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Nonlinear audio systems identification

through audio input Gaussianization
Imen Mezghani-Marrakchi, Gaël Mahé, Sonia Djaziri-Larbi, Mériem Jaı̈dane,

Monia Turki-Hadj Alouane

Abstract

Nonlinear audio system identification generally relies on Gaussianity, whiteness and stationarity

hypothesis on the input signal, although audio signals are non-Gaussian, highly correlated and non-

stationary. However, since the physical behavior of nonlinear audio systems is input-dependent, they

should be identified using natural audio signals (speech or music) as input, instead of artificial signals

(sweeps or noise) as usually done.

We propose an identification scheme that conditions audio signals to fit the desired properties for an

efficient identification. The identification system consists in (1) a Gaussianization step that makes the

signal near-Gaussian under a perceptual constraint; (2) a predictor filterbank that whitens the signal; (3)

an orthonormalization step that enhances the statistical properties of the input vector of the last step,

under a Gaussianity hypothesis; (4) an adaptive nonlinear model.

The proposed scheme enhances the convergence rate of the identification and reduces the steady state

identification error, compared to other schemes, for example the classical adaptive nonlinear identification.
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I. INTRODUCTION

Nonlinear behavior of acoustic systems is a problem encountered in various audio applications such as

cellular phones, video conferencing systems and public address sound reinforcement. Low-cost audio

equipments and constraints of portable communication systems accentuate this phenomenon. These

distortions are a superposition of different mechanical, electrical and acoustical effects, which can be

modeled by polynomial models for memoryless systems and by Volterra filters [1], [2], [3] for systems

with memory.

For example, loudspeakers are modeled by Volterra filters with a nonlinearity order of 2 [4] to 3 [5],

[6]. Audio amplifiers have also a nonlinear behavior, which was emulated in [7] for a tube preamp (as

used by electric guitars) by a Volterra model with nonlinearity order 10.

Classical identification algorithms of nonlinear audio systems use synthetic signals as inputs. In [8],

[9], and in a context of nonlinear acoustic echo cancellation, the nonlinear echo path has been identified

with a stationary white Gaussian input. For loudspeakers, classical input signals for identification are

multitones [10], sine sweeps, Maximum Length Sequences (MLS), wide MLS (interleaving zeros between

±1) and multiple noises with modulus equal to 1 [11].

However, the physical behavior of nonlinear audio systems is input-dependent. This was stressed in [12]

for speech communication systems: classical steady-statemeasurements (sweeps, tones, noises...) are not

sufficient to predict the subjective performance of a system, so that they should be replaced by speech-

like test stimuli. In a more physical approach, Klippel [13], [14] showed the relationship between the

properties of the input signal and the physical behavior of aloudspeaker. For example, the voice coil

heating, which generates nonlinear distortions, depends on the spectral properties of the stimulus. As a

consequence, a full dynamic measurement, that excites all the nonlinearities to be measured, is performed

with audio-like stimuli.

Hence, audio nonlinear systems should be identified when they are excited by their real inputs (natural

audio signals). But the properties of audio signals make them unsuitable for classical identification

algorithms, since they are generally non-Gaussian, non-stationary and highly correlated. This point was

raised in [15] for the efficiency measurement of audio amplifiers: while synthetic signals cause a different

system behavior than audio, the non-stationarity of audio signals makes them difficult to use as test input.

Several studies take into account some of the natural inputsproperties. In [16], the authors proposed a

decorrelation filter to turn white the input, which is usefulto pilot the adaptive filter. However, the non-

commutativity of the decorrelation filter, which is linear,and the nonlinear Volterra filter limits the validity
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of this method. An identification method was proposed in [17]with high algorithmic complexity, for

stationary, Gaussian but correlated inputs. It consists ina prediction step followed by an orthogonalization

step. This method was tested in the adaptive identification case for a Volterra system of low order and in

the particular case of an AR(1)1 Gaussian process. An enhancement was achieved for both transient and

steady states. Nevertheless, this method was not validatedfor high order systems nor for non-Gaussian

and non-stationary inputs.

Thus, we propose to take fully into account the properties ofaudio signals, namely non-Gaussianity,

non-stationarity and high correlation, in the identification of nonlinear audio systems. In section II, we

point out the importance of Gaussianity in identification algorithms. Then, we propose in section III a

“Gaussianization” algorithm that aims at making an audio signal more Gaussian without changing its

perceptual properties. In section IV, we present a new identification structure based on Gaussianity and

taking into account the correlation and the non stationarity of audio signals. Finally, in section IV, we

present a simulation study and discuss the simulation results.

II. I LL -CONDITIONING IN NONLINEAR SYSTEM IDENTIFICATION

Speech signals have been shown to be near-Laplacian, whereas the distribution of music signals depends

on the type and the number of instruments, and tends to be Gaussian when several instruments are involved

[18]. Audio signals can be considered as generalized Gaussian processes, which distribution varies from

Gaussian to Laplacian.

The PDF2 p(x) of a generalized Gaussian process is given by

p(x) =
ν.η(ν, σ)

2.Γ(1/ν)
exp[−[η(ν, σ).|x|]ν ], (1)

whereσ2 is the variance ofx and

η(ν, σ) =
1

σ

[
Γ(3/ν)

Γ(1/ν)

]1/2
, (2)

whereΓ(.) is the Gamma function. The larger is theν factor the flatter is the PDF. The PDF

• is Laplacian forν = 1;

• is Gaussian forν = 2;

• tends to an impulse function forν −→ 0;

• tends to a uniform distribution forν −→ +∞.

1AR(n): autoregressive process with ordern.

