestre-Ghalila

To cite this version:
Sonia Djaziri-Larbi, Awatef Zaien, Sylvie Sevestre-Ghalila. Voicing of Animated GIF by Data Hid-
ing A Technique to Add Sound to the GIF Format. Multimedia Tools and Applications, 2015,
�10.1007/s11042-015-2491-y�. �hal-01371344�

https://hal.science/hal-01371344v1
https://hal.archives-ouvertes.fr


Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

Voicing of Animated GIF by Data Hiding

A Technique to Add Sound to the GIF Format

Sonia Djaziri-Larbi · Awatef Zaien ·

Sylvie Sevestre-Ghalila

Received: date / Accepted: date

Abstract GIF animations are silent image sequences widely used on the web
thanks to their wide support and portability. In this work, we propose an
original technique based on data hiding, to add sound tracks in GIF anima-
tions. Data hiding is usually used to embed security codes in a host medium
to prevent from illegal copying or to protect copyrights (watermarking) or to
send secret messages to a dedicated receiver (steganography). We propose to
use host GIF images as a ”transmission channel” to convey ”hidden” sound
bits with lowest perceptual image distortion and without altering the wide
portability of the GIF format, by means of data hiding. The inserted bits
are neither secret nor intended for security issues. They are intended to be
played by an audio player synchronously with the GIF player to add sound
to the GIF animation. The embedding process is a low complexity, luminance
based steganography algorithm, that slightly modifies the pixels colors of the
GIF images to insert the sound bits. The extraction of the inserted audio is
completely blind: the audio is directly extracted from the pixels of each cover
image. The proposed GIF voicing was tested with different GIF sequences
(cartoons and real scenes) and no audio degradation was reported while a
slight, most imperceptible, color modification was noticed in case of an im-
portant amount of inserted data. The cover images have undergone objective

S. Djaziri-Larbi
Université Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, Signals and Systems Lab,
BP37, 1002 Belvédère, Tunis(ia)
Tel.: +216-98901006
E-mail: sonia.larbi@enit.rnu.tn

A. Zaien
CEA Linklab, Telnet Innovation Labs, Pole Technologique El Ghazala, 2083 Ariana, Tunisia
E-mail: zaien.awatef@gmail.com

S. Sevestre-Ghalila
CEA Linklab, Telnet Innovation Labs, Pole Technologique El Ghazala, 2083 Ariana, Tunisia
E-mail: sylvie.ghalila@cea.fr



2 Sonia Djaziri-Larbi et al.

quality criteria and informal subjective evaluation and has proved to be of
good quality.

Keywords GIF Format · Animated GIF · GIF Voicing · Data Hiding ·
Steganography · Sound Embedding

1 Introduction

The Graphics Interchange Format (GIF) is a bitmap image format that sup-
ports animation. It has been introduced with the advent of the World Wide
Web to bring more attractiveness to web pages. This format became extremely
popular and it is widely supported and established as the default choice on
the Web [17] since it was the first graphic file displayed by web browsers [7].
Also GIF files are completely platform independent. Furthermore, since the
disclosure of the GIF 89a specifications in 2006, many applications have been
developed for GIF sequences manipulation. Powerful optimization algorithms
have been developed to further reduce the file size of animated GIF.

Nowadays, the GIF format is again taking over the net with the recent
popularity of social networks and smart phones. This is mainly due to its large
portability and simplicity, that make its use possible on any browser without
plugins [17]. The growing wide spread of the GIF format suggests to think
about adding a sound track to the silent GIF animations. Indeed, adding
sound to the animated GIF may add attractiveness for various applications
such as online ready-to-wear advertisement and online movie rental, where
customers can access a short video description of the product in different
languages, etc.

In this work, we present a technique to add audio tracks to animated GIF
by means of data hiding, where the main motivation of using data hiding is
to preserve the bitmap of the format in order to maintain the advantage of
its portability. The inserted bits are neither secret nor related to any security
issue, the data hiding technique is only borrowed to convey the sound informa-
tion with the GIF file in order to be played synchronously. Indeed, the main
applications of data hiding in video and audio are intended for security issues,
such as copyright protection and authentication. But several studies modeled
data hiding as particular data transmission systems [3], where the channel is
the host medium, and it conveys hidden digital information intended for a par-
ticular receiver or application. According to this communication model, some
data hiding systems have been proposed, where the hidden data conveys infor-
mation related to bandwidth extension for narrow band speech transmission
[18] or for watermark-aided signal processing [4]. In [2], the authors list a va-
riety of steganography applications which are different from the conventional
ones, such as TV broadcasting, video-audio synchronization, referencing pa-
tients data in medical imaging systems, etc. In [16] the authors propose to hide
speech signals in video using source and channel coding of the speech which
is then embedded in the coefficients of the orthogonal wavelet transformed
frames.



