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Abstract

In the framework of agnostic learning, one of the main open problems of the theory

of multi-category pattern classification is the characterization of the way the complex-

ity varies with the number C of categories. More precisely, if the classifier is charac-

terized only through minimal learnability hypotheses, then the optimal dependency

on C that an upper bound on the probability of error should exhibit is unknown. We

consider margin classifiers. They are based on classes of vector-valued functions with

one component function per category, and the classes of component functions are uni-

form Glivenko-Cantelli classes. For these classifiers, an Lp-norm Sauer-Shelah lemma

is established. It is then used to derive guaranteed risks in the L∞ and L2-norms.

These bounds improve over the state-of-the-art ones with respect to their dependency

on C, which is sublinear.

1 Introduction

During a long period, the theory of multi-category pattern classification was considered

as a topic of limited importance. Two connected reasons can be put forward to explain

this phenomenon. On the one hand, the theory dedicated to dichotomies was making

rapid strides, on the other hand, decomposition methods were seen as efficient solutions to

tackle polytomies. An obvious drawback of this line of reasoning is to neglect the speci-

ficities of the multi-category case, such as the dependency of the complexity of the task

on the number C of categories. In recent years, several studies addressed this question, by

deriving upper bounds on the probability of error of multi-category classifiers, especially

margin ones. However, most of these guaranteed risks were dedicated to specific families

of classifiers, let them be kernel machines [36, 24], neural networks [2], decision trees [23]

or nearest neighbors classifiers [22]. This article deals with margin classifiers. They are

based on classes of vector-valued functions with one component function per category, and

the classes of component functions are uniform Glivenko-Cantelli classes. For these classi-

fiers, an Lp-norm Sauer-Shelah lemma is established. It is then used to derive guaranteed

risks in the L∞ and L2-norms. These bounds improve over the state-of-the-art ones with

respect to their dependency on C, which is sublinear. Thus, they pave the way for the

characterization of the optimal dependency on C that could be obtained in the framework

of agnostic learning, under minimal learnability/measurability hypotheses regarding the

classes of functions involved.

The organization of the paper is as follows. Section 2 deals with the theoretical frame-

1



work and the margin multi-category classifiers. Section 3 is devoted to the derivation of

the Lp-norm Sauer-Shelah lemma. The bound based on the L∞-norm and that based on

the L2-norm are respectively established in Section 4 and Section 5. At last, we draw

conclusions and outline our ongoing research in Section 6. To make reading easier, basic

results from the literature and technical lemmas have been gathered in appendix.

2 Margin multi-category classifiers

The theoretical framework for the margin multi-category classifiers has been introduced in

[16]. It is summarized below.

2.1 Theoretical framework

We consider the case of C-category pattern classification problems [12] with C ∈ N \ [[ 0, 2 ]].

Each object is represented by its description x ∈ X and the set Y of the categories y can

be identified with the set of indices of the categories: [[ 1, C ]]. We assume that (X ,AX )

and (Y,AY) are measurable spaces and denote by AX ⊗ AY the tensor-product sigma

algebra on the Cartesian product X × Y. We make the hypothesis that the link between

descriptions and categories can be characterized by an unknown probability measure P on

the measurable space (X × Y,AX ⊗AY). Let Z = (X,Y ) be a random pair with values

in Z = X × Y, distributed according to P . The single knowledge source on P available

is an m-sample Zm = (Zi)16i6m = ((Xi, Yi))16i6m made up of independent copies of Z

(in short Zm ∼ Pm). The theoretical framework is thus that of agnostic learning [19]. To

simplify reasoning, in the sequel, the hypothesis m > C is made.

We add an hypothesis to that framework: the fact that the classifiers considered are

based on classes of vector-valued functions with one component function per category, and

the classes of component functions are uniform Glivenko-Cantelli. The definition of this

property calls for the introduction of an intermediate definition.

Definition 1 (Empirical probability measure) Let (T ,AT ) be a measurable space and

let T be a random variable with values in T , distributed according to a probability measure

PT on (T ,AT ). For n ∈ N∗, let Tn = (Ti)16i6n be an n-sample made up of independent

copies of T . The empirical measure supported on this sample, PTn, is given by

PTn =
1

n

n∑
i=1

δTi ,

where δTi denotes the Dirac measure centered on Ti.
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Definition 2 (Uniform Glivenko-Cantelli class [15]) Let the probability measures PT

and PTn be defined as in Definition 1. Let F be a class of measurable functions on T . Then

F is a uniform Glivenko-Cantelli class if for every ε ∈ R∗+,

lim
n−→+∞

sup
PT

P

(
sup
n′>n

sup
f∈F

∣∣∣ET ′∼PTn′

[
f
(
T ′
)]
− ET∼PT [f (T )]

∣∣∣ > ε

)
= 0,

where P denotes the infinite product measure P∞T .

Henceforth, we shall refer to uniform Glivenko-Cantelli classes by the abbreviation GC

classes. GC classes must be uniformly bounded up to additive constants (see for instance

Proposition 4 in [15]). For notational convenience, we replace this property by a stronger

one: the vector-valued functions take their values in a hypercube of RC . The definition of

a margin multi-category classifier is thus the following one.

Definition 3 (Margin multi-category classifiers) Let G =
∏C
k=1 Gk be a class of func-

tions from X into [−MG ,MG ]C with MG ∈ [1,+∞). The classes Gk of component func-

tions are supposed to be GC classes. For each function g = (gk)16k6C ∈ G, a margin

multi-category classifier on X is obtained by application of the operator dr from G into

(Y
⋃
{∗})X named decision rule and defined as follows:

∀x ∈ X ,


∣∣argmax16k6C gk (x)

∣∣ = 1 =⇒ drg (x) = argmax16k6C gk (x)∣∣argmax16k6C gk (x)
∣∣ > 1 =⇒ drg (x) = ∗

where |·| returns the cardinality of its argument and ∗ stands for a dummy category.

In words, drg returns either the index of the component function whose value is the highest,

or the dummy category ∗ in case of ex æquo. In the case when the gk (x) are class

posterior probability estimates, then dr is simply Bayes’ estimated decision rule [31]. The

qualifier margin refers to the fact that the generalization capabilities of such classifiers

can be characterized by means of the values taken by the differences of the corresponding

component functions. The use of the dummy category to avoid breaking ties is not central

to the theory. Its main advantage rests in the fact that it keeps the reasoning and formulas

as simple as possible.

With this definition at hand, the aim of the learning process is to minimize over G the

probability of error P (drg (X) 6= Y ). This probability can be reformulated in a handy way

thanks to the introduction of additional functions.
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Definition 4 (Class of functions FG) Let G be a class of functions satisfying Defini-

tion 3. For all g ∈ G, the function fg from X × [[ 1, C ]] into [−MG ,MG ] is defined by:

∀ (x, k) ∈ X × [[ 1, C ]] , fg (x, k) =
1

2

(
gk (x)−max

l 6=k
gl (x)

)
.

Then, the class FG is defined as follows:

FG = {fg : g ∈ G} .

Definition 5 (Expected risk L) Let G be a class of functions satisfying Definition 3 and

let φ be the standard indicator loss function given by:

∀t ∈ R, φ (t) = 1l{t60}.

The expected risk of any function g ∈ G, L (g), is given by:

L (g) = E(X,Y )∼P [φ ◦ fg (X,Y )] = P (drg (X) 6= Y ) .

Its empirical risk measured on the m-sample Zm is:

Lm (g) = EZ′∼Pm
[
φ ◦ fg

(
Z ′
)]

=
1

m

m∑
i=1

φ ◦ fg (Zi) .

In order to take benefit from the fact that the classifiers of interest are margin ones,

the sample-based estimate of performance which is actually used (involved in the different

guaranteed risks) is obtained by substituting to φ a (dominating) margin loss/cost function.

In this study, the definition used for those functions is the following one.

Definition 6 (Margin loss functions) A class of margin loss functions φγ parameter-

ized by γ ∈ (0, 1] is a class of nonincreasing functions from R into [0, 1] satisfying:

1. ∀γ ∈ (0, 1] , φγ (0) = 1 ∧ φγ (γ) = 0;

2. ∀ (γ, γ′) ∈ (0, 1]2 , γ < γ′ =⇒ ∀t ∈ (0, γ) , φγ (t) 6 φγ′ (t).

Remark 1 The qualifier dominating is appropriate since we have for all (γ, t) ∈ (0, 1]×R,

φγ (t) > φ (t). The second property is especially useful to derive guaranteed risks holding

uniformly for all values of γ. This can be achieved by means of Proposition 8 in [4]. It is

noteworthy that these losses are not convex. They can even be discontinuous (whereas the

definition used by Koltchinskii and Panchenko in [21] (Section 2) includes the Lipschitz

property).
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A risk obtained by substituting to φ a function φγ is named a margin risk.

Definition 7 (Margin risk Lγ) Let G be a class of functions satisfying Definition 3. For

every (ordered) pair (g, γ) ∈ G × (0, 1], the risk with margin γ of g, Lγ (g), is defined as:

Lγ (g) = EZ∼P [φγ ◦ fg (Z)] .

