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Nonlinear audio systems identification

through audio input Gaussianization

Imen Mezghani-Marrakchi, Gaél Mahé, Sonia Djaziri-Liafdériem Jaidane,

Monia Turki-Hadj Alouane

Abstract

Nonlinear audio system identification generally relies cau€sianity, whiteness and stationarity
hypothesis on the input signal, although audio signals am®aussian, highly correlated and non-
stationary. However, since the physical behavior of n@admaudio systems is input-dependent, they
should be identified using natural audio signals (speechusich as input, instead of artificial signals
(sweeps or noise) as usually done.

We propose an identification scheme that conditions audjoass to fit the desired properties for an
efficient identification. The identification system consist (1) a Gaussianization step that makes the
signal near-Gaussian under a perceptual constraint; (2¢digbor filterbank that whitens the signal; (3)
an orthonormalization step that enhances the statisticgigpties of the input vector of the last step,
under a Gaussianity hypothesis; (4) an adaptive nonlinestem

The proposed scheme enhances the convergence rate of tiifiddeon and reduces the steady state

identification error, compared to other schemes, for exari@ classical adaptive nonlinear identification.
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. INTRODUCTION

Nonlinear behavior of acoustic systems is a problem enevedtin various audio applications such as
cellular phones, video conferencing systems and publicemddsound reinforcement. Low-cost audio
equipments and constraints of portable communicationesystaccentuate this phenomenon. These
distortions are a superposition of different mechanicklctecal and acoustical effects, which can be
modeled by polynomial models for memoryless systems andditeiva filters [1], [2], [3] for systems
with memory.

For example, loudspeakers are modeled by Volterra filtetls ainonlinearity order of 2 [4] to 3 [5],
[6]. Audio amplifiers have also a nonlinear behavior, whicaswvemulated in [7] for a tube preamp (as
used by electric guitars) by a Volterra model with nonlirityaorder 10.

Classical identification algorithms of nonlinear audioteyss use synthetic signals as inputs. In [8],
[9], and in a context of nonlinear acoustic echo canceltatibe nonlinear echo path has been identified
with a stationary white Gaussian input. For loudspeakdessical input signals for identification are
multitones [10], sine sweeps, Maximum Length Sequencessiwlvide MLS (interleaving zeros between
+1) and multiple noises with modulus equal to 1 [11].

However, the physical behavior of nonlinear audio systemsgdut-dependent. This was stressed in [12]
for speech communication systems: classical steadystaésurements (sweeps, tones, noises...) are not
sufficient to predict the subjective performance of a systeonthat they should be replaced by speech-
like test stimuli. In a more physical approach, Klippel [1814] showed the relationship between the
properties of the input signal and the physical behavior ¢duadspeaker. For example, the voice coil
heating, which generates nonlinear distortions, depend® spectral properties of the stimulus. As a
consequence, a full dynamic measurement, that exciteseatidnlinearities to be measured, is performed
with audio-like stimuli.

Hence, audio nonlinear systems should be identified whenareeexcited by their real inputs (natural
audio signals). But the properties of audio signals makenthmsuitable for classical identification
algorithms, since they are generally non-Gaussian, ratieetiry and highly correlated. This point was
raised in [15] for the efficiency measurement of audio anmgkfi while synthetic signals cause a different
system behavior than audio, the non-stationarity of auigioads makes them difficult to use as test input.

Several studies take into account some of the natural irmgofserties. In [16], the authors proposed a
decorrelation filter to turn white the input, which is usefolpilot the adaptive filter. However, the non-

commutativity of the decorrelation filter, which is lineand the nonlinear Volterra filter limits the validity
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of this method. An identification method was proposed in [Wih high algorithmic complexity, for
stationary, Gaussian but correlated inputs. It consistsprediction step followed by an orthogonalization
step. This method was tested in the adaptive identificatis® dor a Volterra system of low order and in
the particular case of an ARM}Gaussian process. An enhancement was achieved for boffietnaand
steady states. Nevertheless, this method was not validaetddgh order systems nor for non-Gaussian
and non-stationary inputs.

Thus, we propose to take fully into account the propertieaurfio signals, namely non-Gaussianity,
non-stationarity and high correlation, in the identificatiof nonlinear audio systems. In section Il, we
point out the importance of Gaussianity in identificatiogaalthms. Then, we propose in section Il a
“Gaussianization” algorithm that aims at making an audgnal more Gaussian without changing its
perceptual properties. In section IV, we present a new ifieation structure based on Gaussianity and
taking into account the correlation and the non statioparftaudio signals. Finally, in section IV, we

present a simulation study and discuss the simulationtsesul

II. LL-CONDITIONING IN NONLINEAR SYSTEM IDENTIFICATION

Speech signals have been shown to be near-Laplacian, vgitheedistribution of music signals depends
on the type and the number of instruments, and tends to bes@aushen several instruments are involved
[18]. Audio signals can be considered as generalized Gaugsbcesses, which distribution varies from
Gaussian to Laplacian.

The PDF p(x) of a generalized Gaussian process is given by

pla) = ) expl-lntv: o) ol @
wherecs? is the variance of: and
1 [rEwm)?
o =25 @

whereI'(.) is the Gamma function. The larger is thefactor the flatter is the PDF. The PDF
« is Laplacian forv = 1;
¢ is Gaussian for = 2;
« tends to an impulse function for — 0;

« tends to a uniform distribution for — +o0.