Voicing of Animated GIF by Data Hiding 3

The proposed method for voicing GIF animations lies within the latter
data hiding framework, which is different from the conventional watermark-
ing and steganography concepts: the embedded audio bits, represent a kind
of side information dedicated for an audio player which extracts the received
sound bits from the GIF images and plays the sound synchronously with the
GIF player. The advantage of using this concept to embed sound in GIF an-
imations consists in saving bit-rate (as the electronic file size of the GIF file
is not increased) and in avoiding the development of new data containers,
i.e. the cover data format remains unchanged. On the other hand, the sound
embedding modifies the pixels colors and hence inevitably introduces modifi-
cations to the images, which must be constrained to remain as imperceptible
as possible.

According to the conventional definitions of steganography and watermark-
ing [2, 8, 15], the proposed voicing method is rather based on a steganography
approach as 1) the message must be invisible (hidden) and 2) the embedding
capacity should be as high as possible and 3) the original image is not avail-
able at extraction. However, the proposed application differs from conventional
steganography concerning the objectives: the sound bits are hidden in the im-
ages to not alter the cover image nor the file format and not for secrecy reasons
as it is the case in conventional steganography.

The constraints on the proposed voicing technique are minimal image and
sound distortion in order to preserve the perceptual quality, maximal embed-
ding capacity to enable the insertion of the corresponding sound, and low
complexity of the embedding/extraction techniques for high processing speed.
In this paper, the used data hiding technique is the Fridrich palette-based
algorithm [5], developed initially for image steganography.

The paper is organized as follows. In section 2 we summarize the character-
istics of the GIF format. Section 3 is dedicated to basics of palette-based data
hiding and to the proposed voicing embedding/extraction algorithms, which
performance is presented and discussed in section 4. Finally, in section 5 we
give a description of the developed application; a GIF player for the proposed
voiced GIF animations.

2 Inside the GIF Format

GIF is an indexed color image format licensed by CompuServe in 1987 and
1989. It supports up to 8 bits per pixel, allowing a single image to reference a
palette of up to 256 colors, selected from the 24-bit RGB color space. The lim-
ited range of colors makes the format more suitable for simple graphics, such as
black and white images, line drawings and small text. GIF also supports anima-
tions and allows a separate palette of 256 colors for each frame. An animation
contains a set of images screened sequentially giving the illusion of motion.
Animated GIF is generally used for small animations and low-resolution film
clips. Besides, powerful optimization algorithms have been proposed to reduce
the size of animated GIF, which consist in comparing consecutive frames of



4 Sonia Djaziri-Larbi et al.

Fig. 1 Transparency optimization: the upper image sequence (I1, I2, I3) is not optimized
and the lower sequence (J1, J2, J3) is transparency optimized (Copyright Telnet).

a GIF sequence and discarding pixels that do not change across frames. The
three optimization algorithms, from least to most compression, are presented
in the following [11].

2.1 Dirty rectangle optimization

Dirty rectangle optimization consists in the minimum bounding box method, it
involves cropping frames in a GIF animation to their smallest needed rectangle.
These frames are then played one superimposed on the other, using pixel
coordinates for placement.

2.2 Transparency optimization

This optimization method consists in making redundant pixels transparent af-
ter having applied the dirty rectangle optimization. One index in the color map
is designated as ”transparent,” and all pixels in the image that are painted
that color will be transparent when viewed in a browser, as displayed by Fig. 1.

2.3 LZW optimization

LZW1 optimization is based on the transparency optimization and LZW com-
pression, it optimizes the coding of transparent pixels. Using these optimiza-
tion algorithms, it is possible to reduce significantly the size of an animation
that contains redundant elements.

1 LZW: Lempel-Ziv-Welch, lossless data compression algorithm.



Voicing of Animated GIF by Data Hiding 5

3 Voicing of Animated GIF through Data Hiding

The goal of this paper is to add sound tracks to animated GIF sequences
using data hiding, where the embedded data is the digital sound in binary
representation. In the following, we emphasize the constraints and objectives
of the proposed voicing technique, then we present the main data hiding tech-
niques for palette-based images, and finally we detail the retained method, the
Fridrich’s algorithm [5].