2PDF : probability density function.
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A theoretical analysis is presented here to exhibit the importance of input Gaussianity in nonlinear systems

identification. In the literature, nonlinear distortions are generally modeled by polynomial structures (for

nonlinear memoryless systems) or truncated Volterra series (for nonlinear systems with memory) which

are identified using optimal or adaptive algorithms. These algorithms are sensitive to the ill-conditioning

of the observation matrix, even if the input is white. This concerns a matrix inversion problem for optimal

identification and a convergence problem in the adaptive case.

In the following, a particular attention is paid to the influence of the input PDF on the conditioning

of these observation matrices.

A. Polynomial systems

In the case of a polynomial system identification, the observation vector isXk = [1, xk, x
2
k, ..., x

N
k ]⊤

wherexk is the input signal andN refers to the polynomial order. For a stationary process,

Cx = E[XkX
⊤
k ],

is the symmetric matrix defined by

Cx =




1 m1 m2 . . mN

m1 m2 m3 . . mN+1

m2 m3 . . mN+1 mN+2

. . . mN+1 mN+2 .

. . mN+1 mN+2 . .

mN mN+1 mN+2 . . m2N




, (3)

wheremi = E[xik] is theith order moment and E[.] denotes the expectation value. With language misuse

and for simplicity, we will call the matrixCx “correlation matrix”.

The identification performance are closely related to the conditioning of the matrixCx which depends

on the PDF of the input signalxk. The conditioning ofCx is evaluated through its logarithmic condition

number [19]

K(Cx) = log10

( |λmax|
|λmin|

)
, (4)

whereλmax andλmin are respectively the largest and the smallest eigenvalues of the matrixCx.

We comparedK(Cx) for various orders and values of the form factorν of a generalized Gaussian

PDF (Fig. 1). The theoretical values were computed for the Gaussian, Laplacian and uniform cases.

September 28, 2016 DRAFT



5

2 4 6 8 10 12 14 16
0

5

10

15

20

25

Nonlinearity order

Lo
g1

0[
K

(C
)]

 

 
Laplacian
Gaussian
Uniform

Fig. 1. For a polynomial system, condition numberK(Cx) according to the nonlinearity order, for different generalized

Gaussian processes.

Applying the Price theorem [20] on a zero mean Gaussian processxg, we may deduce all the higher

order moments fromσ2xg = E[(xg)2]

mg
2p+1 = E[(xg)2p+1] = 0,

mg
2p =

(2p − 1)!

2p−1(p − 1)!
σ2pxg , (5)

wherep > 0. Similarly, for a zero mean Laplacian processxl:

ml
2p+1 = E[(xl)2p+1] = 0,

ml
2p =

(2p)!

2p
σ2pxl , (6)

whereσ2xl = E[(xl)2]. For a zero mean uniform processxu:

mu
2p+1 = E[(xu)2p+1] = 0,

mu
2p =

3pσ2pxu

2p+ 1
, (7)

whereσ2xu = E[(xu)2]. As depicted on Fig. 1, the larger is the shape factorν, the better is the matrix

conditioning, for all considered values ofN .

Thus, we expect to achieve better nonlinear identification for Gaussian inputs than for Laplacian inputs.

Ideally, the uniform distribution provides the best conditioning.
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Fig. 2. Condition number of the estimated matrix̂Rx (50.000 samples) according to the correlation factorρ, for Volterra

systemsS1 (left, M = 2 andN = 3) andS2 (right, M = 2 andN = 2).

B. Volterra systems

Some nonlinear systems with memory, like loudspeakers, aremodeled by Volterra series. LetN be the

polynomial order andM the memory length of a Volterra model. We denote byXk the Volterra input

vector defined by

Xk = Zk ⊘ Zk ⊘ ...⊘ Zk︸ ︷︷ ︸
N times

, (8)

where Zk = [1, xk, xk−1, ..., xk−M+1]
⊤. ⊘ denotes a modified Kronecker product, whose resulting

redundant terms are omitted.Xk is a vector of length(M+N)!
N !M ! and it contains only products belonging

to the set{xm1

k xm2

k−1...x
mM

k−M+1/m1 +m2 + ... +mM ≤ N} [21]. As for polynomial systems, we will

call the matrixRx = E[XkX
⊤
k ] “correlation matrix”. It was shown in [22] that for an i.i.d3 process, the

conditioning of the correlation matrixRx increases exponentially with the nonlinearity orderN and the

memory lengthM and has the upper bound[K(Cx)]
M :

K(Rx) < [K(Cx)]
M . (9)

Unlike polynomial systems, the observation matrixRx for Volterra systems contains auto-correlation

terms of the input signalxk (like E[xkxk−i]) and cross-correlation terms (for exampleE[xpkx
q
k−i]). For

3i.i.d: independent and identically distributed.
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correlated processes, an upper bound for the conditioning of the matrix Rx is difficult to determine

theoretically.

To show the influence of the input correlation on the conditioning of the correlation matrix, we compare

on Fig. 2 the conditioning of the matrixRx for first order correlated Gaussian and Laplacian [23] processes

(AR(1)) according to the correlation factorρ for the two following Volterra systems:

• S1 : a Volterra system of orderN = 3 and memoryM = 2 (containing15 coefficients)

• S2 : a Volterra system of orderN = 2 and memoryM = 2 (containing10 coefficients).

As expected, Fig. 2 shows that the condition number increases with the correlation of the input signal

in both cases (Gaussian and Laplacian processes). Furthermore, we notice that:

• for low correlation, the correlation matrix is better conditioned for the Gaussian process than for

the Laplacian process

• for high correlation, the condition numbers are quietly thesame for both processes.

Hence, only for low correlated processes, the input Gaussianity enhances the conditioning of the involved

correlation matrices.

In the following, we show that such a property is however required for performance enhancement of

nonlinear system identification (polynomial and Volterra).

