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Abstract

In tissue harmonic imaging, the contrast has been increased by using nonlinearities. However, enhancing the contrast requires
a good harmonic level. Time reversal process is well-known to enhance the backscattered signal by optimizing the transmitted
wave. However, it is not well-adjusted for second harmonics, since the nonlinearities of the time reversed harmonic signal will be
double the frequency and will be removed by the transducer. To take into account the harmonics, one way consists in modelling the
ultrasound system by parallel subsystems with a Hammerstein model. Therefore finding the optimal wave for harmonic generation
means to create a matched filter for the subsystem describing the nonlinearity. As described by the time reversal, the first wave
propagates to the medium. The backscattered second harmonic components are extracted from a Hammerstein model. The second
harmonic signal is time reversed, frequency shifted by a demodulation and sent in the medium. In this study, the nonlinear
components could be increased by 15 dB in comparison to the time reversal process and conventional imaging. Moreover, the
SNR can be increased by 7 dB. The second harmonic time reversed waves focus better on the inclusion and wave coherence is
preserved. From this point of view, the optimization process can be viewed as an extension of the matched filtering feature of the
time reversal principle to second harmonics.1

I. INTRODUCTION

The medical ultrasound imaging systems have been improved by taking into account the nonlinear wave propagation. When

ultrasound sinus waves at frequency f0 propagate nonlinearly, the echoes received are composed of harmonic components (2f0,

3f0, ...). By extracting each harmonic component, it is possible to obtain ultrasound images with high contrast [1]. Given this

success, tissue harmonic imaging has become the native imaging modality in conventional ultrasound scanners.

Since the backscattered nonlinearities are a function of the transmitted signal, enhancing the image quality in harmonic

imaging means to find the best transmitted wave. Waveform design can be decomposed in two ways: optimizing the wave in

space or optimizing the wave in time. In the first way, beamforming has improved the contrast and the resolution [2], even

if many studies focused on a simple transmitter and a synthetic beamforming on reception [3]. The second way consists in

finding the temporal waveform. Several studies have proposed a solution for nonlinear imaging. An iterative algorithm searches

the features of the wave [4] or directly the values of the samples [5].

Moreover, time reversal optimizes the signal-to-noise ratio (SNR) by combining a waveform design in space and in time

thanks to a physical matched filter. It makes possible to focus the wave on small inhomogeneities, without information on

the medium and even if the medium is aberrating [6]. Its principle consists in sending a first wave at the frequency f0 and

in retro-propagating the time reversed echoes. Nevertheless, as the wave relives its past propagation, time reversal reduces

the harmonic components [7]. This property has been used to reduced the tissue harmonic components in ultrasound contrast

imaging [8]. Therefore, this method is not adjusted to maximize the harmonics components from propagation in tissue.

However, other approaches based on the time reversal principle have been proposed, as for instance the method combining

time reversal and harmonics [9]. The second harmonics at 2f0 is extracted by filtering, even if this filtering do not guarantee

that the received harmonics are equal to the extraction, because of the phase. However, this phase difference makes possible that

the time reversed second harmonics focus on the small inhomogeneity by a liner propagation at 2f0. Therefore, a direct time

reversal of second harmonics is not the matched filter which optimizes the SNR for harmonic components, since the propagation

at 2f0 is linear. To understand it, one way consists in modelling the ultrasound system by simple parallel subsystems. Such

model as a Hammerstein system is sufficient to describe the nonlinear behaviour [10], [11]. Thus the system usually can be

decomposed by parallel subsystems where the nonlineary is separated of the linearity. For example, a second order model

(shown in Fig. 1) can describe the output from the input. The first subsystem is dedicated to linear output by a linear filter h1.

In the second subsystem, in order to create the second harmonics, a polynomial function is added to a linear filter h2. In time

reversal, only the first channel is considered. Therefore, after the transmission of the time reversed fundamental component at
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f0, the SNR of the linear output is optimal thanks to a matched filter of the first channel. However, finding the optimal wave

for harmonic generation means to create a matched filter for the second channel and its solution is not trivial. Indeed, after

the transmission of the time reversed second harmonics at 2f0, on the one hand, the 2f0 retropropagated component is due to

a linear process (first channel) and so not optimal (since it is different to the time reversal solution). On the other hand, the

nonlinearities double the frequency at 4f0 because of the square function in the second channel. The matched filter for the

second harmonics is thus disrupted by the nonlinear effect (modelled here by a square function).

Fig. 1. Block diagram of a second order polynomial Hammerstein model.

Our objectives is thus to find the optimal wave to optimize the harmonic generation by taking into account this frequency

doubling and without increasing the transmit power. We proposed to adjust time reversal by adding a new step. By assuming that

the ultrasound system can be modelled as a Hammerstein decomposition, the matched filter for harmonics could be obtained by

reversing time and by annihilating the harmonic effects. This annihilation could be simply obtained by inversing the function

responsible to the nonlinear effect in the Hammerstein model. In this paper, this method was applied in simulation. Moreover,

its feasability was just evaluated in order to magnify the second harmonics only.

II. HARMONIC MAGNIFICATION

As previously explained, the harmonic magnification is based on the time reversal principle according to two steps (Fig. 2).