1AR(n): autoregressive process with order

2PDF : probability density function.
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A theoretical analysis is presented here to exhibit the mt@pae of input Gaussianity in nonlinear systems
identification. In the literature, nonlinear distortion® generally modeled by polynomial structures (for
nonlinear memoryless systems) or truncated Volterra s€fitg nonlinear systems with memory) which
are identified using optimal or adaptive algorithms. Thdger#thms are sensitive to the ill-conditioning
of the observation matrix, even if the input is white. Thisicerns a matrix inversion problem for optimal
identification and a convergence problem in the adaptive.cas

In the following, a particular attention is paid to the infhwe of the input PDF on the conditioning

of these observation matrices.

A. Polynomial systems

In the case of a polynomial system identification, the obet#goxa vector isX;, = [l,xk,x%, ...,x{CV]T

wherex;, is the input signal andV refers to the polynomial order. For a stationary process,

Cx = B[Xi Xy ],
is the symmetric matrix defined by
[ 1 mi mso . . my ]
mq mo ms . . MN+1
mo ms . . MN+1 MN42

Cx - ) (3)

mMmN4+1 MN42
MN+1 MN42

mNy MN41 MN42 . . manN

wherem; = E[xﬁ;] is thei’® order moment and E[.] denotes the expectation value. Withuage misuse
and for simplicity, we will call the matrixC, “correlation matrix”.

The identification performance are closely related to thed@@ning of the matrixC, which depends
on the PDF of the input signai,. The conditioning ofCy is evaluated through its logarithmic condition
number [19]

)\mam
K(Cx) = logy <||)\ , ||> ) 4)

where ... and \,,;,, are respectively the largest and the smallest eigenvaluge anatrix C.
We comparedK (Cx) for various orders and values of the form factoof a generalized Gaussian

PDF (Fig. 1). The theoretical values were computed for thasSian, Laplacian and uniform cases.
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Fig. 1. For a polynomial system, condition numh&1{Cx) according to the nonlinearity order, for different genized

Gaussian processes.

Applying the Price theorem [20] on a zero mean Gaussian psage we may deduce all the higher

order moments frona2, = E[(29)?]

my, = E[?)?T] =0,
2p — 1)!
g _ _@Cp=D! o
me - 2p,1(p _ 1)!0-1‘95 (5)

wherep > 0. Similarly, for a zero mean Laplacian process

mby = El@)7] =0,
2p)!
mb, = 0o ©)

whereo?, = E[(z!)?]. For a zero mean uniform proces:

Mypy1 = E[(z*)**] =0,
R
u X
= 7
Map W+ 1 (7)

wherec?. = E[(xz*)?]. As depicted on Fig. 1, the larger is the shape factothe better is the matrix
conditioning, for all considered values &f.
Thus, we expect to achieve better nonlinear identificat@mn@aussian inputs than for Laplacian inputs.

Ideally, the uniform distribution provides the best comtiing.
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Fig. 2. Condition number of the estimated matiRs, (50.000 samples) according to the correlation facggrfor Volterra

systemsS; (left, M =2 and N = 3) and S2 (right, M =2 and N = 2).

B. Volterra systems
Some nonlinear systems with memory, like loudspeakersynadeled by Volterra series. L&f be the
polynomial order and\/ the memory length of a Volterra model. We denote Xy the \Volterra input

vector defined by

Xp=2,072,Q...0 Zy, (8)
N times
where Z, = [1,zx, 2% 1,...,75_14+1] . @ denotes a modified Kronecker product, whose resulting

redundant terms are omitted;, is a vector of Iength%ij\]}!)! and it contains only products belonging
to the set{z; "z}, ..x"" /1 /m1 +ma + ... + mpy < N} [21]. As for polynomial systems, we will
call the matrixRy = E[XkX,;r] “correlation matrix”. It was shown in [22] that for an i.itiprocess, the
conditioning of the correlation matriR, increases exponentially with the nonlinearity ordérand the

memory lengthM and has the upper bour& (Cy)]M:
K(Rx) < [K(Cx)]M. ©)

Unlike polynomial systems, the observation matRx for \Volterra systems contains auto-correlation

terms of the input signat;, (like E[zx;—;]) and cross-correlation terms (for exam@gr} «{ .]). For

3i.i.d: independent and identically distributed.
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correlated processes, an upper bound for the conditionintpeo matrix Ry is difficult to determine
theoretically.

To show the influence of the input correlation on the conditig of the correlation matrix, we compare
on Fig. 2 the conditioning of the matrRR for first order correlated Gaussian and Laplacian [23] psees

(AR(1)) according to the correlation factprfor the two following Volterra systems:

e S : a Volterra system of ordeV = 3 and memoryM = 2 (containingl5 coefficients)

e S5 : a Volterra system of ordeV = 2 and memoryM = 2 (containing10 coefficients).

As expected, Fig. 2 shows that the condition number inceeasth the correlation of the input signal

in both cases (Gaussian and Laplacian processes). Fudferme notice that:

« for low correlation, the correlation matrix is better caimhed for the Gaussian process than for
the Laplacian process

« for high correlation, the condition numbers are quietly saene for both processes.