C. Conditioning enhancement through orthogonalization

A powerful way to improve the conditioning is to orthogonalize the observation matrixCx or Rx.

For any PDF of the input, this may be achieved through the Gram-Schmidt procedure [9]. If the system

is memoryless and the input is Gaussian, the orthogonalization may be performed more simply using

a set of Hermite polynomials{H0(x),H1(x), ...,HN (x)} [1], where the higher order moments can be

expressed using only the signal variance.

If the system has memory (Volterra system) and the input is Gaussian, this holds only if the input

is white. In the case of a Gaussian correlated input, the latter has to be whitened as proposed in [17].

The backward prediction errors of respective orders0, 1, . . . ,M − 1 form the input vector of the new

identification system. One can then orthogonalize this vector using Hermite polynomials.

D. Variability of the PDF of audio signals

Audio signals are globally generalized Gaussian but this should be locally verified. We present in Fig.

3 and 4 respectively the PDF of2000 samples of a speech signal sampled at8 kHz (250 ms) and a
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music signal sampled at44.1 kHz (45 ms), which vary from one frame to another between Gaussian and

Laplacian processes. Particulary, for voiced (speech) or tonal (music) zones, the PDF is near a Gaussian

distribution.

Consequently, in an adaptive identification of a nonlinear system, since the performance depends on the

local properties of the signal, one may expect this variability of the local PDF to lead to a variability of

the conditioning and, consequently, of the identification performance.

E. Conclusion

We have shown in this section that the performance of nonlinear system identification depends on the

conditioning of the observation matrix and, hence, on the PDF of the input. For memoryless systems, the

flatter is the distribution, the better is the conditioning.Considering generalized Gaussian distributions

between Laplacian and Gaussian, as audio can be modeled, this means that the identification should

perform better with Gaussian inputs. For systems with memory and correlated input, the conditioning is

bad whatever the PDF is. However, the Gausiannity is again a desirable property, since it allows a simple

orthonormalization of the input, which minimizes the condition number.

Thus, we propose in the following an audio Gaussianization procedure and an identification scheme based

on this built Gaussianity and on an input orthonormalization.

III. A UDIO GAUSSIANIZATION

Since the Gaussianity of the input is a desirable property for nonlinear system identification, we propose

in the following a specific ”doping” technique to”force” audio signals to be Gaussian [24], [25].

A. Gaussianization procedure

The proposed transformation of audio signals from their empirical distribution to a Gaussian distribution

is performed over non overlapping frames.

We associate to the sequenceX of lengthL the corresponding empirical cumulative distribution function

F emp
X (xk) = P [X ≤ xk]

=
|{X ≤ xk}|

L
, k = 1, · · · , L. (10)

The distribution of the signal is turned into the Gaussian distribution with the same mean valuemx and

varianceσ2x through a histogram equalization similar to the basic one used in image processing [26].
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Fig. 3. Speech frames (2000 samples, sampling frequency 8 kHz) with a nearly Gaussian distribution (top) and a nearly

Laplacian distribution (bottom).

DenotingF target the cumulative distribution function of the target Gaussian distribution, fork = 1 toL,

we add a small valuegk to eachxk, so thatxwk = xk + gk verifies:

F target(xwk ) = F emp
X (xk), (11)

as shown in Fig. 5. Then we get the Gaussiannized signal

xwk = xk + gk, (12)

wheregk is the Gaussianization signal, called the doping watermark[24].

B. Perceptual limits of Gaussianization

To avoid local power peaks of the Gaussianization signalgk (mainly due to the variability of the

short-term PDF), the Gaussianization is performed on long frames, typicallyL = 10 000. Thus, the
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Fig. 4. Music frames (2000 samples, sampling frequency 44.1 kHz) with a nearly Gaussian distribution (top) and a nearly

Laplacian distribution (bottom).

Gaussianization is an off-line procedure. However, the inserted Gaussianization signalgk is clearly

audible. One reason is that the PDF of speech and some music signals is much higher than the Gaussian

PDF around zero. Consequently, for segments ofx with values around zero, the shiftsgk are of the same

order as the initial valuesxk.

To study the audibility of the Gaussianization signal, we evaluate in Table I the Zero Crossing Rate4

(ZCR) and the Signal to Gaussianization signal Ratio (SGR) defined as

SGR = 10 log10[Px/Pg], (13)

wherePx andPg are respectively the power of the signalxk and the power of the Gaussianization signal

gk. Three different types of segments are then considered: voiced, unvoiced and silent, for speech; tonal,

4The zero crossing rate is the ratio between the number of zerocrossings and the total number of samples in a signal segment.
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Fig. 5. Gaussian target and empirical cumulative distribution functions for a speech frame of 10 000 samples.

noisy and silent, for music.

As shown on Table I and unsurprisingly, the SGR is the worst for silent segments. The ZCR is much

higher for unvoiced segment than for voiced segments, whichleads to a worse SGR. Hence, in order

to reduce the power of the Gaussianization signal, we proposed to exclude silent and unvoiced/noisy

segments from the Gaussianization procedure.

Since this is not sufficient to make the watermark inaudible,we achieved a perceptual masking through

an iterative limitation of the variance of the Gaussianization signal.

C. Gaussianization under perceptual constraint

The inaudibility is preserved by reaching a target variance(σtargetg )2 for the Gaussianization signalg,

through an iterative adjustment of the maximum value of|g|, denotedgmax.

As a first step, we fix an arbitrary authorized maximum valuegmax, which will be used to define the

search interval of a dichotomy process to find the optimal valuegoptmax. We transform the PDF ofx under

the constraint|g| < gmax, which provides a varianceσ2g for g.