3.1 Constraints and Objectives of the Proposed GIF Voicing

A wide range of data hiding algorithms for images exist. As stressed in the
introduction, the objective of the proposed voicing technique is limited to the
embedding of sound data in the corresponding GIF images: no secrecy nor
security issues are relevant. The embedded sound is intended to be played
synchronously with the associated GIF animation. The suitable choice for the
proposed application is constrained by the following requirements:

– Minimal perceptible distortion of the host GIF: embedding data in the GIF
frames will undoubtedly introduce distortion, which may be assessed by ob-
jective criteria such as the PSNR2. Objective distortion may be important
while the perceptual, i.e. visible, distortion which reflects the subjectively
perceived degradation, is low, and vice versa.

– High embedding capacity: Indeed, the sound needs a relatively high bitrate
to render a good perceptual quality. For example, CD3 Quality corresponds
to a bitrate of 705 kbps4. If the GIF animation has a frame rate of 5 frames
per second, then ca. 141 kbpf should be embedded in each frame. This rep-
resents a huge amount of data, and depending on the frames definition, this
is likely to introduce visible distortion. Thus, we will use audio compression
techniques to reduce the amount of embedded sound bits (cf. Table 1.

– No audible distortion of the extracted sound: The embedded sound bits
may be modified if the cover images undergo some attacks. But the pro-
posed application is not a target for pirates, and thus this situation will
not be considered. Other image processing manipulations are discussed in
section 4.

– Low complexity of the embedding and extraction processes.

3.2 Data Hiding Techniques for Animated GIF

In the literature, two main approaches for embedding data in palette-based
images have been described. The first approach embeds data bits in the palette

2 PSNR: Peak Signal to Noise Ratio
3 CD: Compact Disc
4 kbps: kilo bit per second.



6 Sonia Djaziri-Larbi et al.

[9]. The main advantage of this approach is its simplicity. An example of
such a technique is the freeware Gifshuffle [12]; the algorithm shuffles the
color entries and uses different combinations of color entries to hide messages.
The host image remains visibly intact, only the colors order in the palette
is changed. However, the embedding capacity is limited by the size of the
palette. The second approach embeds the data bits into image data. This
strategy has higher embedding capacity, but it is more challenging to develop
such an embedding technique without introducing perceptible distortion to
the host image. The most popular of these techniques are probably the EZ
stego method [13] and Fridrich’s parity based method [5]. The former is based
on sorting the palette by luminance and substituting the least significant bits
of the pixels indices pointing to the reordered palette. However, this method
does not always generate high quality stego-images, mainly because the colors
with similar luminance values may be relatively far from each other. Fridrich’s
steganography method embeds a data bit into each pixel of the host image
by searching for the closest color entry in the palette with the desired parity
bit. Fridrich’s method introduces much less distortion into the host image
than EZ stego, while enabling for a high embedding capacity, as each pixel of
the image may host one bit of data. More recently, different new data hiding
methods for palette based images have been proposed, which provide high
embedding capacity and promise low, and even no image distortion. Among
them we cite [22][23], where the proposed embedding methods rely on multi-
bit color-mapping using Depth-First-Search, and [26] where multi-bit color-
mapping re-assignment is exploited to convey several hidden bits. In [9], a
high capacity embedding method with no image distortion is presented, at
the cost of a very limiting condition on the original color map which should
not exceed 128 different colors. It is based on replacing two initial adjacent
colors of the original color map by a weighted quantization of both initial
colors. Another data hiding technique [25] inserts bits in the edge (contour)
pixels of the image, supposed to be robust to image transformation. Some
other interesting methods make use of color quantization based on iterative
optimization of a cost function[24][20].

The majority of the above cited methods are not (or at least at a high
cost) applicable to GIF animation unless each frame has its own color map.
Indeed, it seems very difficult to optimize a cost function or to optimally re-
quantize a single color map for all frames of a GIF animation. This drawback
not only increases the electronic size of the GIF animation but also increases
the complexity of the embedding algorithm. Furthermore, most of these cited
studies do compare the obtained results to those of Fridrich’s method [5][6],
as it is considered as a reference in palette based image steganography. Hence,
and even if some of these recent methods promise a lower image distortion, we
have retained Fridrich’s method as the embedding technique to insert sound
bits in animated GIF, because of its important embedding capacity, low host
image distortion, and especially because of its very simple data embedding
and extraction processes.



Voicing of Animated GIF by Data Hiding 7

3.3 Fridrich’s Algorithm

The algorithm is described in [5] in its simplest variant. For each pixel pi of
the current frame Im, the color distance between the color (ri, gi, bi) of pixel
pi and all other color entries of the palette (indexed by j) is evaluated by:

Dj =
√

(ri − rj)2 + (gi − gj)2 + (bi − bj)2, (1)

where r, g and b refer respectively to red, green and blue color components
and i is the pixel index.
Then, starting with the closest color (i.e. smallest Dj , i 6= j), a search is
performed until the closest color entry is found, which parity bit (rj + gj + bj)
mod 2 equals the sound bit d ∈ {0, 1} to be embedded. Hence, the objective
is to find the color indexed by j that satisfies:

argmin
j

(Dj) / (rj + gj + bj) mod 2 = d, and d ∈ {0, 1} (2)

Once this color is found, the color index of pixel pi is changed to point out
to this new closest color. This process is repeated until all sound bits corre-
sponding to a given frame Im are embedded. Hence, the highest capacity of
each frame equals its definition, i.e. the number of pixels of that frame.