Hence, only for low correlated processes, the input Ganigianhances the conditioning of the involved
correlation matrices.
In the following, we show that such a property is however nemlfor performance enhancement of

nonlinear system identification (polynomial and \olterra)

C. Conditioning enhancement through orthogonalization

A powerful way to improve the conditioning is to orthogomralithe observation matri€Cx or Ry.
For any PDF of the input, this may be achieved through the Gahmidt procedure [9]. If the system
is memoryless and the input is Gaussian, the orthogonalizamay be performed more simply using
a set of Hermite polynomial$Hy(x), Hi(x), ..., Hy(x)} [1], where the higher order moments can be
expressed using only the signal variance.

If the system has memory (Volterra system) and the input igs&@an, this holds only if the input
is white. In the case of a Gaussian correlated input, therldihs to be whitened as proposed in [17].
The backward prediction errors of respective orders, ..., M — 1 form the input vector of the new

identification system. One can then orthogonalize thisoreesing Hermite polynomials.

D. Variability of the PDF of audio signals

Audio signals are globally generalized Gaussian but thigikhbe locally verified. We present in Fig.

3 and 4 respectively the PDF @b00 samples of a speech signal sample®dHz (250 ms) and a
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music signal sampled dt..1 kHz (45 ms), which vary from one frame to another between Gaussidn an
Laplacian processes. Particulary, for voiced (speechdmalt(music) zones, the PDF is near a Gaussian
distribution.

Consequently, in an adaptive identification of a nonlingatesm, since the performance depends on the
local properties of the signal, one may expect this vaiiighdf the local PDF to lead to a variability of

the conditioning and, consequently, of the identificatienfgrmance.

E. Conclusion

We have shown in this section that the performance of noatisgstem identification depends on the
conditioning of the observation matrix and, hence, on th& BDthe input. For memoryless systems, the
flatter is the distribution, the better is the conditionit@pnsidering generalized Gaussian distributions
between Laplacian and Gaussian, as audio can be modeledn#ans that the identification should
perform better with Gaussian inputs. For systems with mgraod correlated input, the conditioning is
bad whatever the PDF is. However, the Gausiannity is agagsaable property, since it allows a simple
orthonormalization of the input, which minimizes the cdmmi number.

Thus, we propose in the following an audio Gaussianizatioegdure and an identification scheme based

on this built Gaussianity and on an input orthonormalizatio

[1l. AuDIO GAUSSIANIZATION

Since the Gaussianity of the input is a desirable propenydmlinear system identification, we propose

in the following a specific "doping” technique tiorce” audio signals to be Gaussian [24], [25].

A. Gaussianization procedure

The proposed transformation of audio signals from theirigogd distribution to a Gaussian distribution
is performed over non overlapping frames.

We associate to the sequenkXeof length L the corresponding empirical cumulative distribution fiioie

FY™(xr) = P[X <y
<
— M’k:h”’L' (10)

The distribution of the signal is turned into the Gaussiastritiution with the same mean value, and

variancecs? through a histogram equalization similar to the basic oredus image processing [26].
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Fig. 3. Speech frame=2{00 samples, sampling frequency 8 kHz) with a nearly Gaussiatriloition (top) and a nearly
Laplacian distribution (bottom).

Denoting F*e79¢t the cumulative distribution function of the target Gaussiistribution, fork = 1to L,

we add a small valug;, to eachzy, so thatr)’ = x; + g; verifies:
Freroet (aff) = FY™ (), (11)
as shown in Fig. 5. Then we get the Gaussiannized signal
xy =k + gk, (12)

whereg; is the Gaussianization signal, called the doping waterni2dk

B. Perceptual limits of Gaussianization

To avoid local power peaks of the Gaussianization signalmainly due to the variability of the

short-term PDF), the Gaussianization is performed on lgagqés, typically, = 10 000. Thus, the
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4 : :

Music waveform

I I I I
0 400 800 1200 1600 2000

Samples
0.8
Music
N T p Laplacian
E s = = = Gaussian

Music waveform

-4 L L L L

0 400 800 1200 1600 2000
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1 -
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N Y = W REN Laplacian
E 0.5 = = = Gaussian

Fig. 4. Music framesJ000 samples, sampling frequency 44.1 kHz) with a nearly Gansgistribution (top) and a nearly
Laplacian distribution (bottom).

Gaussianization is an off-line procedure. However, theeritesl Gaussianization signg), is clearly
audible. One reason is that the PDF of speech and some mgsassis much higher than the Gaussian
PDF around zero. Consequently, for segments wfith values around zero, the shif§g are of the same
order as the initial values;,.

To study the audibility of the Gaussianization signal, waleate in Table | the Zero Crossing Rate

(ZCR) and the Signal to Gaussianization signal Ratio (SG&indd as

where P, and P, are respectively the power of the signgland the power of the Gaussianization signal

gx- Three different types of segments are then consideredesipunvoiced and silent, for speech; tonal,

“The zero crossing rate is the ratio between the number ofaessings and the total number of samples in a signal segment
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Fig. 5. Gaussian target and empirical cumulative distiiloufunctions for a speech frame of 10 000 samples.

noisy and silent, for music.

As shown on Table | and unsurprisingly, the SGR is the worstsflent segments. The ZCR is much
higher for unvoiced segment than for voiced segments, wldals to a worse SGR. Hence, in order
to reduce the power of the Gaussianization signal, we pexpos exclude silent and unvoiced/noisy
segments from the Gaussianization procedure.

Since this is not sufficient to make the watermark inaudiiMe,achieved a perceptual masking through

an iterative limitation of the variance of the Gaussian@asignal.