As a second step, we perform the following test:

• if σg < σtargetg − ǫ (ǫ is an arbitrary small value) then we fixg1max = gmax and repeat the

multiplication of gmax by 2 and the PDF transformation under the constraint|g| < gmax, until

we getσg > σtargetg . Let g2max = gmax

• if σg > σtargetg + ǫ then we fixg2max = gmax and we repeat the division ofgmax by 2 and the PDF

transformation under the constraint|g| < gmax until we getσg < σtargetg . Let g1max = gmax .
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ZCR SGR[dB]

unvoiced segments 0.35 -0.77

silent segments - -7.96

voiced segments 0.014 6.46

TABLE I

EVALUATION OF THE ZCR AND THE SGRFOR VOICED, UNVOICED AND SILENT SEGMENTS OF A SPEECH SIGNAL.

Signal Signal duration (s) χdB Quality

Speech 1.2 -18 estimated MOS=3.87

Pop music 2 -16 ODG=-0.758

Classical music 1.5 -16 ODG=-0.18

Guitar 2.38 -16 ODG=-1.13

TABLE II

PEAQ (ODG)AND PESQ (ESTIMATED MOS) EVALUATIONS FOR SOME AUDIO SIGNALS AFTERGAUSSIANIZATION

PROCESSING.

In both cases we get an interval[g1max, g
2
max] in which we search by dichotomy the optimal valuegmax

that verifies|σg − σtargetg | < ǫ.

How to determineσtargetg ? Since the PSD ofgk is roughly parallel to the PSD ofxk, the target variance

must be at least 13 dB under the variance ofx, according to [27]. We set:

σtargetg = χσx,

where the attenuation factorχ was fixed after informal subjective tests and chosen to guarantee the

imperceptibility ofg.

Finally, after Gaussianization of voiced (for speech) or tonal (for music) segments according to the

process described above, we concatenate silent and unvoiced (or non-tonal) segments, which are not

Gaussianized.

D. Audio quality evaluation of Gaussianized signals

Perceptually, the Gaussianized signal and the original onemust be the same. Audio quality is preferably

evaluated through formal subjective measures. Nevertheless, for a rapid and low-cost evaluation, they can
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be replaced by objective measures like PEAQ (Perceptual Evaluation of Audio Quality) for music [28]

and PESQ (Perceptual Evaluation of Speech Quality) for speech [29].

For PEAQ measures, an ODG (Objective Difference Grade) score is computed which is in[−4, 0].

The score0 indicates an imperceptible difference between the original signal and its processed version.

The value−4 refers to the highest degradation level.

For PESQ measures, the quality evaluation is done through anestimated MOS (Mean Opinion Score)

which is in [1, 4.5]. The value4.5 corresponds to the best fidelity to the original signal and the value1

refers to the highest degradation.

The ODG and the estimated MOS values, relative respectivelyto music and speech signals after

Gaussianization under a perceptual constraint fixed through the choice ofχ, are displayed in Table II.

These results indicate that the Gaussianization modifies slightly the audio quality.

E. Gaussianity measurement

The Gaussianity of a signal may be measured by its Kurtosis, which equals3 for a Gaussian distribution.

For the previous pop-music signal, we estimated the Kurtosis for non-overlapping frames of10 000

samples, for the original signalx and the signal Gaussianized under the inaudibility constraint expressed

by χdB = −16 dB. As shown by Fig. 6, the Kurtosis of the Gaussianized signal xw is closer to3 than

that of the original signalx for most of the frames.The variability of the estimated Kurtosis around

3 results from the exclusion of the silent and noisy segmentsfrom the Gaussianization.

F. Conclusion

We have shown in section II that the Gaussianity of the input is a desirable property for identification of

nonlinear systems. Since audio signals are generally non-Gaussian, we have proposed a Gaussianization

method that makes an audio signal more Gaussian (but not fully Gaussian), while ensuring its perceptual

fidelity to the original. We show in the following how this leads to higher performance in nonlinear

system identification.

IV. N ONLINEAR AUDIO SYSTEM IDENTIFICATION RELYING ON INPUT GAUSSIANITY

As stressed in [14] for loudspeakers, the nonlinear behavior of audio systems varies in time according

to the input signal and to the excited physical effect of the system (heating for example). Hence, the

system identification has to be adaptive, in order to observethese variations. Moreover, the transient state

of the identification has to be as short as possible in order toobserve the early behavior of the system.
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Fig. 6. Estimated Kurtosis evolution of original and Gaussianized signals (non-overlapping frames of10 000 samples).

However, the proposed Gaussianization is an off-line process, since it is performed on large segments

of an audio signal. Thus, for an off-line identification task, the signal has to be fully Gaussianized before

identifying the system. For a real-time identification (forexample with a compensation purpose), the

Gaussianization is suitable in the context of playing/broadcasting recorded material, and not in nonlinear

acoustic echo cancellation for example.

A. Classical system identification scheme

We consider here a nonlinear systemA which is identified by an adaptive nonlinear filterAk (poly-

nomial or Volterra model). The input and output of the nonlinear (NL) system are denoted respectively

by xk andyk and the estimated output̂yk is

ŷk = A⊤
kXk, (14)

whereAk = [1, a1, ..., aq ]
⊤. The structure of the input vectorXk and its lengthq are related to the

nonlinear model (for polynomial modelq = N + 1). The estimation error is

ek = yk − ŷk. (15)

Ak is the adaptive filter updated with a normalized Least-Mean Square (NLMS) algorithm [30] and driven

by the input vectorXk as follows

Ak+1 = Ak +
µ

‖Xk‖2
ekXk, (16)

whereµ is the adaptation step size.
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Fig. 7. Proposed identification scheme for NL Volterra systems: Gaussianization, predictor filterbank, orthonormalization and

adaptive NL model.