Note that, if the original parity bit equals the sound bit to be embedded
then the pixel color is not changed, yet the sound bit is encoded. Thus, after
embedding, the number of modified pixels in the host image is lower (by ca.
the half) than the number of inserted bits. The extraction of the inserted bits
is carried out by computing the parity bit of each pixel of the received image.

In the following, and to emphasize the difference between steganography
and the proposed technique regarding the secrecy of the message, the modified
GIF images/sequences by sound embedding will be referred to as augmented
images/sequences.

5 PCM: Pulse Code Modulation, here sampled at fs=44.1 kHz and 16 bits/sample.
6 mp3: MPEG audio coder layer 3.
7 bpf: bits per frame.

sound format PCM5 MPEG coder6

sound bit-rate 705.6 kbps (mono) 96 kbps 128 kbps
required capacity
fr = 5 frames/s 141120 bpf7 19200 bpf 25600 bpf

required frame definition 376 × 376 139×139 160×160

Table 1 Examples of audio bit-rates and audio coders. 3rd row gives the required embedding
capacity (in bpf) in case of an animated GIF (without optimization) with fr = 5 frames/s.
4th row gives an approximation of the required image definition.



8 Sonia Djaziri-Larbi et al.

Fig. 2 Principle of sound embedding in animated GIF: the sound vector is subdivided
into subvectors Sm. Each of them is embedded in the corresponding image Im. (Copyright
Telnet).

3.4 Voiced GIF Coder: Sound Embedding

Fig. 2 illustrates the principle of the proposed embedding scheme, where the
sound is depicted as a waveform vs time index for illustration purposes. Yet the
sound is not embedded as a waveform in the image: It is firstly preprocessed
to obtain a bitstream vector with a suitable size to be then inserted in the
GIF images by means of the data hiding process described above.

3.5 Sound pre-processing

The digital sound to be embedded is available as a bitstream vector, contain-
ing L bits. The total size L of this vector for a given sound track (with given
duration) depends on its bit-rate in kbps8. The bit-rate itself depends on the
audio coder used to compress the sound. Table 1 gives examples of sound
bit-rates depending on the used audio coder (compression). The bit-rates of
Table 1 correspond to monophonic audio. The 3rd row of Table 1 gives an ex-
ample of the required embedding capacity, which is the number of sound bits
to be embedded in each GIF frame of an animated sequence having a frame-
rate fr= 5 frames/s. Knowing that the highest embedding capacity equals the
frames definition, it is clear from this example that the use of an audio coder
is necessary to reduce the size of the sound bits in order a) not to exceed the
maximal embedding capacity and b) to reduce the amount of embedded data
to keep the image distortion imperceptible.

Besides, when the host GIF sequence has been optimized using the trans-
parency algorithm (cf. section 2), the highest embedding capacity varies across
frames: it becomes lower than the image definition when the considered frame

8 kbps: kilo bits per second.



Voicing of Animated GIF by Data Hiding 9

contains transparent pixels, as those pixels are excluded from the embedding
process.

3.6 Sound embedding

The digital sound track to be embedded, which has the same duration as the
animated GIF, is a bitstream with length L bits. It is decomposed into M sub-
vectors sm, m = 1, · · · ,M , where M is the number of frames Im of the host
GIF sequence. Each sub-vector sm is embedded in the corresponding image
Im in a chronological way using the Fridrich’s algorithm: all bits of sm are
embedded in the pixels of frame Im. This procedure is described in Fig. 3
and Fig. 4, where cm denotes the maximal capacity of frame Im. Indeed, as
emphasized previously, optimized animated GIF results in variable embedding
capacity as transparent pixels can not host hidden data.

The embedding pattern may be a simple row by row one, as well as a
pre-defined pattern, zigzag or chess for example.