C. Gaussianization under perceptual constraint

The inaudibility is preserved by reaching a target varia(raxf,érget)2 for the Gaussianization signa|
through an iterative adjustment of the maximum valuegof denotedg, 4. -

As a first step, we fix an arbitrary authorized maximum vajug,., which will be used to define the
search interval of a dichotomy process to find the optimaleafZ.,. We transform the PDF of under
the constraintg| < gq., Which provides a varianceg for g.

As a second step, we perform the following test:

o if 0, < 079 — ¢ (¢ is an arbitrary small value) then we fil,.. = gmar and repeat the

multiplication of g,,., by 2 and the PDF transformation under the constraimt< g¢,,q., until

we geta, > oy Let g2u0 = Gmaz
o if 05 > 0,9 + ¢ then we fixg2,,, = gmar and we repeat the division @f,,.. by 2 and the PDF
transformation under the constraigt < ;.. until we geto, < aﬁ,”get. Let g} ue = Gmaz -
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ZCR | SGR[dB]

unvoiced segments 0.35 -0.77

silent segments - -7.96

voiced segments | 0.014 6.46

TABLE |
EVALUATION OF THE ZCR AND THE SGRFOR VOICED, UNVOICED AND SILENT SEGMENTS OF A SPEECH SIGNAL

Signal Signal duration (S)| xas Quality
Speech 1.2 -18 | estimated MOS=3.87
Pop music 2 -16 ODG=-0.758
Classical music 15 -16 ODG=-0.18
Guitar 2.38 -16 ODG=-1.13
TABLE I

PEAQ (ODG)AND PESQ ESTIMATED MOS) EVALUATIONS FOR SOME AUDIO SIGNALS AFTERGAUSSIANIZATION

PROCESSING

In both cases we get an intervgl, ..., 92...] in which we search by dichotomy the optimal valyg,.

that verifies|o, — 5”9 < e.
How to determiner,”"9“'? Since the PSD ajj, is roughly parallel to the PSD afy, the target variance

must be at least 13 dB under the variancerpfccording to [27]. We set:

target
Ug g = X0-$7

where the attenuation factgy was fixed after informal subjective tests and chosen to guegathe
imperceptibility of g.
Finally, after Gaussianization of voiced (for speech) amalo(for music) segments according to the

process described above, we concatenate silent and udv@@cenon-tonal) segments, which are not

Gaussianized.

D. Audio quality evaluation of Gaussianized signals

Perceptually, the Gaussianized signal and the originahwng be the same. Audio quality is preferably

evaluated through formal subjective measures. Neveghgeler a rapid and low-cost evaluation, they can
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be replaced by objective measures like PEAQ (Perceptudu&ian of Audio Quality) for music [28]
and PESQ (Perceptual Evaluation of Speech Quality) for Spg9].

For PEAQ measures, an ODG (Objective Difference Grade)esisocomputed which is i—4, 0].
The score) indicates an imperceptible difference between the orlgiignal and its processed version.
The value—4 refers to the highest degradation level.

For PESQ measures, the quality evaluation is done througtstimated MOS (Mean Opinion Score)
which is in [1,4.5]. The value4.5 corresponds to the best fidelity to the original signal arelwhluel
refers to the highest degradation.

The ODG and the estimated MOS values, relative respectiwelgnusic and speech signals after
Gaussianization under a perceptual constraint fixed thrdhg choice ofy, are displayed in Table II.

These results indicate that the Gaussianization modifightlsl the audio quality.

E. Gaussianity measurement

The Gaussianity of a signal may be measured by its Kurto$ighnequals3 for a Gaussian distribution.
For the previous pop-music signal, we estimated the Kugtémi non-overlapping frames dfo 000
samples, for the original signal and the signal Gaussianized under the inaudibility comgtexpressed
by xvag = —16 dB. As shown by Fig. 6, the Kurtosis of the Gaussianized g$igftais closer to3 than
that of the original signat for most of the framesThe variability of the estimated Kurtosis around

3 results from the exclusion of the silent and noisy segmenfsom the Gaussianization.

F. Conclusion

We have shown in section Il that the Gaussianity of the inpatdesirable property for identification of
nonlinear systems. Since audio signals are generally raars§an, we have proposed a Gaussianization
method that makes an audio signal more Gaussian (but ngt@alssian), while ensuring its perceptual
fidelity to the original. We show in the following how this lé= to higher performance in nonlinear

system identification.

IV. NONLINEAR AUDIO SYSTEM IDENTIFICATION RELYING ON INPUT GAUSSIANITY

As stressed in [14] for loudspeakers, the nonlinear behafiaudio systems varies in time according
to the input signal and to the excited physical effect of tiisteam (heating for example). Hence, the
system identification has to be adaptive, in order to obsthese variations. Moreover, the transient state

of the identification has to be as short as possible in ordebserve the early behavior of the system.
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Pop music
Gaussianized pop music

Kurtosis

2 6 10 1a
Frame number
Fig. 6. Estimated Kurtosis evolution of original and Gaassied signals (non-overlapping frames16f000 samples).

However, the proposed Gaussianization is an off-line @®csince it is performed on large segments
of an audio signal. Thus, for an off-line identification tattke signal has to be fully Gaussianized before
identifying the system. For a real-time identification (fxample with a compensation purpose), the
Gaussianization is suitable in the context of playing/do@esting recorded material, and not in nonlinear

acoustic echo cancellation for example.