In this paper, the NLMS algorithm was chosen as an example to illustrate the proposed methodology,

but other identification algorithms could be used.

For the analysis purpose, we consider here that the system and the model have the same structure.

Then, the system output is

yk = A⊤Xk + nk, (17)

whereA is the NL system andnk is an additive white Gaussian noise.

B. The proposed identification structure

Based on the conclusions of sections II and III, we propose the identification method depicted on

Fig. 7 for both memoryless NL systems and NL systems with memory. Note that the second block and

the first part of the third block concern only the identification of NL systems with memory.

Whereas orthogonalization was already proposed in [17], wepropose here to further improve the

conditioning of the matrix involved in the identification system (block 4) through anorthonormalization

step.

1) Gaussianization (block 1):This first block consists in the Gaussianization of the audiosignalxk

as detailed above. The input Gaussianity is necessary for the following orthonormalization block.

2) Predictor filterbank (block 2):It consists in computing the prediction errors{w(0)
k , w

(1)
k , w

(M−1)
k }

of respective orders0, 1, ...,M − 1. This step was proposed in [17] to orthogonalize Gaussian correlated
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signals for the identification with Volterra structure. Note that this second pre-processing step concerns

only systems with memory and it does not need the hypothesis of input Gaussianity.

3) Orthonormalization (block 3):The goal of this block is to form an orthonormal basis fitted tothe

NL model (polynomial or Volterra) so that the correlation matrix is the identity matrix with an optimal

conditioning equal to1.

• For memoryless systems5, the goal is to form an orthonormal basis relative to the polynomial basis

B(N)(xwk ) = {1, xwk , (xwk )2, ..., (xwk )N}. We first normalizexw:

x̃wk = xwk /σ̂xw (18)

where σ̂2xw is the estimated variance ofxw, computed on quasi-stationary frames (typically 10 to

30 ms for speech). As the input signalxw is a Gaussianized signal, the corresponding orthogonal

polynomial basis is the Hermite polynomial basisH(N)(x̃wk ) = {H0(x̃
w
k ),H1(x̃

w
k ), ...,HN (x̃wk )},

whereHi denotes theith Hermite polynomial. If the identification is driven byH(N)(x̃wk ), its

performance depend on the conditioning ofE[H(N)(x̃wk )H
(N)(x̃wk )

⊤] (diagonal matrix). To get an

optimal conditioning, we use the normalized Hermite polynomial basisH̃(N) = {H̃0, H̃1, ..., H̃N},

where:

∀ i, H̃i(z) = Hi(z)/
√
i!

In other terms, we form the vectorUk = H̃(x̃wk ), so thatE[UkU
⊤
k ] is the identity matrix, with

conditioning equal to1.

The relationship between vectorsXw
k andUk is then

Uk = ΓXw
k , (19)

whereΓ is a (N + 1)× (N + 1) lower triangular matrix.

• For systems with memory:We propose in the following to do some modifications to the previous

identification structure for the identification of nonlinear systems with memory, based also on input

Gaussianity hypothesis. This idea is inspired from the Wiener G-functionals [2] which are derived

from the Volterra kernels by polynomials combination. The statistical orthogonality properties of

the involved kernels improve the conditioning of the correlation matrix only for white and Gaussian

inputs.

To overcome the non-Gaussianity and the high correlation ofaudio signals, we have introduced

5Referring to Fig. 7,Vk = Xk.
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stages of Gaussianization (block 1) and forward predictionfilterbank (block 2).

The goal of block 3 is to form an orthonormal basis relative tothe vectorWk = [1, w
(0)
k , w

(1)
k , w

(M−1)
k ]⊤.

We first normalize eachw(i)
k as described above (Eq. (18)), which providesW̃k = [1, w̃

(0)
k , w̃

(1)
k , . . . , w̃

(M−1)
k ]⊤.

We apply the modified Kronecker product to the vectorW̃k to get the vectorVk:

Vk = W̃k ⊘ ...⊘ W̃k, (20)

which elements are of the form
∏

i,j(w̃
(i)
k )j . FromVk, we derive a new orthonormal vectorUk which

elements are of the form
∏

i,j H̃j(w̃
(i)
k ) [2]. As in the memoryless case,E[UkU

⊤
k ] is the identity

matrix, with conditioning equal to1.

Hence,Uk can be written asUk = QVk, whereQ is a lower triangular matrix. SincẽWk may be

written as the product of a lower triangular matrix byZk = [1, xk, xk−1, ..., xk−M+1]
⊤, according to

the properties of the modified Kronecker product,Vk is also the product of a lower triangular matrix

by Xk (defined by Eq. (8)). Thus, the relationship between vectorsXk andUk is againUk = ΓXk,

whereΓ is a lower triangular matrix. Note that the input Gaussianity hypothesis is necessary only

for this orthonormalization step of the vectorVk. This proposed step is less complicated than the

proposed method in [17] where the identifcation system is over-parametrized.

4) Adaptive NL model (block 4):The output of the adaptive identification structure of block4, driven

by the vectorUk provided by block 3, iŝyk = ψ⊤
k Uk. ψk is an adaptive filter updated with a NLMS

algorithm as follows

ek = yk − ψ⊤
k Uk

ψk+1 = ψk +
µo

‖Uk‖2
ekUk, (21)

whereek is the estimation error andµo is the step size.

The three previous pre-processing steps give to the new observation vectorUk better orthogonality

properties than the initial vectorXk. Indeed, the obtained correlation matrixE[UkU
⊤
k ] which drives the

identification is theoretically the identity matrix.