3.7 Voiced GIF Decoder: Sound Extraction

The decoding process (cf. Fig. 5) is very simple: the extracted sound bits d̂k
are equal to the parity bits of the pixels colors of each host image, sequentially
and according to the embedding pattern:

d̂ = (r̂j + ĝj + b̂j) mod 2, (3)

where the notation .̂ refers to the sound bits and images after embedding.
The extracted sound is then played synchronously with the GIF sequence. A
voiced GIF player has been developed for this purpose and is described in
section 5.

s
1 s

2
sM

1 1 · · · 1

d1,1 d1,2 · · · d1,c1

0 0 · · · 1 1 1 · · · 0

d2,1 d2,2 · · · d2,c2 dM,1 dM,2 · · · dM,cM· · ·

✻ ✻✻

frame I2 frame IMframe I1

Fig. 3 Sound embedding: digital sound is divided into subvectors sm and embedded in
frames Im, where m = 1 · · ·M .



10 Sonia Djaziri-Larbi et al.

Read

separate frames

Decompose

M sub-vectors
into✲

Sound embedding

❄❄ ❄

M

cm

smImpalette

augmented animated GIF
❄

optimized animated GIF sound bit stream

❄ ❄

Fig. 4 Voiced GIF coder: sound embed-
ding

Read
separate frames

cm

ŝm

Îm

augmented

❄

synchronized player

voiced animated
GIF sequence

❄

Sound extraction

animated GIF

❄ ❄

❄ ❄

Fig. 5 Voiced GIF decoder: sound ex-
traction

4 Experimental Results

4.1 Experimental Procedure and Test Material

We present results obtained with 4 different GIF animations: 2 cartoons ex-
cerpts from Disney’s Snow White and Cinderella and advertisement cartoons
and real scene excerpts produced by the company Telnet9. The sequences
have been converted from video to GIF format using the Gifsicle tool [10].
The associated sound files have also been extracted from the video format and
compressed by an MPEG 1 layer 3 high quality audio coder (LAME 10) at
a bit-rate of 96kbps to reduce their size for embedding into the GIF frames.
The characteristics of the test GIF animations are displayed in Table 2, where
column 4 gives the ratio in % of the inserted bits to the image definition and
column 5 gives the ratio of modified pixels to image definition.

If the animated GIF sequence has not undergone transparency optimiza-
tion, the embedding capacity cm (in pixels/frame) is the same for all frames.
In this case, the associated compressed sound file, with total bit size L, may
be divided arbitrary into M equally long sub-vectors sm containing each L/M
bits, as shown in Table 2, and then embedded in the corresponding frames. As
mentioned in section 3.3, it is possible to chose a particular spatial embedding
pattern provided that it is known at the extraction step. Otherwise, if the se-
quence is transparency optimized, the maximal embedding capacity cm varies
across frames, depending on the number of transparent pixels of each frame.
Hence, the size of binary sound vectors sm varies across frames. It is difficult

9 TELNET is a Tunisian group of companies specialized in innovation and high technology
consulting (www.groupe-telnet.net).
10 Lame encoder: Available from <http:// lame.sourceforge.net/ index.php>



Voicing of Animated GIF by Data Hiding 11

in this case to embed the sound bits according to a particular pattern, because
of the random spatial positions of the transparent pixels.

4.2 Experimental Results and discussion

The proposed voicing technique was tested with the test material of Table 2.
The sound bits were embedded in the GIF animations (without transparency
optimization) following a chess pattern. As mentioned in Table 2, L/M =
19200 bits were inserted in each frame, corresponding to the given ratio (in
%) of inserted bits to the total available pixels. This ratio depends on the image
definition of the tested GIF file. However, it is worth to note that the ratio of
the actually modified pixels is always ca. the half of that of the inserted bits
(last column in Table 2). This is confirmed by Fig. 6, where we plot the ratio of
modified pixels to inserted bits across the frames of the Telnet advertisement
cartoons and real scene. Indeed, Fridrich’s algorithm modifies the pixel’s color
only if its parity bit is different from the embedded sound bit.

The quality of the augmented GIF frames were assessed by PSNR (Peak
Signal to Noise Ratio) and by SSIM (Structural Similarity Index), which are
the most popular full-reference metrics. The former evaluates the quality by
assessing the intensity degradation and the latter is a measure of structural
similarity between the reference and the processed image. SSIM is presented
in [21] to be more representative of human visual perception. Fig. 8 displays
the PSNR and SSIM obtained with the different GIF files and according to
the in Table 2 specified embedding conditions: in both Disney Cartoons ca.
22% of the pixels were actually modified while in case of Telnet GIF files only
∼ 10% of the pixels were modified due to their higher definition. As expected,
the results indicate that the quality of the augmented images depends on the
size of embedded bits. Indeed, the PSNR of both Telnet GIF files reaches
∼ 46 dB, which indicates a very good quality, while the Disney cartoons show
a lower PSNR at around 36 dB indicating a lower but still good quality. The
SSIM metric (Fig. 8) is accordingly high when the embedding is at 10% and
decreases when the embedding becomes more important (here ∼ 25%).
Fig. 9 illustrates an example of an augmented GIF frame using a chess pattern