A. Classical system identification scheme

We consider here a nonlinear systelnwhich is identified by an adaptive nonlinear filtdi, (poly-
nomial or Volterra model). The input and output of the noadéin (NL) system are denoted respectively

by 2, andy, and the estimated outpyy, is
Uk = Ag X, (14)

where A, = [1,a1,...,aq]T. The structure of the input vectoX, and its lengthg are related to the

nonlinear model (for polynomial model= N + 1). The estimation error is
ek = Yk — Uk- (15)
Ay is the adaptive filter updated with a normalized Least-Megua®e (NLMS) algorithm [30] and driven

by the input vectorX; as follows

1
App1 = Ap + 756Xk, (16)
- | Xk

wherey is the adaptation step size.
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Fig. 7. Proposed identification scheme for NL Volterra systeGaussianization, predictor filterbank, orthonornaion and

adaptive NL model.

In this paper, the NLMS algorithm was chosen as an exampléusirate the proposed methodology,
but other identification algorithms could be used.

For the analysis purpose, we consider here that the systenthanmodel have the same structure.
Then, the system output is

Y = AT Xy, + ny, (17)

where A is the NL system ana; is an additive white Gaussian noise.

B. The proposed identification structure

Based on the conclusions of sections Il and lll, we proposeidientification method depicted on
Fig. 7 for both memoryless NL systems and NL systems with mgnidote that the second block and
the first part of the third block concern only the identifioatiof NL systems with memory.

Whereas orthogonalization was already proposed in [17],pvopose here to further improve the
conditioning of the matrix involved in the identificationsggm (block 4) through aarthonormalization
step.

1) Gaussianization (block 1)This first block consists in the Gaussianization of the awsigmal zy,
as detailed above. The input Gaussianity is necessary éofoftowing orthonormalization block.

2) Predictor filterbank (block 2)it consists in computing the prediction erro[rw,ﬂjo),w,gl),w,iMfl)}

of respective order8, 1, ..., M — 1. This step was proposed in [17] to orthogonalize Gaussiareleded
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signals for the identification with Volterra structure. Wdhat this second pre-processing step concerns
only systems with memory and it does not need the hypothésigpat Gaussianity.

3) Orthonormalization (block 3)The goal of this block is to form an orthonormal basis fittedhe
NL model (polynomial or Volterra) so that the correlationtmais the identity matrix with an optimal

conditioning equal tal.

« For memoryless systemghe goal is to form an orthonormal basis relative to the poigial basis

BW)(z) = {12}, (z*)?, ..., ()N}, We first normalizer”:
T = o} [Ogw (18)

where 42, is the estimated variance of*, computed on quasi-stationary frames (typically 10 to
30 ms for speech). As the input signetf is a Gaussianized signal, the corresponding orthogonal
polynomial basis is the Hermite polynomial bag&™) (i) = {Ho(z¥), H1(Z}), ..., Hn ()},
where H; denotes thei®® Hermite polynomial. If the identification is driven bﬁ(N)(i};’), its
performance depend on the conditioning&if7 (™ (z") H(™) () T] (diagonal matrix). To get an
optimal conditioning, we use the normalized Hermite polyied basisH™) = {H, Hy, ..., Hy},

where:

In other terms, we form the vectdr, = Er(az,g’), so thatE[U,U,] is the identity matrix, with
conditioning equal tal.

The relationship between vectok§” and U}, is then
Up =TX}/, (19)

whereI' is a (N + 1) x (N + 1) lower triangular matrix.

« For systems with memoryMe propose in the following to do some modifications to theviores
identification structure for the identification of nonlimesystems with memory, based also on input
Gaussianity hypothesis. This idea is inspired from the \&fieBd-functionals [2] which are derived
from the Volterra kernels by polynomials combination. Thatistical orthogonality properties of
the involved kernels improve the conditioning of the caatiein matrix only for white and Gaussian
inputs.

To overcome the non-Gaussianity and the high correlatioaunfio signals, we have introduced

®Referring to Fig. 7.V = X;.
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stages of Gaussianization (block 1) and forward predicfilberbank (block 2).

The goal of block 3 is to form an orthonormal basis relativéhvectoiV;, = [1, w,io),w,(:),w,(gM_l)]T.
We first normalize eachr” as described above (Eq. (18)), which provitigs = [1, @\, @\, ..., &M VT,

We apply the modified Kronecker product to the ved%;g to get the vectoi/:
Vi = Wi 0 ...0 W, (20)

which elements are of the forﬁivj(wg))j. FromV}, we derive a new orthonormal vectty, which
elements are of the fornp[, ; ﬁj(@,@) [2]. As in the memoryless cas&[U,U,'] is the identity
matrix, with conditioning equal ta.
Hence,U;, can be written ad/, = QV,, whereQ is a lower triangular matrix. Sinc@k may be
written as the product of a lower triangular matrix By = [1, 2y, 2_1, ..., zx_a4+1] | » according to
the properties of the modified Kronecker produgt,is also the product of a lower triangular matrix
by X} (defined by Eq. (8)). Thus, the relationship between veckyrandU;, is againlU, = T' Xy,
whereT is a lower triangular matrix. Note that the input Gaussiahigpothesis is necessary only
for this orthonormalization step of the vectbf. This proposed step is less complicated than the
proposed method in [17] where the identifcation system isr-@arametrized.
4) Adaptive NL model (block 4)The output of the adaptive identification structure of bldcldriven
by the vectorU; provided by block 3, igj,. = q,z),jUk. i is an adaptive filter updated with a NLMS

algorithm as follows

er = Yp— Uy U
Vry1 = wk‘l‘H(l;WekUk, (21)

wheree,, is the estimation error and® is the step size.
The three previous pre-processing steps give to the newnaigmn vectorU; better orthogonality
properties than the initial vectoX},. Indeed, the obtained correlation matéXU, U, | which drives the

identification is theoretically the identity matrix.