C. Studied schemes for comparative performance analysis

Using the classical adaptive identification algorithm NLMSand for exact modeling (same order for the

NL system and model), the transient and steady state behaviors can be studied through the time variation

of the deviation vector∆Ak = A−Ak. Using (15), (16) and (17) it is easy to show that

∆Ak+1 =

(
I− µ

XkX
⊤
k

‖Xk‖2
)
∆Ak − µnk

Xk

‖Xk‖2
, (22)
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whereI refers to the identity matrix of rankq.

For the proposed method, we remind that the estimation erroris

ek = yk − ŷk

= A⊤Xg
k + nk − ψ⊤

k Uk. (23)

We denote byAo
k the adaptive filter that identifies the NL systemA in the proposed scheme.Ao

k is

updated as

Ao
k = Γ⊤

k ψk, (24)

whereΓk denotes the transform matrix computed for the signal frame to which belongs thekth sample.

Using (21), (23) and (24), we can show that

∆Ao
k+1 =

(
I− µo

Γ⊤
k UkU

⊤
k Γ−⊤

k

‖Uk‖2

)
∆Ao

k − µonk
Γ⊤
k Uk

‖Uk‖2
, (25)

where∆Ao
k = A−Ao

k.

We first study the convergence in the stationary case. The NLMS algorithm can be replaced by the LMS

algorithm, which means replacingµ/‖Xk‖2 andµo/‖Uk‖2 by µ and µo, respectively, in the previous

equations.

In this case, under the independence assumption betweenXk and∆Ak and for a small step sizeµ, taking

the expectation value of both sides of (22) leads to

E[∆Ak+1] =
(
I− µE

[
XkX

⊤
k

])
E[∆Ak]. (26)

The mean convergence depends on the conditioning of the matrix E
[
XkX

⊤
k

]
[31].

Similarly, under the independence assumption betweenUk and∆Ao
k and for a small step sizeµo we can

deduce from (25) :

E[∆Ao
k+1] =

(
I − µoE

[
Γ⊤
k UkU

⊤
k Γ−⊤

k

])
E[∆Ao

k]. (27)

SinceΓk is triangular, the conditioning ofE
[
Γ⊤
k UkU

⊤
k Γ−⊤

k

]
is the same as that ofE

[
UkU

⊤
k

]
, which

is equal to 1, so that the proposed method provides the maximal convergence rate.

In the case of natural audio signals, in spite of the orthonormalization step,Uk is not stationary, so

that the LMS algorithm is not convenient. Coming back to the NLMS algorithm, equations (26) and (27)

become respectively:

E[∆Ak+1] =

(
I − µE

[
XkX

⊤
k

‖Xk‖2
])

E[∆Ak]. (28)
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E[∆Ao
k+1] =

(
I − µoE

[
Γ⊤
k UkU

⊤
k Γ−⊤

k

‖Uk‖2

])
E[∆Ao

k]. (29)

Hence, the convergence depends on the conditioning ofR̃x = E
[
XkX⊤

k

‖Xk‖
2

]
and R̃u = E

[
UkU⊤

k

‖Uk‖
2

]
, respec-

tively. One may expect that the latter is better conditionedthan the former and thus provides a faster

convergence, but this should be verified experimentally.

In the steady state, the identification performance is evaluated through the classical Mean Square

Deviation

MSD(k) = E[‖∆Ak‖2].

From (22) and under independence hypothesis betweenXk and∆Ak, we get

E[‖∆Ak+1‖2] = E

[
∆A⊤

k (I − µ(2− µ)
XkX

⊤
k

‖Xk‖2
)∆Ak

]
+

µ2σ2nE

[
1

‖Xk‖2
]

︸ ︷︷ ︸
P ν

k

, (30)

whereσ2n denotes the variance of the noisen.

Similarly, from equation (27), we get

E[‖∆Ao

k+1‖2] =

E

[
(∆Ao

k)
⊤(I − µo(2 − µo)

‖Γ−1

k
Uk‖2Γ−1

k
UkU

⊤

k
Γ−⊤

k

‖Uk‖4
)∆Ao

k

]

+(µo)2σ2
nE

[‖Γ⊤

k
Uk‖2

‖Uk‖4
]

︸ ︷︷ ︸
P

γ

k

. (31)

From equations (31) and (30) one can see that the steady stateperformances of the proposed method and

the classical adaptive filter depend crucially on the instantaneous values ofP γ
k = (µo)2σ2nE

[
‖Γ⊤

k Uk‖2/‖Uk‖4
]

and P ν
k = µ2σ2nE

[
1/‖Xk‖2

]
respectively. AsAo

k is computed in a more stationary context where

E[‖Uk‖2] ≃ 1, P γ
k is expected to have smoother variations thanP ν

k for which ‖Xk‖ presents high

and rapid variations.

The experimental protocol presented in table III is used forthe following simulations.

V. SIMULATION RESULTS AND DISCUSSION

A. Memoryless systems

For performance evaluation of the proposed identification structure for polynomial systems, a poly-

nomial system of orderN = 7 is identified by an adaptive polynomial filter of orderN . The system
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”C”=Classical adaptive identification method with

non Gaussianizedinput xk

-identified output

yk = A⊤Xk + nk (32)

-block 4 (and block 3.1 if system with memory)

- NLMS algorithm

ek = yk − A⊤

k Xk

Ak+1 = Ak +
µ

‖Xk‖2
ekXk. (33)

-Deviation vector in exact modeling

∆Ak = A− Ak (34)

”G”= classical adaptive identification method with

Gaussianizedinput xw
k

-identified output

yk = A⊤Xw
k + nk (35)

- blocks 1 and 4 (and block 3.1 if system with

memory)

- NLMS algorithm

ek = yk − A⊤

k X
w
k

Ak+1 = Ak +
µ

‖Xw
k ‖2

ekX
w
k . (36)