GIF file
GIF (20 sec., fr = 5 fps,M=100)

definition cm (pix./frame) inserted bits/cm modified pix./cm

2 Disney Cartoons 180×240 43200 44% 22%
Cartoons Telnet 288×360 103680 18.5% 9.3%
Real scene Telnet 266×360 95760 20% 10%

mp3 audio file
bit-rate duration L L/M
96kbps 20 sec. 1.92 106 bits 19200 bits

Table 2 Characteristics of test material. M : number of frames, fr : frame rate; L: bit size
of compressed audio, L/M : number of audio bits to be inserted in each GIF frame.



12 Sonia Djaziri-Larbi et al.

0 20 40 60 80 100
40

45

50

55

60

m
od

ife
id

 p
ix

el
s 

[%
 o

fl 
in

se
rt

ed
 b

its
]

frame index

 

 
cartoons telnet
real scene telnet

Fig. 6 Ratio in % of inserted bits to
modified pixels.

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

color distance

es
tim

at
ed

 P
D

F

 

 
snow white
cartoons telnet
real scene telnet

Fig. 7 Estimated PDFs of the palette
color distances of the tested GIF files.

10 20 30 40 50 60 70 80 90 100
30

32

34

36

38

40

42

44

46

48

50

frame index

P
S

N
R

 (
d

B
)

 

 

snow white (25%)
cenderella (25%)
cartoons telnet (10%)
real scene telnet(10%)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frame index

S
S

IM

 

 

snow white (25%)
cenderella (25%)
cartoons telnet (10%)
real scene telnet (10%)

Fig. 8 PSNR and SSIM according to test material and test conditions of Table 2. The
embedding pattern is a chess one.

(one pixel each ten pixels is modified), extracted from the real scene of the
Telnet advertisement.

To explain the different quality of the augmented GIF with the same defi-
nition and embedding rate (case of the Telnet GIF files of Fig. 8), we analyse
in Fig. 7 the estimated PDFs (Probability Density Function) of all the pos-
sible color distances (cf. equation (1)) of the color maps of the tested GIF
animations. This figure gives information about the distribution of the color
distances D in a given color map: the PDF of the cartoons Telnet indicates
that the more the color distances are concentrated around small values the
better the quality of the augmented frames is. This explains the higher PSNR
obtained with the cartoons Telnet compared to the real scene Telnet where
both have the same ratio of modified pixels (ca. 10% in Table 2).
Furthermore, the luminance-ordered palettes of cartoons Telnet and real scene
Telnet, displayed respectively in Fig. 10 and Fig. 11, show that the real scene
GIF contains more abrupt changes in colors due to the presence of detailed
texture in the images, while the cartoons file has smoother color transitions.



Voicing of Animated GIF by Data Hiding 13

Fig. 9 GIF frame without optimization extracted from the real scene of Telnet advertise-
ment (Copyright Telnet): original frame (left) and chess voiced frame with 10 % modified
pixels.

cartoons telnet

Fig. 10 Luminance ordered palette of
the cartoons Telnet.

real scene telnet

Fig. 11 Luminance ordered palette of
the real scene Telnet.

Besides, informal subjective quality assessment have been conducted fol-
lowing double stimulus categorical rating [14], in which the observers judge
the quality of a pair of images on a fixed five-point scale: excellent, good, fair,
poor or bad. The original and the test images are displayed in random order
one after the other for 3 seconds each. As this test is time consuming and
because each test GIF file has 100 frames, frames were selected randomly (i.e.
not all frames of each test file were presented to the subjects). The results
correspond to the objective quality assessment, as the augmented GIF files
with 10 % modified pixels obtained a majority of ”excellent” scores, while the
GIF files with 25 % modified pixels obtained 40 % ”fair” and 60 ”good”. The
tests are considered informal as the 6 participating observers were not really
naive subjects as some of them are working in image processing and the test
should be generalized with more GIF files at different embedding rates to be
statistically significant.

4.3 Robustness and Optimization of the Coder

The first results obtained in this work are challenging to further improve the
proposed GIF voicing method by using more sophisticated embedding strate-



14 Sonia Djaziri-Larbi et al.

gies in order to enhance the quality of the augmented GIF through minimiza-
tion of the introduced distortion.

Fridrich’s embedding method do not modify the initial color palette, and
according to the above displayed results, it becomes obvious that, given a fixed
amount of embedded bits, the quality of the augmented images depends on
the original colors available in the palette and on the distribution of the colors
distances. A color map with very different colors will result in high colors
distances and thus in a more important image distortion. Hence, Fridrich’s
method is somehow limited by the content of the color palette.