Lγ,m (g) designates the corresponding empirical risk, measured on the m-sample Zm:

Lγ,m (g) = EZ′∼Pm
[
φγ ◦ fg

(
Z ′
)]

=
1

m

m∑
i=1

φγ ◦ fg (Zi) .

Taking our inspiration from [4], we use margin loss functions in combination with a

piecewise-linear squashing function. In short, the idea is to restrict the available infor-

mation to what is relevant for the assessment of the prediction accuracy (the value of the

margin loss is not affected), so as to optimize the way the introduction of the margin

parameter γ is taken into account.

Definition 8 (Piecewise-linear squashing function πγ) For γ ∈ (0, 1], the piecewise-

linear squashing function πγ is defined by:

∀t ∈ R, πγ (t) = t1l{t∈(0,γ]} + γ1l{t>γ}.

This definition actually satisfies the aforementioned specification since we have:

∀γ ∈ (0, 1] , φγ ◦ πγ = φγ .

Definition 9 (Class of functions FG,γ) Let G be a class of functions satisfying Defini-

tion 3 and FG the class of functions deduced from G according to Definition 4. For every

pair (g, γ) ∈ G × (0, 1], the function fg,γ from X × [[ 1, C ]] into [0, γ] is defined by:

fg,γ = πγ ◦ fg.

Then, the class FG,γ is defined as follows:

FG,γ = {fg,γ : g ∈ G} .

2.2 Scale-sensitive capacity measures

The guaranteed risks are ordinarily obtained in several main steps, corresponding to a basic

supremum inequality and successive upper bounds on the capacity measure it involves,
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each of which corresponds to a change of capacity measure. Although the measures which

are central to this study are covering numbers, we start by giving the definition of the

Rademacher complexity since it is the measure appearing first in the case of the L2-norm.

For n ∈ N∗, a Rademacher sequence σn is a sequence (σi)16i6n of independent random

signs, i.e., independent and identically distributed random variables taking the values −1

and 1 with probability 1
2 (symmetric Bernoulli or Rademacher random variables).

Definition 10 (Rademacher complexity) Let (T ,AT ) be a measurable space and let

T be a random variable with values in T , distributed according to a probability measure PT

on (T ,AT ). For n ∈ N∗, let Tn = (Ti)16i6n be an n-sample made up of independent copies

of T and let σn = (σi)16i6n be a Rademacher sequence. Let F be a class of real-valued

functions with domain T . The empirical Rademacher complexity of F is

R̂n (F) = Eσn

[
sup
f∈F

1

n

n∑
i=1

σif (Ti)

∣∣∣∣∣ Tn

]
.

The Rademacher complexity of F is

Rn (F) = ETn

[
R̂n (F)

]
= ETnσn

[
sup
f∈F

1

n

n∑
i=1

σif (Ti)

]
.

Remark 2 The fact that the functional classes F of interest can be uncountable calls for

a specification. We make use of the standard convention (see for instance Formula (0.2)

in [32]). Let (Ts)s∈S be a stochastic process. Then,

E
[
sup
s∈S

Ts

]
= sup
{S̄⊂S: |S̄|<+∞}

E
[
max
s∈S̄

Ts

]
.

The concept of covering number (ε-entropy), as well as the underlying concepts of ε-cover

and ε-net, can be traced back to [20].

Definition 11 (ε-cover, ε-net, covering numbers, and ε-entropy) Let (E, ρ) be a pseudo-

metric space, E′ ⊂ E and ε ∈ R∗+. An ε-cover of E′ is a coverage of E′ with open balls of

radius ε the centers of which belong to E. These centers form an ε-net of E′. A proper

ε-net of E′ is an ε-net of E′ included in E′. If E′ has an ε-net of finite cardinality, then

its covering number N (ε, E′, ρ) is the smallest cardinality of its ε-nets:

N
(
ε, E′, ρ

)
= min

{∣∣E′′∣∣ :
(
E′′ ⊂ E

)
∧
(
∀e ∈ E′, ρ

(
e, E′′

)
< ε
)}
.

If there is no such finite net, then the covering number is defined to be infinite. The

corresponding logarithm, log2 (N (ε, E′, ρ)), is called the minimal ε-entropy of E′, or simply
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the ε-entropy of E′. N (p) (ε, E′, ρ) will designate a covering number of E′ obtained by

considering proper ε-nets only. In the finite case, we have thus:

N (p)
(
ε, E′, ρ

)
= min

{∣∣E′′∣∣ :
(
E′′ ⊂ E′

)
∧
(
∀e ∈ E′, ρ

(
e, E′′

)
< ε
)}
.

There is a close connection between covering and packing properties of bounded subsets in

pseudo-metric spaces.

Definition 12 (ε-separation and packing numbers [20]) Let (E, ρ) be a pseudo-metric

space and ε ∈ R∗+. A set E′ ⊂ E is ε-separated if, for any distinct points e and e′ in E′,

ρ (e, e′) > ε. The ε-packing number of E′′ ⊂ E,M (ε, E′′, ρ), is the maximal cardinality of

an ε-separated subset of E′′, if such maximum exists. Otherwise, the ε-packing number of

E′′ is defined to be infinite.

In this study, the functional classes met are endowed with empirical (pseudo-)metrics de-

rived from the Lp-norm.

Definition 13 (Pseudo-distance dp,tn) Let F be a class of real-valued functions on T .

For n ∈ N∗, let tn = (ti)16i6n ∈ T n. Then,

∀p ∈ N∗,∀
(
f, f ′

)
∈ F2, dp,tn

(
f, f ′

)
=
∥∥f − f ′∥∥

Lp(µtn )
=

(
1

n

n∑
i=1

∣∣f (ti)− f ′ (ti)
∣∣p) 1

p

and

∀
(
f, f ′

)
∈ F2, d∞,tn

(
f, f ′

)
=
∥∥f − f ′∥∥

L∞(µtn )
= max

16i6n

∣∣f (ti)− f ′ (ti)
∣∣ ,

where µtn denotes the uniform (counting) probability measure on {ti : 1 6 i 6 n}.

Definition 14 (Uniform covering numbers [35] and uniform packing numbers [4])

Let F be a class of real-valued functions on T and F̄ ⊂ F . For p ∈ N∗
⋃
{+∞}, ε ∈ R∗+,

and n ∈ N∗, the uniform covering number Np
(
ε, F̄ , n

)
and the uniform packing number

Mp

(
ε, F̄ , n

)
are defined as follows:Np

(
ε, F̄ , n

)
= suptn∈T n N

(
ε, F̄ , dp,tn

)
Mp

(
ε, F̄ , n

)
= suptn∈T nM

(
ε, F̄ , dp,tn

) .

We define accordingly N (p)
p

(
ε, F̄ , n

)
as:

N (p)
p

(
ε, F̄ , n

)
= sup

tn∈T n
N (p)

(
ε, F̄ , dp,tn

)
.
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Our Sauer-Shelah lemma relates covering/packing numbers to a scale-sensitive generaliza-

tion of the Vapnik-Chervonenkis (VC) dimension [34]: the fat-shattering dimension [18]

also known as the γ-dimension.

Definition 15 (Fat-shattering dimension [18]) Let F be a class of functions from T

into S ⊂ R. For γ ∈ R∗+, a subset sT n = {ti : 1 6 i 6 n} of T is said to be γ-shattered

by F if there is a vector bn = (bi)16i6n ∈ Sn such that, for every vector ln = (li)16i6n ∈

{−1, 1}n, there is a function fln ∈ F satisfying

∀i ∈ [[ 1, n ]] , li (fln (ti)− bi) > γ.

The vector bn is called a witness to the γ-shattering. The fat-shattering dimension with

margin γ of the class F , γ-dim (F), is the maximal cardinality of a subset of T γ-shattered

by F , if such maximum exists. Otherwise, F is said to have infinite fat-shattering dimen-

sion with margin γ.

Remark 3 With the introduction of the set S (and the constraint bn ∈ Sn) in Defini-

tion 15, there is no need to make use of the strong dimension (Definition 3.1 in [1]). A

difference with the definition used in [29] regards the concept of shattering. As most of the

authors (see for instance [1]), we do not adopt the convention consisting in considering

that the empty set can be shattered. Using the terminology of Mendelson and Vershynin

(see Section 2.2 in [29]), the trivial center is not involved in our computations.

Each of the generalized Sauer-Shelah lemmas in the literature is based on a main combina-

torial result that involves a class of functions whose domain and codomain are finite sets.

The first property is simply obtained by application of a restriction of the domain to the

data at hand. As for the finiteness of the codomain, if needed, it is obtained by application

of a discretization operator. The present study makes use of the following one, already

employed, for instance, in [6].

Definition 16 (η-discretization operator) Let F be a class of functions from T into

[−MF ,MF ] with MF ∈ R∗+. For η ∈ R∗+, define the η-discretization as an operator on F

such that:
(·)(η) : F −→ F (η)

f 7→ f (η)

∀t ∈ T , f (η) (t) = η

⌊
f (t) +MF

η

⌋
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where the floor function b·c is defined by:

∀u ∈ R, buc = max {j ∈ Z : j 6 u} .