-Deviation vector in exact modeling

∆Ak = A− Ak (37)

”O”= proposed adaptive identification method with

original input xk (not Gaussianized)

-identified output

yk = A⊤Xk + nk (38)

- blocks 3.2 and 4 (and blocks 2 and 3.1 if system

with memory)

- Observation vector:Uk = ΓXk

- NLMS algorithm

ek = yk −A⊤

k Uk

Ψk+1 = Ψk +
µo

‖Uk‖2
ekUk. (39)

-Deviation vector in exact modeling

∆Ao
k = A− Ao

k (40)

”GO” = proposed adaptive identification method

with Gaussianizedinput xw
k

-identified output

yk = A⊤Xw
k + nk (41)

- blocks 1, 3.2 and 4 (and blocks 2 and 3.1 if system

with memory)

- Observation vector:Uk = ΓXw
k

- NLMS algorithm

ek = yk − A⊤

k Uk

Ψk+1 = Ψk +
µo

‖Uk‖2
ekUk. (42)

-Deviation vector in exact modeling

∆Ao
k = A− Ao

k (43)

TABLE III

STUDIED SCHEMES FOR PERFORMANCE EVALUATION OF THE PROPOSED IDENTIFICATION STRUCTURE FORNL SYSTEMS

(WITH STEP SIZESµ AND µo).
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coefficients are generated using a normal distribution withunit variance. The input is a speech signal

sampled at8 kHz and the additive observation noisenk is white and Gaussian with a variance fixed

according to anSNR = 40 dB. The Gaussianization is done over non overlapping framesof 10 000

samples under the inaudibility constraint (χ = −18 dB). The variance involved in the computation of

the orthonormal basis is estimated on 256 samples frames.

1) Transient behavior analysis:We compare in Fig. 8 the condition numbers of the estimated matrices

R̃x andR̃u for original and Gaussianized speech computed over frames of 256 samples. The period 256

corresponds to the updating rate of the transformation matrix Γ.

As illustrated in Fig. 8, the proposed identification methodwith a Gaussianized input improves the

conditioning6. The condition number is reduced by a factor 1000 compared tothe classical method with

non-Gaussianized speech. The classical method with Gaussianized speech and the orthonormalization

without Gaussianization provide intermediate results.

However, even for the Gaussianized speech signal the condition number is not equal to 1. This can be

explained by the imperfect Gaussianity of the Gaussianizedsignal and by the fact that we optimized the

conditioning ofE[UkU
⊤
k ] and not that ofR̃u = E

[
UkU⊤

k

‖Uk‖
2

]
.

We display in Fig. 9 the time variations of the MSD related to original and Gaussianized speech with

the classical identification method (’C’ and ’G’ respectively) and with the proposed identification method

(’O’ and ’GO’ respectively) respectively. Fig. 9 shows the enhancement of the convergence rate achieved

by the proposed identification structure ’GO’. This is related to the best conditioning of the observation

matrix R̃u for Gaussianized input. Note that the Gaussianity does not seem to be as crucial as the

identification structure for the convergence rate, though this structure relies on a Gaussian hypothesis.

2) Steady state analysis and performances:The steady state performances are also studied here through

the MSD, but after convergence.

From equations (31) and (30), the steady state performancesof the proposed method and of the classical

adaptive filter depend crucially on the instantaneous values of P γ
k = (µo)2σ2nE

[
‖Γ⊤

k Uk‖2/‖Uk‖4
]

and

P ν
k = µ2σ2nE

[
1/‖Xk‖2

]
respectively. These quantities are displayed in Fig. 10.

As expected,P γ
k has smoother variations and lower values thanP ν

k . Consequently, as illustrated in Fig. 9,

the MSD in the steady state reaches lower values with the proposed method.

6Note that on Fig. 8 the conditioning peak at frame7 corresponds to silent zones where the Gaussianization has no effect.
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Fig. 8. For a polynomial system, condition number of the estimated matrices̃Rx (schemes ’C’ and ’G’) and̃Ru (schemes

’O’ and ’GO’), computed over32ms frames.

B. Systems with memory

A Volterra system of orderN = 3 and memoryM = 3 is considered in the following under the

same simulation conditions as in subsection V-A. Knowing that speech signals are highly correlated and

non stationary, the prediction errors are computed over20 ms frames where speech is assumed locally

stationary. The same updating rate is imposed to the transformation matrixΓ.

1) Transient behavior analysis:First, the Volterra system is identified by an adaptive Volterra filter

with N = 3 andM = 3 (same order and memory). To point out the enhancement of the convergence rate

achieved by the proposed identification structure, we plot on Fig. 11 the time variations of the MSD for

the proposed identification structure and the classical adaptive identification where the system is excited

by speech signal without pre-processing (’C’ or ’O’) or by Gaussianized speech (’G’ or ’GO’).

Fig. 11 shows that the best convergence rate is obtained for the proposed identification structure driven

by the Gaussianized speech signal. The enhancement achieved by the proposed identification structure

in the transient state is due to the better conditioning of the matrix R̃u compared to the matrix̃Rx as

shown in Fig. 12. Note that the compliance with the Gaussian hypothesis is more crucial here than in

the memoryless example.

However, the conditioning of the estimated matrix for Gaussianized speech with the proposed identifica-

tion structure is not equal to1, for the reasons given in the case of a memoryless system and because

the prediction errors are not perfectly orthogonal.
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Fig. 9. For a polynomial system, MSD time variation for classical identification and for the proposed method, for original

speech and Gaussianized speech. (N = 7, µ = µo = 0.02, SNR = 40 dB andχ = −18 dB).
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Fig. 10. For a polynomial system,time variation ofP γ (’O’ and ’GO’) andP ν (’C’ and ’G’) for 256 samples frames (N = 7,

µ = µo = 0.02, SNR = 40 dB andχ = −18 dB).