Several embedding methods in palette based images are proposed in the
literature, the most efficient of them attempt to modify iteratively the colors
of the palette depending on the bits to be inserted [19][24][20], in order to
minimize the image distortion. However, in case of animated GIF where many
images are linked to a single palette, such optimization algorithms become
very complex and do not necessarily converge to an optimal color map.

The more recent multi-bit high embedding capacity methods proposed in
[22], [23] and [26] seem to provide high quality augmented images, however
at a higher complexity cost, they are being evaluated for integration in the
proposed application.

The GIF voicing application is not concerned with pirate attacks as it
has no security issues. Robustness considerations are limited to the extraction
robustness of the sound bits and should be addressed from common digital im-
age/signal processing point of view. The robustness of the proposed technique
to common image processing, as cropping, re-quantization, compression, etc.
is the same as that of Fridrich’s method, which is not robust to these common
image manipulations. But it is possible to extract the inserted bits and to
re-embed the sound in the GIF frames after manipulation by using the same
embedding algorithm.

5 Voiced GIF Player

Our project started with a C program that allows creating voiced animated
GIF and extracting the sound from the augmented GIF. A range of libraries
were used like FFMPEG, ImageMagick and Gifsicle. The second phase was
to develop a more user-friendly application in C++. This application is close
to a video player, but for voiced animated GIF. The final phase consisted in
developing an Android application, GIFSound, which is firstly a player of GIF
animations containing sound, but also a function allowing to build such voiced
GIF animations has been added.
The voiced visualization of the voiced GIF requires the synchronization of the
playback of the extracted sound from each frame with the visualization of the
frame itself. Our solution is based on synchronization using SMIL Timesheets
from the Synchronized Multimedia Integration Language which allows to trig-
ger the display of the frame at the same time as listening to the sound associ-
ated therewith. The advantage of this tool is the range of applications that it



Voicing of Animated GIF by Data Hiding 15

can handle as it is used both for web applications with HTML5 and javascript
as for desktop applications [1].

6 Conclusion

This paper presents an original and low complexity technique to add sounds to
animated GIF sequences without increasing the electronic file size and without
altering the wide support and portability of this format, although at the cost of
low, most imperceptible distortion. The sound bits are embedded in the pixels
of the GIF frames based on Fridrich’s data hiding method. At reception, the
inserted data bits are simply extracted from the parity bits of the RGB colors
of the frames pixels. The quality of the augmented images depends mainly on
the ratio ”embedded sound information to image definition”, but also on the
color map of the GIF file. In this context, the sound is compressed by high
quality perceptual coding (MPEG) and the tested conditions displayed that
the quality at 20 embedding rate is good to excellent as measured by the PSNR
and SSIM and according to informal subjective rating. Further improvements
are being studied, including more sophisticated embedding strategies which
better preserve image quality at the cost of a higher algorithmic complexity.

Acknowledgement

The authors would like to thank Rabaa Youssef, CEA-LinkLab, for her very
useful advices on HTML5 as well as the Company Telnet Innovation Labs for
financial and technology support of this project.

Appendix: Pseudo codes

This appendix gives basic pseudo codes of the voicing algorithm: the main
code and the Function of Fridrich steganography method in the case where a
bit is embedded in each pixel of the image. Note that only the voicing of a
single GIF frame is described.

References

1. F. Cazenave, V. Quint, and C. Roisin. Timesheets.js: when SMIL meets
HTML5 and CSS3. In 11th ACM symposium on Document engineering,
New York, 2011.

2. A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt. Digital image
steganography: Survey and analysis of current methods. Signal processing,
90(3):727–752, 2010.



16 Sonia Djaziri-Larbi et al.

Main: VoicingGif

1: Read: pixels[H][W ], map[256][3] // load original indexed GIF image in array pixels
with H image height, W image width and corresponding color map in array map.

2: Read: sound[H ∗W ]; // load sound bits in array sound
3: stegoPixels[H][W ]; // array of indexed stego image
4: Set k = 0;
5: for r = 1 To H do
6: for c = 1 To W do
7: k ← k + 1;
8: stegoPixels[r, c] ← pixels[r, c];
9: parity ← (map[pixels[r, c],1] + map[pixels[r, c],2] + map[pixels[r, c],3])mod2;
10: if (parity <> sound[k]) then
11: stegoPixels[r, c] ← StegoFridrich(map, sound[k], pixels[r, c]);//Call function

StegoFridrich to search for the nearest color with required parity bit.
12: end if
13: end for
14: end for

Function: StegoFridrich(map, soundBit, currentPixel)
// implementation of equation (2): search for nearest color with required parity bit