The finiteness of all the capacity measures considered in the sequel is ensured. Precisely,

Theorem 2.5 in [1] (see also Theorem 2.4 in [28]) tells us that the fat-shattering dimension

of a GC class is finite for every positive value of γ, and a corollary of the generalized

Sauer-Shelah lemma is that the finiteness of this dimension implies the total boundedness.

3 Lp-norm Sauer-Shelah Lemma

Our master lemma is made up of two partial results. The first one, the decomposition

lemma, relates the covering numbers of FG,γ to those of the classes of component functions

Gk. The second one is the actual generalized Sauer-Shelah lemma.

3.1 Master lemma

Lemma 1 (Decomposition lemma) Let G be a class of functions satisfying Definition 3

and FG the class of functions deduced from G according to Definition 4. For γ ∈ (0, 1], let

FG,γ be the class of functions deduced from G according to Definition 9. Then, for ε ∈ R∗+,

m ∈ N∗, and zm = ((xi, yi))16i6m = (zi)16i6m,

∀p ∈ N∗
⋃
{+∞} , N (p) (ε,FG,γ , dp,zm) 6 N (p) (ε,FG , dp,zm) 6

C∏
k=1

N (p)

(
ε

C
1
p

,Gk, dp,xm
)
,

(1)

where xm = (xi)16i6m.

Proof The left-hand side inequality in Formula (1) is trivially true for ε > γ. Otherwise,

it is a direct consequence of the 1-Lipschitz property of the function πγ . Similarly, the

proof of the right-hand side inequality is nontrivial only for ε 6 2MG . We first derive

it for a finite value of p only. For every function g = (gk)16k6C ∈ G and every element

z = (x, y) ∈ X × [[ 1, C ]], let k (g, z) ∈ [[ 1, C ]]\{y} be an index of category such that fg (z) =

1
2

(
gy (x)− gk(g,z) (x)

)
. For all k ∈ [[ 1, C ]], let Ḡk be a proper ε-net of Gk with respect to the

pseudo-metric dp,xm such that Ḡk is of cardinality N (p) (ε,Gk, dp,xm). By construction, the

cardinality of the class of functions Ḡ =
∏C
k=1 Ḡk is

∏C
k=1N (p) (ε,Gk, dp,xm), and for every

function g = (gk)16k6C ∈ G, there exists a function ḡ = (ḡk)16k6C ∈ Ḡ such that:

∀k ∈ [[ 1, C ]] , dp,xm (gk, ḡk) < ε. (2)

9



By definition of the empirical pseudo-metric, for every k ∈ [[ 1, C ]] and every function

gk ∈ Gk,

dp,xm (gk, ḡk) < ε⇐⇒

(
1

m

m∑
i=1

|gk (xi)− ḡk (xi)|p
) 1

p

< ε

=⇒ ∀i ∈ [[ 1,m ]] , |gk (xi)− ḡk (xi)| < m
1
p ε

=⇒ (|gk (xi)− ḡk (xi)|)16i6m = m
1
p ε (θki)16i6m (3)

where (θki)16i6m ∈ [0, 1)m. Furthermore, if gk(g,zi) (xi) > ḡk(ḡ,zi) (xi), then∣∣gk(g,zi) (xi)− ḡk(ḡ,zi) (xi)
∣∣ = gk(g,zi) (xi)− ḡk(ḡ,zi) (xi)

6 gk(g,zi) (xi)− ḡk(g,zi) (xi)

6
∣∣gk(g,zi) (xi)− ḡk(g,zi) (xi)

∣∣
6 θk(g,zi)im

1
p ε.

Symmetrically, gk(g,zi) (xi) 6 ḡk(ḡ,zi) (xi) implies that
∣∣gk(g,zi) (xi)− ḡk(ḡ,zi) (xi)

∣∣ 6 θk(ḡ,zi)im
1
p ε.

To sum up,

∀i ∈ [[ 1,m ]] ,
∣∣gk(g,zi) (xi)− ḡk(ḡ,zi) (xi)

∣∣ 6 max
(
θk(g,zi)i, θk(ḡ,zi)i

)
m

1
p ε. (4)

For all k ∈ [[ 1, C ]], let θk = (θki)16i6m. Making use once more of (2) provides us with:

∀k ∈ [[ 1, C ]] , ‖θk‖p < 1. (5)

As a consequence,

dp,zm (fg, fḡ) =

(
1

m

m∑
i=1

|fg (zi)− fḡ (zi)|p
) 1

p

=
1

2

(
1

m

m∑
i=1

∣∣gyi (xi)− gk(g,zi) (xi)− ḡyi (xi) + ḡk(ḡ,zi) (xi)
∣∣p) 1

p

6
1

2

(
1

m

m∑
i=1

(
|gyi (xi)− ḡyi (xi)|+

∣∣gk(g,zi) (xi)− ḡk(ḡ,zi) (xi)
∣∣)p) 1

p

6
1

2

(
m∑
i=1

(
θyii + max

(
θk(g,zi)i, θk(ḡ,zi)i

))p) 1
p

ε (6)

6

(
m∑
i=1

max
16k6C

θpki

) 1
p

ε

6

(
C∑
k=1

‖θk‖pp

) 1
p

ε

< C
1
p ε. (7)

10



Inequality (6) is obtained by application of (3) and (4), and Inequality (7) springs from

Inequality (5). We have established that the set of functions fḡ is a proper
(
C

1
p ε
)
-net of

FG with respect to the pseudo-metric dp,zm . Since its cardinality is at most that of Ḡ,

∀zm ∈ (X × [[ 1, C ]])m , N (p)
(
C

1
p ε,FG , dp,zm

)
6

C∏
k=1

N (p) (ε,Gk, dp,xm) .

The right-hand side inequality in Formula (1) then follows from performing a change of

variable. The proof for the uniform convergence norm results from taking the limit when

p goes to infinity.

The actual generalized Sauer-Shelah lemma is an extension of Lemma 3.5 in [1] and

Lemma 8 in [6]. In the case when p is finite, then the upper bound is dimension free

(does not depend on the number n of points) thanks to the implementation of the proba-

bilistic extraction principle described in [29].

Lemma 2 (Generalized Sauer-Shelah lemma) Let F be a class of functions from T

into [−MF ,MF ] with MF ∈ R∗+. F is supposed to be a GC class. For ε ∈ (0,MF ], let

d (ε) = ε-dim (F). Then for ε ∈ (0, 2MF ] and n ∈ N∗,

∀p ∈ N∗, Mp (ε,F , n) 6 22(Kε(p)+1)

(
6272eKε (p)

3

(
2MF
ε

)2p+1
)2Kε(p)d( ε

45)

, (8)

where Kε (p) =
⌈
(p+ 2) log2

(⌈
112MF

ε

⌉)⌉
, and

M∞ (ε,F , n) 6 2

(
16M2

Fn

ε2

)d( ε4) log2

(
4MF en
d( ε4 )ε

)
. (9)

Proof Since (9) is simply an instance of Lemma 3.5 in [1], we only prove (8). By definition,

∀tn = (ti)16i6n ∈ T
n, M (ε,F , dp,tn) =M

(
ε, F|tn , dp,tn

)
,

where F|tn is the set of the restrictions to tn of the functions in F . Let Fε be, among

the subsets of F|tn ε-separated with respect to the pseudo-metric dp,tn , a set of maximal

cardinality. By definition,

|Fε| =M
(
ε, F|tn , dp,tn

)
=M (ε,Fε, dp,tn) .

At this level, two cases must be considered.

11



First case Suppose that |Fε| 6 exp
(
Ke (p)nε2p

)
where Ke is the function of p defined in

Lemma 6. In that case, Lemma 6 applies, and we can set r equal to the smallest admissible

value, ln(|Fε|)
Ke(p)ε2p

, where ln is the Neperian (or natural) logarithm. Consequently, there exists

a subvector tq of tn of size

q 6
ln (|Fε|)
Ke (p) ε2p

(10)

such that Fε is
((

1
2

) p+1
p ε

)
-separated with respect to the pseudo-metric dp,tq , and thus,

since minp∈N∗
(

1
2

) p+1
p = 1

4 ,
ε
4 -separated with respect to the same pseudo-metric. As a

consequence,

|Fε| =M
( ε

4
,Fε, dp,tq

)
=M

( ε
4
, Fε|tq , dp,tq

)
=
∣∣∣Fε|tq ∣∣∣ .

For η ∈
(
0, ε4
)
, let

(
Fε|tq

)(η)
be the image of Fε|tq by the discretization operator (·)η.

Since
∣∣∣Fε|tq ∣∣∣ =M

(
ε
4 , Fε|tq , dp,tq

)
, by application of Lemma 7,

M
( ε

4
, Fε|tq , dp,tq

)
= M

(( ε4)p − (η)p
) 1
p

2
,
(
Fε|tq

)(η)
, dp,tq


6 M

(
ε− 4η

8
,
(
Fε|tq

)(η)
, dp,tq

)
,

where the inequality stems from the fact that

min
p∈N∗

(( ε
4

)p
− (η)p

) 1
p

=
ε

4
− η.