C. Studied schemes for comparative performance analysis

Using the classical adaptive identification algorithm NL&ISI for exact modeling (same order for the
NL system and model), the transient and steady state bekasan be studied through the time variation
of the deviation vectol A, = A — A;. Using (15), (16) and (17) it is easy to show that

X X! X
AA =(I—- k) AA — — 22
41 ( “uanQ) R PR 2)
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wherel refers to the identity matrix of rank.

For the proposed method, we remind that the estimation éror

exr = Yk — Yk
= ATX9 4+, — ] Uy (23)
k k

We denote byA7 the adaptive filter that identifies the NL systefnin the proposed schemely is

updated as
z - I‘gwkv (24)

whereT";, denotes the transform matrix computed for the signal framnehtich belongs thé&' sample.
Using (21), (23) and (24), we can show that

r'uu/r; " LU,
AAC = [T—po—E—C"k k) NA9 — ;on;—E—2 25
. ( ST R TIATES 29

where AAp = A — A7.

We first study the convergence in the stationary case. The 8laldorithm can be replaced by the LMS
algorithm, which means replacing/|| X |> and 1°/||Ux||* by u and 1°, respectively, in the previous
equations.

In this case, under the independence assumption betWgemdA A, and for a small step size, taking

the expectation value of both sides of (22) leads to
E[AAp1] = (I — pE [Xle;rD E[AA]. (26)

The mean convergence depends on the conditioning of théxmﬁ{erX,;r] [31].
Similarly, under the independence assumption betwgeand A A7 and for a small step sizg® we can
deduce from (25) :

E[AAD, ] = <I — 1°E [rgUkU,j r,;TD E[AAY). 27)

SinceT, is triangular, the conditioning of [F;UkUJI‘;T} is the same as that & [U,.U, |, which
is equal to 1, so that the proposed method provides the mhxiomzergence rate.

In the case of natural audio signals, in spite of the orthoradization stepl/,, is not stationary, so
that the LMS algorithm is not convenient. Coming back to thevi$ algorithm, equations (26) and (27)

become respectively:

E[AAg1] = <I — uE W)’“{jé D E[AA]. (28)
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r UU/ T, "

E[AA7,,] = (1 — uE
102

) E[AAY). (29)

Hence, the convergence depends on the conditionirﬁ}pf: E H(;(i(lﬂ andR, = E {%} respec-
tively. One may expect that the latter is better conditiottemh the former and thus provides a faster
convergence, but this should be verified experimentally.

In the steady state, the identification performance is atatlithrough the classical Mean Square
Deviation

MSD(k) = E[|AA?)

From (22) and under independence hypothesis betwgeand A A, we get

2 T Xle;r
p2oE 1 (30)
" LIXRI )
Py
whereas? denotes the variance of the noise
Similarly, from equation (27), we get
Bl AAY L% =
-1 op—1 Tp-T
E (AA%)T(I* 10(2 — p°) ||Fk Uk|| Ty UrUy, T, JAAS,
Uk
0\2 2 ||I‘;—Uk||2
+ooyere | e e
P’Y

k

From equations (31) and (30) one can see that the steadypstdtemances of the proposed method and
the classical adaptive filter depend crucially on the insta@ous values af; = (1°)202E [||T} Uk ||?/||Ux*]
and Py = p?02E [1/||Xx||?] respectively. AsA? is computed in a more stationary context where
E[|Ux|?] ~ 1, P] is expected to have smoother variations thgf for which ||X;|| presents high
and rapid variations.

The experimental protocol presented in table 11l is usedtlierfollowing simulations.

V. SIMULATION RESULTS AND DISCUSSION
A. Memoryless systems

For performance evaluation of the proposed identificationcture for polynomial systems, a poly-

nomial system of ordeV = 7 is identified by an adaptive polynomial filter of ordéf. The system
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"C"=Classical adaptive identification method with
non Gaussianizedinput xy,

-identified output
v = AT Xi + ny, (32)

-block 4 (and block 3.1 if system with memory)
- NLMS algorithm

er = yp— AL Xk
W
Ak+1 Ak + —eka. (33)
(X2
-Deviation vector in exact modeling
AA,=A— A (34)

"G”= classical adaptive identification method with
Gaussianizedinput z}

-identified output

yp = AT XY + (35)

- blocks 1 and 4 (and block 3.1 if system with
memory)
- NLMS algorithm

er = yk— ALXY
Iz w
Ak+1 Ak + —wekX . (36)
X
-Deviation vector in exact modeling
AA=A— Ay (37)

"O”= proposed adaptive identification method with
original input x; (not Gaussianized)
-identified output

Yk = ATXk =+ ng (38)

- blocks 3.2 and 4 (and blocks 2 and 3.1 if system
with memory)

- Observation vectort/, = I' X

- NLMS algorithm

"GO” = proposed adaptive identification method
with Gaussianizedinput =}’

-identified output

yr = ATXY +ny, (41)

- blocks 1, 3.2 and 4 (and blocks 2 and 3.1 if systg
with memory)

- Observation vectort/y, = I' X}’

- NLMS algorithm

PMm

e = yu—ALUs e = yr— ALU
we ue
‘Ilk+1 \I/k —|— —ekUk. (39) \I/k+1 \I/k —|— —ekUk. (42)
Uk II? U
-Deviation vector in exact modeling -Deviation vector in exact modeling
AAL =A— A} (40) AAL = A— A7 (43)
TABLE Il

(WITH STEP SIZESu AND 1°).