2) Steady state performances:We display in Fig. 13 the time evolution ofP γ and P ν . The same

analysis as in the previous case stands. Thus, the proposed identification scheme provides the lowest

MSD in the steady state.

Loudspeakers are modeled as nonlinear systems with memories longer than 3 [4], [32]. For a sampling

frequency of 44.1 kHz, a memory length of 256 (ca.6 ms) was used in [32]. To point out the effectiveness
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Fig. 11. For a system with memory, MSD time variation for classical identification and for the proposed method, for original

speech and Gaussianized speech (µ = 0.1, N = 3, M = 3, SNR = 40 dB andχ = −18 dB).

of the proposed identification scheme in such a more realistic case, we identified a Volterra system of

nonlinearity orderN = 3 and memory lengthM = 50 (6 ms for 8 kHz sampling frequency). The

performance is evaluated through the SER7 (Signal to Error Ratio) measure.

Fig. 14 displays the SER time evolution in steady state (after convergence) of the four studied

identification schemes of table III. The enhancement of the proposed identification scheme is ensured

even for this larger memory system, where a gain ofca. 15 dB is reached most of the time compared to

the classical identification without Gaussianization.

3) Under-modeling case:For a more realistic situation of under-modeling, a Volterra system (N = 3

andM = 50) is identified by a Volterra filter of orderN = 2 and memoryM = 40. Hence, we identify

only 903 coefficients from all of the 24804 system coefficients. We compare in Fig. 15 the SER time

evolution of the four studied identification schemes. A gainof ca. 6 dB is reached most of the time,

compared to the classical identification without Gaussianization, andca. 2 dB compared to orthonor-

malization without Gaussianization. Then, the proposed adaptive identification structure guarantees a

noticeable enhancement of the identification quality in both cases of exact modeling and under-modeling.

7The SER is defined asSER = 10 log(Px/Pe) wherePx = E[x2
k] is the signal power andPe = E[e2k] is the estimation

error power.
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Fig. 12. For a system with memory, condition number of the estimated matrices̃Rx (schemes ’C’ and ’G’) and̃Ru (schemes

’O’ and ’GO’), computed over32ms frames.

VI. CONCLUSION

Nonlinear audio system identification methods generally donot take into account audio characteristics:

non-stationarity, non-Gaussianity and high correlation.

We have proposed an identification structure suitable for memoryless systems (of polynomial type) and

systems with memory (of Volterra type) fitted to these audio properties.

The proposed identification scheme combines audio Gaussianization, whitening and orthonormalization

relying on the Gaussianity. We have shown that this pre-processing of the input of an adaptive filter

enhances significantly the convergence rate and the identification performance in steady state.

Because of the inaudibility constraint of the Gaussianization, the signal after this step does not fully

match the Gaussianity hypothesis assumed by the following steps of the process, which reduces the

identification performance, compared to a perfectly Gaussian signal. This constraint however stands only

if the NL system must be identified in real-time, for example for a NL-compensation purpose. In the case

of an off-line identification (eg. loudspeaker characterization), the noise added by the Gaussianization

does not need to be inaudible, which allows a perfect Gaussianity. One should however verify that the

amount of added noise does not significantly change the physical behavior of the NL system, compared

to the original signal.
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Fig. 13. For a system with memory, time variation ofP γ (O and GO) andP ν (C and G) for original and Gaussianized speech

for 256 samples frames.
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Fig. 14. NL system with memory (N = 3, M = 50), exact modeling case: Signal to Error Ratio for the classical and the

proposed identification methods, for speech with and without Gaussianization (µ = 0.1, SNR = 40 dB andχ = −18 dB).

APPENDIX

MODIFIED KRONECKER PRODUCT

A. Volterra models

The principle of Volterra structures is to represent any nonlinear, causal and time invariant system with

finite memory by finite Volterra series [2]. For a system with memoryM , we consider the following
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truncated model of orderN

yk =

N∑

j=1



M−1∑

i1=0

...

M−1∑

ij=0

hj(i1, ..., ik).xk−i1 ...xk−ij


 , (44)

wherexk, yk andhj represent respectively the system input, its output and theVolterra kernel of order

j. Note that in equation (44), there are redundant terms of theform xk−i1 ...xk−ij .

B. Mathematical representation of a Volterra filter

The input-output relationship (44) is equivalent to

yk = Θ⊤Xk, (45)

whereΘ is the vector containing unique coefficients (after mergingredundant terms) of kernels and

Xk contains the corresponding products of the input signal necessary for output evaluation. It can be

represented through the input vector corresponding to the linear part

Zk = [1, xk, xk−1, ..., xk−M+1]
⊤ (46)

as

Xk = Ω(Zk ⊗ Zk ⊗ ...⊗ Zk︸ ︷︷ ︸
Nterms

), (47)

where⊗ denotes the Kronecker product andΩ is the transformation eliminating the redundant terms.

The modified Kronecker product of then-dimensional vectorY = [y1, ..., yn]
⊤, denoted byY ⊘ Y , is

the sub-vector ofY ⊗ Y of dimensionn(n+1)
2 as

Y ⊘ Y = Ω(Y ⊗ Y ). (48)

This vector representation is used in this article.
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Manar, Tunisia. She obtained the PhD degree in telecommunications from the Université Paris Descartes,
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Her teaching and research interests are in signal processing, audio processing and audio watermarking.

Mériem Jaı̈dane received the M.Sc. degree in electrical engineering from Ecole Nationale d’Ingénieurs

de Tunis (ENIT), Tunisia, in 1980. From 1980 to 1987, she has worked as research engineer at the
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