For N ∈ N satisfying N > 56MF
ε , let us set η = 2MF

N . Since
(
Fε|tq

)( 2MF
N

)
is a class of

functions whose domain has cardinality q and whose codomain is
{

2MF
j
N : 0 6 j 6 N

}
,

Lemma 9 provides us with

|Fε| 6 2(p+2) log2(N)+1

(
e (N − 1) q

d1

)(p+2) log2(N)d1

where d1 =
(

1
16

(
ε− 56MF

N

))
-dim

((
Fε|tq

)( 2MF
N

))
. Thus, making use of the upper

bound on q provided by (10),

|Fε| 6 2(p+2) log2(N)+1

(
e (N − 1) ln (|Fε|)
Ke (p) ε2pd1

)(p+2) log2(N)d1

6 2(p+2) log2(N)+1

(
ln (|Fε|)
d1

)(p+2) log2(N)d1 (e (N − 1)

Ke (p) ε2p

)(p+2) log2(N)d1

. (11)

12



For all r ∈ N∗, let hr be the function on [1,+∞) mapping u to 2r−1r! u
1
2 − lnr (u). The

function h1 is positive on its domain and for all r ∈ N∗, hr (1) > 0. Since for all r > 2,

h′r (u) = r
uhr−1 (u), proceeding by induction, one establishes that all the functions hr are

positive on their domain. Furthermore, for all r ∈ N∗, 2r−1r! 6 rr. Consequently, setting

KN,p = d(p+ 2) log2 (N)e, where the ceiling function d·e is defined by:

∀u ∈ R, due = min {j ∈ Z : j > u} ,

we obtain (
ln (|Fε|)
d1

)(p+2) log2(N)d1

=
(

ln(p+2) log2(N)
(
|Fε|

1
d1

))d1
6
(

lnKN,p
(
|Fε|

1
d1

))d1
< K

KN,pd1
N,p |Fε|

1
2 . (12)

A substitution of the right-hand side of (12) into (11) gives

|Fε| 6 22(KN,p+1)
(
e (N − 1)KN,p

Ke (p) ε2p

)2KN,pd1

.

To bound from above d1, N can be set equal to
⌈

112MF
ε

⌉
. Then,

d1 6
( ε

32

)
-dim

(Fε|tq)
 2MF⌈

112MF
ε

⌉
 (13)

6

 ε

32
− MF⌈

112MF
ε

⌉
 -dim

(
Fε|tq

)
(14)

6
( ε

32
− ε

112

)
-dim

(
Fε|tq

)
6
( ε

45

)
-dim (F) .

This sequence of computations makes use three times of the fact that the fat-shattering

dimension is a nonincreasing function of the margin parameter. The transition from (13)

to (14) is provided by Lemma 8. As a consequence,

|Fε| 6 2
2
(⌈

(p+2) log2

(⌈
112MF

ε

⌉)⌉
+1
)112eMF

⌈
(p+ 2) log2

(⌈
112MF

ε

⌉)⌉
Ke (p) ε2p+1

2
⌈
(p+2) log2

(⌈
112MF

ε

⌉)⌉
d( ε

45)

.

A substitution into the right-hand side of the value of Ke (p) produces for |Fε|, i.e.,

M (ε,F , dp,tn), the same upper bound as that announced forMp (ε,F , n). Thus, to con-

clude the proof of (8) under the assumption that |Fε| 6 exp
(
Ke (p)nε2p

)
, it suffices to

notice that this upper bound does not depend on tn (it is even dimension free).
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Second case Suppose conversely that |Fε| > exp
(
Ke (p)nε2p

)
, i.e.,

n <
ln (|Fε|)
Ke (p) ε2p

. (15)

By application of Lemma 7, for η ∈ (0, ε),

|Fε| = M

(
(εp − ηp)

1
p

2
, (Fε)(η) , dp,tn

)

6 M
(
ε− η

2
, (Fε)(η) , dp,tn

)
.

For N ∈ N satisfying N > 14MF
ε , let us set η = 2MF

N . Since (Fε)
(

2MF
N

)
is a class of

functions whose domain has cardinality n and whose codomain is
{

2MF
j
N : 0 6 j 6 N

}
,

Lemma 9 provides us with

|Fε| 6 2(p+2) log2(N)+1

(
e (N − 1)n

d2

)(p+2) log2(N)d2

where d2 =
(

1
4

(
ε− 14MF

N

))
-dim

(
(Fε)(

2MF
N

)

)
. The substitution of the upper bound on

n provided by (15) into this bound produces

|Fε| 6 22(KN,p+1)
(
e (N − 1)KN,p

Ke (p) ε2p

)2KN,pd2

. (16)

To bound from above d2, N can be set equal to
⌈

28MF
ε

⌉
. Then, the line of reasoning used

for d1 leads to

d2 6
( ε

12

)
-dim (F) .

By substitution into (16) of the value of N and this upper bound on d2, an upper bound

on |Fε| is obtained which is smaller than that provided by Inequality (8).

3.2 Comparison with the state of the art

In order to limit the complexity of the formula corresponding to finite values of p (Inequal-

ity (8)), the constants have systematically been derived by considering the “worst” case:

p = 1. This implies that better constants can be obtained by focusing on the value of

p of interest. If the resulting gain is all the more important as this value is large, it is

already noticeable for p = 2. The result that compares directly with Lemma 2 is Theo-

rem 3.2 in [28]. As Inequality (8), the corresponding bound is dimension free. The main

difference rests in the dependency on the fat-shattering dimension. Whereas Inequality (8)
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corresponds to a growth rate of the ε-entropy with this dimension which is linear, Theo-

rem 3.2 in [28] exhibits an additional logarithmic multiplicative factor. Focusing on results

derived for a specific Lp-norm, the literature provides us with one example of generalized

Sauer-Shelah lemma based on the L1-norm: Lemma 1 in [5] (whose basic combinatorial

result is Lemma 8 in [6]). However, this result is not dimension free (the growth rate of the

ε-entropy with n is logarithmic). As for the L2-norm, the state of the art is provided by

Theorem 1 in [29]. Since its original formulation involves unspecified universal constants,

to make comparison possible, it is given below with explicit constants.

Lemma 3 (After Theorem 1 in [29]) Let F be a class of functions from T into [−MF ,MF ]

with MF ∈ R∗+. F is supposed to be a GC class. For ε ∈ (0,MF ], let d (ε) = ε-dim (F).

Then for ε ∈ (0, 2MF ] and n ∈ N∗,

M2 (ε,F , n) 6

(
3584e

(
2MF
ε

)5
)4d( ε

96)

. (17)

With this formulation at hand, it appears that even without optimizing the constants of

Inequality (8) for the case p = 2, none of the two bounds is uniformly better than the other.

The choice between them should primarily be based on the behaviour of the fat-shattering

dimensions of interest.

4 Bound based on the L∞-norm

The L∞-norm plays a central part in the theory of bounds. Indeed, one can consider that

it is already at the core of the initial result of Vapnik and Chervonenkis [34]. Focusing on

margin classifiers, it is the norm used in Bartlett’s seminal article [4].

4.1 State of the art

To the best of our knowledge, the state-of-the-art result is precisely a multi-class extension

of Bartlett’s result: Theorem 40 in [16]. It makes use of the same margin loss functions,

defined as follows.

Definition 17 (Margin loss functions φ∞,γ) For γ ∈ (0, 1], the margin loss function

φ∞,γ is defined by:

∀t ∈ R, φ∞,γ (t) = 1l{t<γ}.
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The basic supremum inequality is a multi-class extension of Lemma 4 in [4], with the first

symmetrization being derived from the basic lemma of Section 4.5.1 in [33].

Theorem 1 (After Theorem 22 in [16]) Let G be a class of functions satisfying Def-

inition 3. For γ ∈ (0, 1], let FG,γ be the class of functions deduced from G according to

Definition 9. For a fixed γ ∈ (0, 1] and a fixed δ ∈ (0, 1), with Pm-probability at least 1− δ,

uniformly for every function g ∈ G,

L (g) 6 Lγ,m (g) +

√
2

m

(
ln
(
N (p)
∞
(γ

2
,FG,γ , 2m

))
+ ln

(
2

δ

))
+

1

m
, (18)

where the margin loss function defining the empirical margin risk is φ∞,γ (Definition 17).

The pathway leading from this inequality to Theorem 40 in [16] consists in relating the

covering number of interest to a γ-Ψ-dimension (see Definition 28 in [16]) of a class of

vector-valued functions. The dependency on C varies with the choice of this dimension.

In the case of the dimension which is the easiest to bound from above (by application of

the pigeonhole principle), the margin Natarajan dimension, it is superlinear.

4.2 Improved dependency on C

Instead of working with vector-valued functions as in [16], it is more efficient to handle

separately the classes of component functions. Starting from Inequality (18) and applying

in sequence Lemma 1 (for p = ∞), Lemma 5 and Lemma 2 (Lemma 3.5 in [1]) produces

the master theorem in the uniform convergence norm.

Theorem 2 Let G be a class of functions satisfying Definition 3. For ε ∈ (0,MG ], let

d (ε) = max16k6C ε-dim (Gk). For a fixed γ ∈ (0, 1] and a fixed δ ∈ (0, 1), with Pm-

probability at least 1− δ, uniformly for every function g ∈ G,

L (g) 6 Lγ,m (g) +

√√√√ 2

m

(
3Cd

(γ
8

)
ln2

(
128M2

Gm

γ2

)
+ ln

(
2

δ

))
+

1

m
.