September 28, 2016

20

STUDIED SCHEMES FOR PERFORMANCE EVALUATION OF THE PROPOSEDENTIFICATION STRUCTURE FORNL SYSTEMS

DRAFT



21

coefficients are generated using a normal distribution witlt variance. The input is a speech signal
sampled a8 kHz and the additive observation noiag is white and Gaussian with a variance fixed
according to anSNR = 40 dB. The Gaussianization is done over non overlapping fraofies) 000
samples under the inaudibility constraint £ —18 dB). The variance involved in the computation of
the orthonormal basis is estimated on 256 samples frames.

1) Transient behavior analysidVe compare in Fig. 8 the condition numbers of the estimatetticea
Ry andR,, for original and Gaussianized speech computed over frafh2s6osamples. The period 256
corresponds to the updating rate of the transformationixntr
As illustrated in Fig. 8, the proposed identification methweith a Gaussianized input improves the
conditioning. The condition number is reduced by a factor 1000 comparé¢det@lassical method with
non-Gaussianized speech. The classical method with Genmsd speech and the orthonormalization
without Gaussianization provide intermediate results.

However, even for the Gaussianized speech signal the comditimber is not equal to 1. This can be
explained by the imperfect Gaussianity of the Gaussiansigilal and by the fact that we optimized the
conditioning of E[U,U; ] and not that ofR,, = E [U*‘U*T}.

U
We display in Fig. 9 the time variations of the MSD related tggimal and Gaussianized speech with

the classical identification method ('C’ and 'G’ respechiyeand with the proposed identification method

('O’ and 'GO’ respectively) respectively. Fig. 9 shows thehancement of the convergence rate achieved

by the proposed identification structure 'GQO’. This is rethto the best conditioning of the observation

matrix R, for Gaussianized input. Note that the Gaussianity does eemsto be as crucial as the

identification structure for the convergence rate, thougé $tructure relies on a Gaussian hypothesis.
2) Steady state analysis and performancEéle steady state performances are also studied here through

the MSD, but after convergence.

From equations (31) and (30), the steady state performaridbe proposed method and of the classical

adaptive filter depend crucially on the instantaneous wabfeP) = (1°)?02E [||T} Ux||?/||Uk||*] and

Py = p202E [1/ Xx||%] respectively. These quantities are displayed in Fig. 10.

As expectedP,’ has smoother variations and lower values tif#n Consequently, as illustrated in Fig. 9,

the MSD in the steady state reaches lower values with theogegpmethod.

®Note that on Fig. 8 the conditioning peak at frameorresponds to silent zones where the Gaussianizationdaffect.
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Log10 (K(C))

Frame number

Fig. 8. For a polynomial system, condition number of theneated matrice®R (schemes 'C’ and 'G’) andR. (schemes

'O’ and 'GO’), computed oveB2ms frames.

B. Systems with memory

A \olterra system of ordelN = 3 and memoryM = 3 is considered in the following under the
same simulation conditions as in subsection V-A. Knowingf speech signals are highly correlated and
non stationary, the prediction errors are computed @gems frames where speech is assumed locally
stationary. The same updating rate is imposed to the tramafon matrixI".

1) Transient behavior analysiskFirst, the Volterra system is identified by an adaptive \foétefilter
with N = 3 and M = 3 (same order and memory). To point out the enhancement ofotnecgence rate
achieved by the proposed identification structure, we pioFigy. 11 the time variations of the MSD for
the proposed identification structure and the classicgbtadgaidentification where the system is excited
by speech signal without pre-processing ('C’ or 'O’) or byuSsaianized speech ('G’ or 'GO’).

Fig. 11 shows that the best convergence rate is obtainetidgoroposed identification structure driven
by the Gaussianized speech signal. The enhancement athigvine proposed identification structure
in the transient state is due to the better conditioning ef tiatrix Ry compared to the matriR, as
shown in Fig. 12. Note that the compliance with the Gaussigrothesis is more crucial here than in
the memoryless example.

However, the conditioning of the estimated matrix for Gausiged speech with the proposed identifica-
tion structure is not equal td, for the reasons given in the case of a memoryless system ecalige

the prediction errors are not perfectly orthogonal.
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6
Time[samples] x 10

Fig. 9. For a polynomial system, MSD time variation for claakidentification and for the proposed method, for origjina
speech and Gaussianized speedi.= 7, u = u° = 0.02, SNR = 40 dB andy = —18 dB).

0.2 ; ; ; ; ; ; ; ;
1 2 3 4 5 6 7 8 9 10
Frame number

Fig. 10. For a polynomial system,time variation B ('O’ and 'GO’) and P” ('C’ and 'G’) for 256 samples framesN = 7,
p=p° =0.02, SNR =40 dB andy = —18 dB).