1: Set maxDistance =
√
3 ∗ 255 ∗ 255; j = 0; newColor=255;

2: while (j < 255) and (j <> currentPixel) do
3: Pj ← (map[j,1] + map[j,2] + map[j,3])mod2;
4: if (Pj = soundBit) and (dist(map, currentPixel, j) < maxDistance) then
5: newColor ← j;
6: maxDistance ← dist(map, currentPixel, j);//function dist(map,currentPixel,j)

computes the Euclidian distance between the colors indexed by j and currentPixel of
the colormap map, according to (1))

7: end if
8: j ← j + 1;
9: end while
10: return newColor

3. I. J. Cox, M. L. Miller, and A. L. McKellips. Watermarking as communi-
cations with side information. Proceedings of the IEEE, 87(7):1127–1141,
1999.

4. S. Djaziri-Larbi, G. Mahé, I. Marrakchi, M. Turki, and M. Jäıdane. Doping
and witness watermarking for audio processing. In 7th Int. Workshop on
Systems, Signal Process. and their Applications, Algeria, 2011.

5. J. Fridrich. A new steganographic method for palette-based images. In
IS&T PICS conference, 1999.

6. J. Fridrich and D. Rui. Secure steganographic methods for palette images.
In 3rd Int. Workshop on Information Hiding. Springer Verlag, 2000.

7. Steve Johnson et al. Adobe Illustrator CS5 on Demand. Que Publishing,
2010.

8. S. Katzenbeisser and F. A. P. Petitcolas, editors. Information Hiding
Techniques for Steganography and Digital Watermarking. Artech House,
2000.

9. S.-M. Kim, Z. Cheng, and K.-Y. Yoo. A new steganography scheme based
on an index-color image. In 6th Int. Conf. on Information Technology, Las
Vegas, 2009.



Voicing of Animated GIF by Data Hiding 17

10. E. Kohler. Gifsicle 1.7. Available from <http:// www.lcdf.org/ gifsicle>.
11. J. Krasner. Motion graphics design and fine art animation: principles and

practice. Elsevier, 2004.
12. M. Kwan. Gifshuffle 2.0. Available from

<http:// www.darkside.com.au/gifshuffle/>, 2010.
13. R. Machado. Ez stego. Available from <http:// www.stego.com>, 1997.
14. R. K. Mantiuk, A. Tomaszewska, and R. Mantiuk. Comparison of four

subjective methods for image quality assessment. In Computer Graphics
Forum. Wiley Online Library, 2012.

15. T. Morkel, J. HP Eloff, and M. S. Olivier. An overview of image steganog-
raphy. In Information Systems Security International Conference (ISSA),
pages 1–11, 2005.

16. D. Mukherjee, J. J. Chae, and S. K. Mitra. A source and channel coding
approach to data hiding with application to hiding speech in video. In
Proc. International Conference on Image Processing, volume 1, pages 348–
352. IEEE, 1998.

17. J. Niederst and J. Robbins. Web design in a nutshell: A desktop quick
reference, volume 2. O’Reilly Media, Inc., 2001.

18. A. Sagi and D. Malah. Bandwith extension of telephone speech aided by
data embedding. Eurasip J. Appl. Signal Process., 2007.

19. C.H. Tzeng, Z.F. Yang, and W. H Tsai. Adaptive data hiding in palette
images by color ordering and mapping with security protection. IEEE
Trans. on Communications, 52(5), 2004.

20. X. Wang, T. Yao, and C.-T. Li. A palette-based image steganographic
method using colour quantisation. In IEEE Int. Conf. on Image Process.,
2005.

21. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: From error visibility to structural similarity. IEEE Trans. on
Image Proc., 13(4), 2004.

22. H. Wu and H. Wang. Multibit color-mapping steganography using depth-
first search. In International Symposium on Biometrics and Security Tech-
nologies, pages 224–229. IEEE, 2013.

23. H. Wu, H. Wang, H.g Zhao, and X. Yu. Multi-layer assignment steganog-
raphy using graph-theoretic approach. Multimedia Tools and Applications,
pages 1–26, 2014.

24. M. Y. Wu, Y.K. Ho, and J. H. Lee. An iterative method of palette-based
image steganography. Pattern Recogn. Lett., 25(3), 2004.

25. D. Zhang, R. Zhang, X.n Niu, and Y. Yang. A digital watermarking
algorithm for high capacity index image robust to format transformation.
In 3rd International Conference on Computer Science and Information
Technology, volume 3, pages 216–220, 2010.

26. X. Zhang, S. Wang, and Z. Zhou. Multibit assignment steganography in
palette images. Signal Processing Letters, 15:553–556, 2008.