Proof The sketch of the proof has been given at the beginning of the subsection. The

detail makes use of the fact that

∀k ∈ [[ 1, C ]] , log2

(
16MGem(γ

8

)
-dim (Gk) γ

)
6

1

ln (2)
ln

(
128M2

Gm

γ2

)
.
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Thus,

L (g) 6 Lγ,m (g) +

√√√√ 2

m

(
C∑
k=1

ln
(
N (p)
∞
(γ

2
,Gk, 2m

))
+ ln

(
2

δ

))
+

1

m

6 Lγ,m (g) +

√√√√ 2

m

(
2

ln (2)
ln

(
128M2

Gm

γ2

)
C∑
k=1

(γ
8

)
-dim (Gk) ln

(
16MGem(γ

8

)
-dim (Gk) γ

)
+ ln

(
2

δ

))
+

1

m

6 Lγ,m (g) +

√√√√ 2

m

(
3 ln2

(
128M2

Gm

γ2

)
C∑
k=1

(γ
8

)
-dim (Gk) + ln

(
2

δ

))
+

1

m

6 Lγ,m (g) +

√√√√ 2

m

(
3Cd

(γ
8

)
ln2

(
128M2

Gm

γ2

)
+ ln

(
2

δ

))
+

1

m
.

4.3 Discussion

Under the assumption that d (ε) does not depend on C, Theorem 2 provides a guaranteed

risk whose control term varies with C and m as a O
(

ln (m)
√

C
m

)
. To sum up, the new

bound exhibits the convergence rate of Theorem 40 in [16], whereas its control term grows

only as the square root of C. Note that Lemma 19 in [36], which provides a bound with the

same growth, holds for kernel multi-category classification methods only. We now establish

an improvement of this kind with the L2-norm.

5 Bound based on the L2-norm

As in the case of the uniform convergence norm, the state-of-the-art result provides us not

only with an element of comparison, but also with a starting point for the derivation of

our guaranteed risk.

5.1 State of the art

The sharpest bound in the L2-norm is Theorem 3 in [23]. The margin loss function involved

in this result is a standard one, the parameterized truncated hinge loss (that satisfies both

Definition 6 and the definition used by Koltchinskii and Panchenko in [21]).
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Definition 18 (Parameterized truncated hinge loss φ2,γ, Definition 4.3 in [30]) For

γ ∈ (0, 1], the parameterized truncated hinge loss φ2,γ is defined by:

∀t ∈ R, φ2,γ (t) = 1l{t60} +

(
1− t

γ

)
1l{t∈(0,γ]}.

This guaranteed risk is built upon a basic supremum inequality which is a partial result in

the proof of Theorem 8.1 in [30] (with FG replaced with FG,γ).

Theorem 3 (After Theorem 8.1 in [30]) Let G be a class of functions satisfying Def-

inition 3. For γ ∈ (0, 1], let FG,γ be the class of functions deduced from G according to

Definition 9. For a fixed γ ∈ (0, 1] and a fixed δ ∈ (0, 1), with Pm-probability at least 1− δ,

uniformly for every function g ∈ G,

L (g) 6 Lγ,m (g) +
2

γ
Rm (FG,γ) +

√
ln
(

1
δ

)
2m

where the margin loss function defining the empirical margin risk is the parameterized

truncated hinge loss (Definition 18).

Theorem 3 in [23] stems from Theorem 3 by application of the following lemma.

Lemma 4 Let G be a class of functions satisfying Definition 3. For γ ∈ (0, 1], let FG,γ be

the class of functions deduced from G according to Definition 9. Then

Rm (FG,γ) 6 CRm

(
C⋃
k=1

Gk

)
. (19)

Many margin classifiers, including neural networks and kernel machines, satisfy the addi-

tional property that all the classes of component functions are identical, so that the growth

with C of the upper bound on Rm (FG,γ) provided by (19) is linear. Furthermore, if the

classifier is specifically a kernel machine, then it is well known that by combining the re-

producing property with the Cauchy-Schwarz inequality, it is possible to obtain an upper

bound on the Rademacher complexity which is a O
(
m−

1
2

)
(see for instance Lemma 22

in [7]). Thus, for kernel machines, the control term of Kuznetsov’s bound is a O
(

C√
m

)
.

Kernel machines (with bounded range) satisfy Definition 3. This is easy to establish thanks

to the characterization of the GC classes provided by Theorem 2.5 in [1]. The finiteness of

the γ-dimension of a linear separator in a reproducing kernel Hilbert space is a well-known

result, which appears, for instance, as a consequence of Theorem 4.6 in [8]. To sum up,

the state-of-the-art result is a guaranteed risk whose control term is at best a O
(

C√
m

)
, for

a specific family of classifiers among those satisfying Definition 3.
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5.2 Improved dependency on C

Several results are available to bound from above the expected suprema of empirical pro-

cesses (see for instance Chapters 1, 2, and 6 of [26]). We resort to the standard approach,

especially efficient in the case of Rademacher processes, the application of Dudley’s chaining

method [14].

Theorem 4 (Chained bound on the Rademacher complexity of FG,γ) Let G be a

class of functions satisfying Definition 3. For γ ∈ (0, 1], let FG,γ be the class of functions

deduced from G according to Definition 9. For ε ∈ (0,MG ], let d (ε) = max16k6C ε-dim (Gk).

Let h be a positive and decreasing function on N such that h (0) > γ and h (1) 6 2MG
√
C.

Then for all N ∈ N∗,

Rm (FG,γ) 6 h (N) + 4

√
5C

m

N∑
j=1

(h (j) + h (j − 1))

√√√√d

(
h (j)

96
√
C

)
ln

(
14MG

√
C

h (j)

)
. (20)

Proof The initial part of the proof of Formula (20) is the application of Theorem 6. Note

that diam (FG,γ) 6 γ, justifying the hypothesis on h (0). An advantage of working with

FG,γ instead of FG (directly) has thus been highlighted. The end of the proof consists in

applying in sequence Lemma 1 (for p = 2), Lemma 5 and Lemma 3 (with ε = h(j)√
C

and

3584e bounded from above by 75).

Thanks to the choice h (j) = 2−j
√
Cγ, under the assumption that d (ε) does not depend on

C, then Theorem 4 provides a guaranteed risk whose control term grows linearly with C,

a dependency at least as good as that of Theorem 3 in [23]. The improvement announced

results from substituting to the hypothesis of GC classes a slightly stronger one.

Hypothesis 1 We consider classes of functions G satisfying Definition 3 plus the fact that

there exists a pair (dG ,KG) ∈ N∗ × R∗+ such that

∀ε ∈ (0,MG ] , max
16k6C

ε-dim (Gk) 6 KGε
−dG . (21)

If Hypothesis 1 is satisfied, then the classes Gk are universal Donsker classes [28]. Theo-

rem 4.6 in [8] tells us that it is the case, with dG = 2, if each of the classes Gk corresponds

to the class of functions computed by a support vector machine (SVM) [11]. As a conse-

quence, this is the case (with dG = 2) if G is the class of functions computed by a multi-class

SVM [17, 24, 13].
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Theorem 5 Let G be a class of functions satisfying Hypothesis 1. For γ ∈ (0, 1], let FG,γ
be the class of functions deduced from G according to Definition 9.

If dG = 1, then

Rm (FG,γ) 6 160

√
30KGγ

m
C

3
4

[√
ln (F (C))

2
+

√
π

8
F (C)

(
1− erf

(√
ln (F (C))

))]
,

(22)

where

F (C) = 2

√
14MG
γ

C
1
4

and erf stands for the error function, i.e., erf (t) = 2√
π

∫ t
0 e
−u2 du.

If dG = 2, then

Rm (FG,γ) 6
γC

3
4

√
m

+ 1152

√
5KG
m

C

⌈
1

2
log2

(m
C

)⌉√√√√ln

(
14MG

√
m

γC
1
4

)
.

At last, if dG > 2, then

Rm (FG,γ) 6
√
C

(
γ

(
C

m

) 1
dG

+ 8 · 96
dG
2

(
2

2
dG−2 + 1

)
· γ1− dG

2

√
5KG

(
C

m

) 1
dG

√
ln

(
14MG
γ

(m
C

) 1
dG

))
.

(23)

Proof A substitution of Inequality (21) into Inequality (20) provides:

Rm (FG,γ) 6 h (N) + 4 · 96
dG
2

√
5KG
m

C
dG+2

4

N∑
j=1

h (j) + h (j − 1)

h (j)
dG
2

√√√√ln

(
14MG

√
C

h (j)

)
. (24)

At this point, we distinguish three cases according to the value taken by dG .