2) Steady state performance®e display in Fig. 13 the time evolution d?” and P”. The same
analysis as in the previous case stands. Thus, the propdeatification scheme provides the lowest
MSD in the steady state.

Loudspeakers are modeled as nonlinear systems with mesiioniger than 3 [4], [32]. For a sampling

frequency of 44.1 kHz, a memory length of 2%&(6 ms) was used in [32]. To point out the effectiveness
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MSD[dB]

—100f

-120f

—140f

2 4 6 8 10 12 14
Time[samples] % 10"

Fig. 11. For a system with memory, MSD time variation for slaal identification and for the proposed method, for o@djin
speech and Gaussianized speeeh=(0.1, N =3, M =3, SNR = 40 dB andy = —18 dB).

of the proposed identification scheme in such a more reakistse, we identified a Volterra system of
nonlinearity orderN = 3 and memory length\/ = 50 (6 ms for 8 kHz sampling frequency). The
performance is evaluated through the SERSignal to Error Ratio) measure.

Fig. 14 displays the SER time evolution in steady state r(aftenvergence) of the four studied
identification schemes of table Ill. The enhancement of ttp@sed identification scheme is ensured
even for this larger memory system, where a gaicafl5 dB is reached most of the time compared to
the classical identification without Gaussianization.

3) Under-modeling caseFor a more realistic situation of under-modeling, a Volesystem {V = 3
and M = 50) is identified by a Volterra filter of ordeN = 2 and memoryM = 40. Hence, we identify
only 903 coefficients from all of the 24804 system coefficieM/e compare in Fig. 15 the SER time
evolution of the four studied identification schemes. A gafrca. 6 dB is reached most of the time,
compared to the classical identification without Gausgetion, andca. 2 dB compared to orthonor-
malization without Gaussianization. Then, the proposeadptide identification structure guarantees a

noticeable enhancement of the identification quality irhkz#ses of exact modeling and under-modeling.

"The SER is defined aSER = 10log(P,/P.) where P, = E[z}] is the signal power an®. = E[e?] is the estimation

error power.
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12

o
GO

2 2 6 8 10 12 1a
Frame number _ _
Fig. 12. For a system with memory, condition number of thévested matriceR« (schemes 'C’ and 'G’) an®R., (schemes

'O’ and 'GO’), computed oveB2ms frames.

V1. CONCLUSION

Nonlinear audio system identification methods generallyoiotake into account audio characteristics:
non-stationarity, non-Gaussianity and high correlation.

We have proposed an identification structure suitable fomargless systems (of polynomial type) and
systems with memory (of Volterra type) fitted to these audimpprties.

The proposed identification scheme combines audio Gausafam, whitening and orthonormalization
relying on the Gaussianity. We have shown that this pregmsiog of the input of an adaptive filter
enhances significantly the convergence rate and the idmiifin performance in steady state.

Because of the inaudibility constraint of the Gaussiammatthe signal after this step does not fully
match the Gaussianity hypothesis assumed by the followiagssof the process, which reduces the
identification performance, compared to a perfectly Gaussignal. This constraint however stands only
if the NL system must be identified in real-time, for exampmled NL-compensation purpose. In the case
of an off-line identification (eg. loudspeaker charactaiian), the noise added by the Gaussianization
does not need to be inaudible, which allows a perfect Ganiggi@ne should however verify that the
amount of added noise does not significantly change the gdiyisehavior of the NL system, compared

to the original signal.
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GO

2 4 6 8 10 12 14
Frame number

Fig. 13. For a system with memory, time variation/f (O and GO) andP” (C and G) for original and Gaussianized speech

for 256 samples frames.

80 :
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—GO
60 i C
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o
k=)
x 20F 1
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_40 1 1 1 1 1

4 4.5 5 5.5 6 6.5 7 7.5
Time[samples] % 10"

Fig. 14. NL system with memoryN = 3, M = 50), exact modeling case: Signal to Error Ratio for the cladsimd the
proposed identification methods, for speech with and witl@aussianizationi(= 0.1, SNR = 40 dB andy = —18 dB).

APPENDIX

MoDIFIED KRONECKER PRODUCT

A. \olterra models

The principle of Volterra structures is to represent anylinear, causal and time invariant system with

finite memory by finite Volterra series [2]. For a system witemory M, we consider the following
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truncated model of ordeiv

N |M-1

M-—1
Ue= D [ D e D i i) @iy, | (44)

j=1|4=0 i;=0
wherezy, y, andh; represent respectively the system input, its output and/tiierra kernel of order

J. Note that in equation (44), there are redundant terms ofdime z_;,...75_;,.

B. Mathematical representation of a Volterra filter

The input-output relationship (44) is equivalent to
yr = 0" X, (45)

where © is the vector containing unique coefficients (after mergiagundant terms) of kernels and
X contains the corresponding products of the input signakssary for output evaluation. It can be

represented through the input vector corresponding toittead part

Zj = [1, Tk, Tty oo T nr41] | (46)
as
Xe=QZL® 2 @ ... ® Zg), (47)
Nterms

where® denotes the Kronecker product afidis the transformation eliminating the redundant terms.

The modified Kronecker product of thedimensional vectot” = [y, ..., y,] ", denoted by @Y, is

n(n+1)

the sub-vector ol” ® Y of dimension——— as

YOoY=QYaY). (48)

This vector representation is used in this article.
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