First case: dG = 1 This case is the only one for which the entropy integral of For-

mula (29) exists. Setting for all j ∈ N, h (j) = γ · 2−2j , we obtain

Rm (FG,γ) 6 160

√
30KGγ

m
C

3
4

∫ 1
2

0

√√√√ln

(
14MG

√
C

γε2

)
dε. (25)

The computation of the integral gives

∫ 1
2

0

√√√√ln

(
14MG

√
C

γε2

)
dε =

√
ln (F (C))

2
+
F (C)√

2

√
π

2

(
1− erf

(√
ln (F (C))

))
. (26)

Inequality (22) then results from a substitution of the right-hand side of (26) into (25).
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Second case: dG = 2 It stems from (24) that

Rm (FG,γ) 6 h (N) + 384

√
5KG
m

C
N∑
j=1

h (j) + h (j − 1)

h (j)

√√√√ln

(
14MG

√
C

h (j)

)
.

For N =
⌈

1
2 log2

(
m
C

)⌉
, we set h (j) = γC

3
4m−

1
2 2−j+N . Note that these choices are feasible

since N ∈ N∗ due to m > C, h (0) > γC
1
4 > γ, and h (0) < 2γC

1
4 < 2MG

√
C. Then,

Rm (FG,γ) 6
γC

3
4

√
m

+ 1152

√
5KG
m

C
N∑
j=1

√√√√ln

(
14MG

√
m · 2j−N

γC
1
4

)

6
γC

3
4

√
m

+ 1152

√
5KG
m

C

⌈
1

2
log2

(m
C

)⌉√√√√ln

(
14MG

√
m

γC
1
4

)
.

Third case: dG > 2 ForN =
⌈
dG−2
2dG

log2

(
m
C

)⌉
, let us set h (j) = γC

1
2

+ 1
dGm

− 1
dG 2

2
dG−2

(−j+N)
.

Obviously, the constraints on N and the function h are once more satisfied. By substitution

into (24), we get:

Rm (FG,γ) 6
√
C

(
γ

(
C

m

) 1
dG

+ 4 · 96
dG
2 · γ1− dG

2

√
5KG

(
C

m

) 1
dG

√
ln

(
14MG
γ

(m
C

) 1
dG

)
SN

)
(27)

with

SN =

N∑
j=1

2
2

dG−2
(−j+N)

+ 2
2

dG−2
(−j+1+N)

2
dG
dG−2

(−j+N)
.

Now,

SN =

(
2

2
dG−2 + 1

) N∑
j=1

2j−N

< 2

(
2

2
dG−2 + 1

)
.

Inequality (23) results from a substitution of this upper bound on SN into (27).

5.3 Discussion

The implementation of Dudley’s chaining method under Hypothesis 1 highlights the phase

transition already identified by Mendelson in [28] (see also [27]). Besides this well-known

phenomenon regarding the convergence rate, a parallel one can be noticed regarding the

dependency on C. Indeed, if this dependency is always sublinear, as announced, it varies
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significantly between
√
C and C, as a function of the value of dG . Its asymptotic value

is
√
C. It is noteworthy that the behaviours observed are highly sensitive to the choice

of the function h. We have already noticed in the beginning of the section that setting

h (j) = 2−j
√
Cγ has for consequence that the dependency on C is uniformly linear. Another

example is instructive. In the case dG = 1, choosing h (j) = γ · 2−j leads to

Rm (FG,γ) 6 96

√
30KG
m

C

∫ γ

2
√
C

0

√
1

ε
ln

(
14MG
ε

)
dε.

6 Conclusions and ongoing research

An Lp-norm Sauer-Shelah lemma dedicated to margin multi-category classifiers whose

classes of component functions are uniform Glivenko-Cantelli classes has been established.

Its use makes it possible to improve the dependency on the number C of categories of the

state-of-the-art guaranteed risks based on the L∞-norm and the L2-norm. In both cases,

this dependency becomes sublinear. Furthermore, in the favourable cases, the confidence

interval can grow with C as slowly as a O
(√

C
)
.

Our current work consists in continuing the unification of the approaches used to derive

the bounds with respect to the different Lp-norms. The aim is to make the comparison of

the resulting guaranteed risks more straightforward, as a step towards the characterization

of the intrinsic complexity of the computation of polytomies. We also look for improvements

resulting from the use of new tools from the theory of empirical processes. In that respect,

the recent developments of the implementation of the chaining method appear promising.

Our results have been established under minimal assumptions regarding the pattern

classification problem, the classifier and the margin loss function. Our future work will

consist in assessing the benefit that one can derive from this study under different assump-

tions, such as those made in [24].
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A Basic results and technical lemmas

Our formulation of Dudley’s metric entropy bound, tailored for our needs, generalizes that

established in transcripts of Bartlett’s lectures which can be found online (see also [3]).

The integral inequality appears as an instance of Corollary 13.2 in [10].

Theorem 6 (Dudley’s metric entropy bound) Let F be a class of bounded real-valued

functions on T . For n ∈ N∗, let tn = (ti)16i6n ∈ T n and let diam (F) = sup(f,f ′)∈F2 ‖f − f ′‖L2(µtn )

be the diameter of F in the L2 (µtn) seminorm. Let h be a positive and decreasing function

on N such that h (0) > diam (F). Then for N ∈ N∗,

R̂n (F) 6 h (N) + 2
N∑
j=1

(h (j) + h (j − 1))

√
ln
(
N (p) (h (j) ,F , d2,tn)

)
n

(28)

and

R̂n (F) 6 12

∫ 1
2
·diam(F)

0

√
ln
(
N (p) (ε,F , d2,tn)

)
n

dε. (29)

Proof For j ∈ N∗, let F̄j be a proper h (j)-net of F with respect to d2,tn such that∣∣F̄j∣∣ = N (p) (h (j) ,F , d2,tn). We set F̄0 =
{
f̄0

}
where f̄0 is any function in F . Note that

since h (0) can be equal to diam (F), the construction of F̄0 does not ensure that this set is

a proper h (0)-net of F with respect to d2,tn (the minimum cardinality of such a net can be

superior or equal to 2). The Rademacher process underlying the Rademacher complexity

is centered, i.e.,

∀f ∈ F , Eσn

[
1√
n

n∑
i=1

σif (ti)

]
= 0.

Thus,

R̂n (F) = Eσn

[
sup
f∈F

1

n

n∑
i=1

σi
(
f (ti)− f̄0 (ti)

)]
.

For each f ∈ F and each j ∈ N∗, choose f̄j ∈ F̄j such that
∥∥f − f̄j∥∥L2(µtn )

< h (j). Notice

that

f − f̄0 = f − f̄N +

N∑
j=1

(
f̄j − f̄j−1

)
.

As a consequence, making use of the sub-additivity of the supremum function provides us

with:

R̂n (F) 6 Eσn

[
sup
f∈F

1

n

n∑
i=1

σi
(
f (ti)− f̄N (ti)

)]
+

N∑
j=1

Eσn

[
sup
f∈F

1

n

n∑
i=1

σi
(
f̄j (ti)− f̄j−1 (ti)

)]
.

(30)
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To bound from above the first term of the right-hand side of (30), we can make use in

sequence of the Cauchy-Schwarz inequality and the definition of h.

Eσn

[
sup
f∈F

1

n

n∑
i=1

σi
(
f (ti)− f̄N (ti)

)]
6 Eσn

sup
f∈F


(

1

n

n∑
i=1

σ2
i

) 1
2
(

1

n

n∑
i=1

(
f (ti)− f̄N (ti)

)2) 1
2




6 sup
f∈F

∥∥f − f̄N∥∥L2(µtn )
Eσn

( 1

n

n∑
i=1

σ2
i

) 1
2


< h (N) . (31)

As for the second term of the right-hand side of (30), we make use of Massart’s finite

class lemma (Lemma 5.2 in [25]). This calls for the derivation of an upper bound on∥∥∥ 1
n

(
f̄j (ti)− f̄j−1 (ti)

)
16i6n

∥∥∥
2

= 1√
n

∥∥f̄j − f̄j−1

∥∥
L2(µtn )

for all j ∈ [[ 1, N ]]. This upper

bound is obtained by application of Minkowski’s inequality:

∥∥f̄j − f̄j−1

∥∥
L2(µtn )

=
∥∥f̄j − f + f − f̄j−1

∥∥
L2(µtn )

6
∥∥f̄j − f∥∥L2(µtn )

+
∥∥f − f̄j−1

∥∥
L2(µtn )

< h (j) + h (j − 1) . (32)

We can check that (32) still holds for j = 1 since
∥∥f̄1 − f

∥∥
L2(µtn )

< h (1)∥∥f − f̄0

∥∥
L2(µtn )

6 diam (F) 6 h (0)
=⇒

∥∥f̄1 − f
∥∥
L2(µtn )

+
∥∥f − f̄0

∥∥
L2(µtn )

< h (1)+h (0) .

Applying Lemma 5.2 in [25] with (32) gives:

∀j ∈ [[ 1, N ]] , Eσn

[
sup
f∈F

1

n

n∑
i=1

σi
(
f̄j (ti)− f̄j−1 (ti)

)]
6

h (j) + h (j − 1)√
n

√
2 ln

(∣∣F̄j∣∣ ∣∣F̄j−1

∣∣)
6 2 (h (j) + h (j − 1))

√
ln
(∣∣F̄j∣∣)
n

.

(33)

The substitution of (31) and (33) into (30) produces (28). Furthermore, setting for all
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j ∈ N, h (j) = 2−j · diam (F), gives:

R̂n (F) 6 diam (F)

2−N + 6
N∑
j=1

2−j

√
ln
(
N (p) (2−j · diam (F) ,F , d2,tn)

)
n


6 diam (F)

2−N + 12

N∑
j=1

(
2−j − 2−(j+1)

)√ ln
(
N (p) (2−j · diam (F) ,F , d2,tn)

)
n


(34)

6 2−N · diam (F) + 12

∫ 1
2
·diam(F)

1

2N+1 ·diam(F)

√
ln
(
N (p) (ε,F , d2,tn)

)
n

dε. (35)

Inequality (35) springs from Inequality (34) since a covering number is a nonincreasing func-

tion of ε (on the interval
[
2−(j+1) · diam (F) , 2−j · diam (F)

]
,N (p)

(
2−j · diam (F) ,F , d2,tn

)
6

N (p) (ε,F , d2,tn)). Inequality (29) is simply the asymptotic formulation of Inequality (35)

(for N going to infinity).

Lemma 5 (After Theorem IV in [20]) Let (E, ρ) be a pseudo-metric space. For every

totally bounded set E′ ⊂ E and ε ∈ R∗+,

N (p)
(
ε, E′, ρ

)
6M

(
ε, E′, ρ

)
.

Lemma 6 (After Lemma 13 in [29]) Let T = {ti : 1 6 i 6 n} be a finite set and tn =

(ti)16i6n. Let F be a finite class of functions from T into [−MF ,MF ] with MF ∈ R∗+.

Let p ∈ N∗. Assume that for some ε ∈ (0, 2MF ], F is ε-separated with respect to the

pseudo-metric dp,tn. If r ∈ [1, n] is such that |F| 6 exp
(
Ke (p) rε2p

)
with

Ke (p) =
3

112 (2MF )2p ,

then there exists a subvector tq of tn of size q 6 r such that F is
((

1
2

) p+1
p ε

)
-separated

with respect to the pseudo-metric dp,tq .

Proof Let us set F = {fj : 1 6 j 6 |F|} and DF =
{
fj − fj′ : 1 6 j < j′ 6 |F|

}
. The

set DF has cardinality |DF | < 1
2 |F|

2. Fix r ∈ [1, n] satisfying the assumptions of the

lemma and let (εi)16i6n be a sequence of n independent Bernoulli random variables with

common expectation µ = r
2n . Then, by application of the ε-separation property, for every
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δf in DF ,

P

(
1

n

n∑
i=1

εi |δf (ti)|p < µ
( ε

2

)p)
6 P

(
1

n

n∑
i=1

(µ− εi) |δf (ti)|p >
(

1− 1

2p

)
µεp

)

6 P

(
1

n

n∑
i=1

(µ− εi) |δf (ti)|p >
1

2
µεp

)
. (36)

Since by construction, for all i ∈ [[ 1, n ]], E [(µ− εi) |δf (ti)|p] = 0 and |µ− εi| |δf (ti)|p 6

(2MF )p (1− µ) < (2MF )p with probability one, the right-hand side of (36) can be bounded

from above thanks to Bernstein’s inequality [9]. Given that

1

n

n∑
i=1

E
[
(µ− εi)2 δf (ti)

2p
]
6 (2MF )2p µ (1− µ) < (2MF )2p µ,

we obtain

P

(
1

n

n∑
i=1

εi |δf (ti)|p < µ
( ε

2

)p)
6 exp

− 3µnε2p

4
(

6 (2MF )2p + (2MF )p εp
)


6 exp

(
− 3rε2p

56 (2MF )2p

)
6 exp

(
−2Ke (p) rε2p

)
.

Therefore, given the assumption on r, applying the union bound provides us with:

P

∃δf ∈ DF :

(
1

r

n∑
i=1

εi |δf (ti)|p
) 1

p

<

(
1

2

) p+1
p

ε

 = P

(
∃δf ∈ DF :

1

n

n∑
i=1

εi |δf (ti)|p < µ
( ε

2

)p)

6
∑

δf∈DF

P

(
1

n

n∑
i=1

εi |δf (ti)|p < µ
( ε

2

)p)

6 |DF | · exp
(
−2Ke (p) rε2p

)
<

1

2
exp2

(
Ke (p) rε2p

)
· exp

(
−2Ke (p) rε2p

)
<

1

2
. (37)

Moreover, if S1 is the random set {i ∈ [[ 1, n ]] : εi = 1}, then by Markov’s inequality,

P (|S1| > r) = P

(
n∑
i=1

εi > r

)
6

1

2
. (38)

Combining (37) and (38) by means of the union bound provides us with

P


∃δf ∈ DF :

(
1

r

n∑
i=1

εi |δf (ti)|p
) 1

p

<

(
1

2

) p+1
p

ε

 ∨ (|S1| > r)

 < 1
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or equivalently

P


∀δf ∈ DF :

(
1

r

n∑
i=1

εi |δf (ti)|p
) 1

p

>

(
1

2

) p+1
p

ε

 ∧ (|S1| 6 r)

 > 0

which implies that

P

{(
∀δf ∈ DF : ‖δf‖

Lp

(
µ(ti)i∈S1

) >

(
1

2

) p+1
p

ε

)
∧ (|S1| 6 r)

}
> 0.

This translates into the fact that there exists a subvector tq of tn of size q 6 r such that

the class F is
((

1
2

) p+1
p ε

)
-separated with respect to the pseudo-metric dp,tq , i.e., our claim.

Lemma 7 Let F be a class of functions from T into [−MF ,MF ] with MF ∈ R∗+. For

n ∈ N∗, let tn = (ti)16i6n ∈ T n. For all ε ∈ (0, 2MF ], all η ∈ (0, ε), and all p ∈ N∗, if

a subset of F is ε-separated in the pseudo-metric dp,tn, then the η-discretization operator

acts on it as an injective mapping and the image obtained is a set
(

(εp−ηp)
1
p

2

)
-separated in

the same pseudo-metric. As a consequence,

∀p ∈ N∗, M (ε,F , dp,tn) 6M

(
(εp − ηp)

1
p

2
,F (η), dp,tn

)
.

Proof Proving Lemma 7 amounts to establishing that

∀ (f1, f2) ∈ F2, (dp,tn (f1, f2) > ε)∧ (η ∈ (0, ε)) =⇒ dp,tn

(
f

(η)
1 , f

(η)
2

)
>

(εp − ηp)
1
p

2
. (39)

For i ∈ [[ 1, n ]], let δi =
(
f

(η)
1 (ti)− f (η)

2 (ti)
)
and δ′i = f1 (ti)− f2 (ti)− δi. By construction,

there exists Ni ∈ N such that |δi| = ηNi, and |δ′i| < η. If Ni > 0, then |δi| + |δ′i| < 2 |δi|,

otherwise |δi|+ |δ′i| < η, with the consequence that in all cases, (|δi|+ |δ′i|)
p < (2 |δi|)p+ηp.

Thus,

(dp,tn (f1, f2) > ε) ∧ (η ∈ (0, ε)) =⇒ 1

n

n∑
i=1

∣∣δi + δ′i
∣∣p > εp

=⇒ 1

n

n∑
i=1

(
|δi|+

∣∣δ′i∣∣)p > εp

=⇒ 1

n

n∑
i=1

(2 |δi|)p + ηp > εp

=⇒
(

2dp,tn

(
f

(η)
1 , f

(η)
2

))p
+ ηp > εp

=⇒ dp,tn

(
f

(η)
1 , f

(η)
2

)
>

(εp − ηp)
1
p

2
.

27



To sum up, we have established (39), i.e., the lemma.

Lemma 8 Let F be a class of functions from T into [−MF ,MF ] with MF ∈ R∗+. For all

ε ∈ (0,MF ] and all η ∈ (0, 2ε),

ε-dim
(
F (η)

)
6
(
ε− η

2

)
-dim (F) .

Proof To prove Lemma 8, it suffices to notice that

f (η) (t)− b > ε =⇒ η

⌊
f (t) +MF

η

⌋
− b > ε

=⇒ f (t) +MF − b > ε

=⇒ f (t)−
(
b+

η

2
−MF

)
> ε− η

2

and

f (η) (t)− b 6 −ε =⇒ η

⌊
f (t) +MF

η

⌋
− b 6 −ε

=⇒ f (t) +MF − η − b 6 −ε

=⇒ f (t)−
(
b+

η

2
−MF

)
6 −

(
ε− η

2

)
.

In the framework of this study, the main combinatorial result evoqued in Section 2.2 is the

following lemma, which extends Lemma 8 in [6].

Lemma 9 Let T = {ti : 1 6 i 6 n} be a finite set and tn = (ti)16i6n. Let F be a class of

functions from T into S =
{

2MF
j
N : 0 6 j 6 N

}
with MF ∈ R∗+ and N ∈ N \ [[ 0, 3 ]]. For

ε ∈
(

6MF
N , 2MF

]
, let d =

(
ε
2 −

3MF
N

)
-dim (F). Then

∀p ∈ N∗, M (ε,F , dp,tn) < 2(p+2) log2(N)+1

(
e (N − 1)n

d

)(p+2) log2(N)d

. (40)

Proof First, note thatd > 1

M (ε,F , dp,tn) > 2
=⇒

ε ∈
(

6MF
N , 2MF + 6MF

N

]
ε ∈ (0, 2MF ]

=⇒

ε ∈
(

6MF
N , 2MF

]
N > 3

.

For q ∈ [[ 1, d ]], let the pair (sT q ,bq) be such that sT q is a subset of T of cardinality q

and bq ∈ (S \ {0, 2MF})q. Such a pair will be said to be γ-shattered by a subset of
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F if sT q is γ-shattered by this subset and bq is a witness to this shattering. Setting

K =
∑d

j=0

(
n
j

)
(N − 1)j , the number of such pairs is equal to

∑d
j=1

(
n
j

)
(N − 1)j , i.e., to

K − 1. Fix ε ∈
(

6MF
N , 2MF

]
and p ∈ N∗. For each r ∈ [[ 2,M (ε,F , dp,tn) ]], let shat (r) be

the maximum integer such that any subset of F of cardinality r which is ε-separated in the

metric dp,tn
(
ε
2 −

3MF
N

)
-shatters at least shat (r) pairs (sT q ,bq). Obviously, the function

shat is nondecreasing. We now establish that shat (2) > 1. Indeed, let {f+, f−} be a subset

of F ε-separated in the metric dp,tn . By definition,(
1

n

n∑
i=1

|f+ (ti)− f− (ti)|p
) 1

p

> ε,

with the consequence that there exists i0 ∈ [[ 1, n ]] such that |f+ (ti0)− f− (ti0)| > ε. With-

out loss of generality, we make the hypothesis that f+ (ti0)− f− (ti0) > ε. Then,

f+ (ti0)− 2MF
N

⌊
N

4MF
(f+ (ti0) + f− (ti0))

⌋
> f+ (ti0)− 1

2
(f+ (ti0) + f− (ti0))

>
1

2
(f+ (ti0)− f− (ti0))

>
ε

2

>
ε

2
− 3MF

N

and

f− (ti0)− 2MF
N

⌊
N

4MF
(f+ (ti0) + f− (ti0))

⌋
6 f− (ti0)− 1

2
(f+ (ti0) + f− (ti0)) +

2MF
N

6
1

2
(f− (ti0)− f+ (ti0)) +

2MF
N

6 − ε
2

+
2MF
N

6 −
(
ε

2
− 3MF

N

)
.

Since 2MF
N

⌊
N

4MF
(f+ (ti0) + f− (ti0))

⌋
∈ S \ {0, 2MF}, we have established that the set

{f+, f−}
(
ε
2 −

3MF
N

)
-shatters ({ti0} ,b1) with b1 =

(
2MF
N

⌊
N

4MF
(f+ (ti0) + f− (ti0))

⌋)
,

which concludes the proof of shat (2) > 1. Choose an even r ∈ [[ 2,M (ε,F , dp,tn) ]] and

let F̄ be a subset of F of cardinality r ε-separated in the metric dp,tn . Split F̄ arbitrarily

into r
2 pairs. For each such pair (f+, f−), let

ind (f+, f−) =

∣∣∣∣{i ∈ [[ 1, n ]] : |f+ (ti)− f− (ti)| > ε− 2MF
N

}∣∣∣∣ .
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Then

dp,tn (f+, f−) =

(
1

n

n∑
i=1

|f+ (ti)− f− (ti)|p
) 1

p

6

{
1

n

[
ind (f+, f−) (2MF )p + (n− ind (f+, f−))

(
ε− 2MF

N

)p]} 1
p

6

[
ind (f+, f−)

n
(2MF )p +

(
ε− 2MF

N

)p] 1
p

.

By hypothesis, dp,tn (f+, f−) > ε > 6MF
N , which implies that

ind (f+, f−) >
n

(2MF )p

[
εp −

(
ε− 2MF

N

)p]
>

n

N (2MF )p−1

p−1∑
j=0

εp−j−1

(
ε− 2MF

N

)j

>
n

N (2MF )p−1

p−1∑
j=0

(
6MF
N

)p−j−1(4MF
N

)j

>
n

Np

p−1∑
j=0

3p−j−12j

>
3p − 2p

Np
n

>
n

Np
.

Thus, each pair (f+, f−) has at least n
Np indices i such that |f+ (ti)− f− (ti)| > ε − 2MF

N .

Applying the pigeonhole principle, there is at least one index i0 such that at least
⌈

rn
2Npn

⌉
=⌈

r
2Np

⌉
pairs (f+, f−) satisfy |f+ (ti0)− f− (ti0)| > ε− 2MF

N . Keeping in mind that ε− 2MF
N >

4MF
N , it is easy to establish that there are less than N2

2 different pairs (u1, u2) ∈ S2 such

that |u1 − u2| > ε − 2MF
N . Thus, applying once more the pigeonhole principle, there

are at least
⌈

r
Np+2

⌉
pairs (f+, f−) such that |f+ (ti0)− f− (ti0)| > ε − 2MF

N and the pair

(f+ (ti0) , f− (ti0)) is the same. This implies that there is a quintuplet
(
i0, s+, s−, F̄+, F̄−

)
such that i0 ∈ [[ 1, n ]], (s+, s−) ∈ S2 with s+ − s− > ε− 2MF

N , F̄+ and F̄− are two subsets

of F̄ of cardinality at least
⌈

r
Np+2

⌉
, and for each (f+, f−) ∈ F̄+ × F̄−, the ordered pairs

(f+ (ti0) , f− (ti0)) and (s+, s−) are identical. Obviously, any two functions in F̄+ are ε-

separated in the metric dp,tn , and the same holds true for F̄−. So, by definition, both F̄+

and F̄−
(
ε
2 −

3MF
N

)
-shatter at least shat

(⌈
r

Np+2

⌉)
pairs. Neither F̄+ nor F̄−

(
ε
2 −

3MF
N

)
-

shatters any pair (sT q ,bq) such that {ti0} ⊂ sT q . If the same pair (sT q ,bq) is
(
ε
2 −

3MF
N

)
-

shattered by both sets, then the pair
(
s′T q+1 ,b

′
q+1

)
where s′T q+1 = {ti0}

⋃
sT q and b′q+1 =(

b0 bTq
)T is the vector deduced from bq by adding one component b0 corresponding to
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the point ti0 , component equal to 2MF
N

⌊
N

4MF
(s+ + s−)

⌋
, is

(
ε
2 −

3MF
N

)
-shattered by F̄ .

Indeed,

∀f+ ∈ F̄+, f+ (ti0)− 2MF
N

⌊
N

4MF
(s+ + s−)

⌋
= s+ −

2MF
N

⌊
N

4MF
(s+ + s−)

⌋
> s+ −

1

2
(s+ + s−)

>
1

2
(s+ − s−)

>
1

2

(
ε− 2MF

N

)
>
ε

2
− 3MF

N

and

∀f− ∈ F̄−, f− (ti0)− 2MF
N

⌊
N

4MF
(s+ + s−)

⌋
= s− −

2MF
N

⌊
N

4MF
(s+ + s−)

⌋
6

1

2
(s− − s+) +

2MF
N

6
1

2

(
2MF
N
− ε
)

+
2MF
N

6 −
(
ε

2
− 3MF

N

)
.

Summarizing, for each pair (sT q ,bq)
(
ε
2 −

3MF
N

)
-shattered by both F̄+ and F̄−, we can

exhibit by means of an injective mapping a pair
(
s′T q+1 ,b

′
q+1

) (
ε
2 −

3MF
N

)
-shattered by F̄

but not by F̄+ or F̄−, so that the number of pairs
(
ε
2 −

3MF
N

)
-shattered by F̄ is superior

to the sum of the number of pairs
(
ε
2 −

3MF
N

)
-shattered by F̄+ and the number of pairs(

ε
2 −

3MF
N

)
-shattered by F̄−. This implies that shat (r) > 2 · shat

(⌈
r

Np+2

⌉)
. Since it

has been proved that shat (2) > 1, by induction, for all u ∈ N satisfying 2N (p+2)u 6

M (ε,F , dp,tn), shat
(
2N (p+2)u

)
> 2u. Suppose now that we can set u = dlog2 (K)e. We

then obtain

shat
(

2N (p+2)dlog2(K)e
)
> 2dlog2(K)e

> K − 1.

However, the number of pairs (sT q ,bq) that can be
(
ε
2 −

3MF
N

)
-shattered is trivially

bounded from above by the total number of those pairs, i.e., K − 1. We have thus es-

tablished by contradiction that

2N (p+2)dlog2(K)e >M (ε,F , dp,tn) . (41)
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A well-known computation (see for instance the proof of Corollary 3.3 in [30]) produces

the following upper bound on K:

K 6

(
e (N − 1)n

d

)d
. (42)

Substituting (42) into (41) gives:

M (ε,F , dp,tn) < 2N
(p+2)

⌈
log2

[(
e(N−1)n

d

)d]⌉

< 2N
(p+2) log2

[
2
(
e(N−1)n

d

)d]

< 2

[
2

(
e (N − 1)n

d

)d](p+2) log2(N)

,

and the last inequality is precisely Inequality (40).
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