The first step (switches in position 1) consists in sending a first standard excitation xstandard(n) and in extracting the second

harmonic backscattered components yNL(n) by a Hammerstein model. However, by retro-propagating this second harmonics

directly, the components at 2f0 are due to a linear effect, since the subsystem describing the harmonic behaviour double the

frequency. Thus, in a second step (switches in position 2), it is required to annihilate the nonlinear effects by inverting the

nonlinear contribution and then by reversing time. This optimal signal xopt(n) is finally retro-propagated into the medium.

A. Harmonic extraction

The harmonic extraction is based on a Hammerstein model. Each model is usually decomposed by parallel subsystems as a

polynomial function and a linear filter. However, the polynomial functions are inverse functions only on R
+. Thus, to garantee

the inversion of subsystems, the polynomial functions are replaced by frequency shifting (Fig. 2) thanks to a modulation. Note

that this change is also possible, since the continuous component usually modelled thanks to the square function is here filtered

by the transducer. The signal modelling ŷ(n) of the basckattered signal y(n) can be thus written as:

ŷ(n) =

P
∑

p=1

M
∑

m=1

hp(m)xstandard(n−m) · Cp(n), (1)

where n is the discrete time, M the memory of the Hammerstein model, P its order, xstandard(n) the input model and

Cp(n) = cos
(

2π (p−1)f0n
Fs

)

with Fs the sample frequency. Note that here the order P has to be set 2 in order to extract the

second harmonics. Therefore, the Hammerstein modelling is solved to find the linear filter coefficients hp.

This problem can be written with an algebraic formula, such as :

ẑ = XTh, (2)

where ŷ = [y(M + 1), . . . , y(N)]
T

with N the sample quantity and T the symbol of the vector transposition, h the vector of

coefficients

h = [h1(1), . . . , h1(M), h2(1), . . . , h2(M)] , (3)



Fig. 2. Block diagram of harmonic magnification by time reversal based on a Hammerstein decomposition. The yellow functions are the standard imaging.
By setting the switches in position 1, the second harmonic components can be extracted by the Hammerstein model in green. Finally the second harmonic
components are used to optimize the the basckettered harmonics in blue.

and the matrix of input signals X = [x1x2] with

xp =


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


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.

vp(N) 0 0















, (4)

and vp(n) = x(n)Cp(n).
Finding a solution minimum the error between the signal modelling ŷ(n) and the backscattered signal y(n) can be solved

with a pseudo-inversion, such as:

h =
(

XTX
)

−1
XTy. (5)

Finally, the second harmonic extraction is based on the coefficients h2 = [h2(1), . . . , h2(M)]
T

. The second harmonic signal

yNL can be modelled as:

yNL = xT
2 h2. (6)

Note that a Matlab program of a Hammerstein decomposition is available on RunMyCode.org (http://www.runmycode.org/coder/view/2395)

B. Time Reversal for Second Harmonics

After the second harmonic extraction, the second harmonic signal yNL is time reversed. Moreover, since we assume that the

second harmonic can be modelled by a frequency shifting and a linear filter, annihilating the effects of the second harmonics

consists in an “opposite” frequency shifting by a demodulation. Moreover, this inverse frequency shifting has to take into

account the phase of the backscattered second harmonic signal yNL. Thus the best transmitted signal to magnify the second

harmonics can be written as follow:

xopt(n) = A · yNL(n) · cos

(

2πf0
n

Fs

+ φ

)

, (7)

where A is a coefficient in order to preserve the transmit power equal to the initial transmitted signal xstandard(n). The phase

difference φ is obtained by comparing the phase of the second harmonic signal yNL and the phase of the cosinus:

φ = arctan

(

ϕ(yNL)

ϕ(cos)

)

, (8)

http://www.runmycode.org/coder/view/2395


with ϕ(yNL) is the phase of the the second harmonic signal yNL and the ϕ(cos) the phase of a cosinus at the frequency f0.

Note these phases are numerically obtained by a fast Fourier transform.

III. SIMULATION MODEL

In order to validate the feasibility, we used realistic simulations which have already been proven in medical ultrasound

imaging [4]. The simulation model is composed of different phases: transmission, 2D nonlinear propagation and reception.

At the transmitter, a Gaussian pulse xstandard(n) at a centre frequency f0 of 2 MHz and with a bandwidth of 50% is generated

digitally with Matlab (The Mathworks, Natick, MA, USA). It is transmitted to an 8-element probe with a pitch of 400 µm

and filtered by its transfer function from a realistic transducer, centred at fc = 4 MHz with a fractional bandwidth of 80%

at −3 dB. Note that the signal xstandard(n) is set in order to guarantee the reception of second harmonics. The pulse wave

generated is propagated nonlinearly into an attenuating medium (Fig. 3), i.e. a 2 mm-broad inclusion of a second tissue sample

is inserted into the first tissue at 8 mm below the surface). Note that these small sizes were chosen to reduce the computation

time of the propagation simulation. Moreover a small target with a high impedance is inserted at 12 mm. The 2D nonlinear

wave propagation is solved using the Anderson model based on a pseudo-spectral derivative and a time-domain integration

algorithm [12].

Fig. 3. Grid of medium properties. The ultrasound transducer was at a depth of 0 mm, here at the top. Note that this scheme is not to scale.



Finally, the signals y(n) basckattered by tissue are recorded and filtered by the transfer function of the transducer. The

harmonic magnification process is separately applied for basckattered signal y(n) of each element of the probe. Finally the

best signals xopt(n) to magnify the second harmonics are transmitted to the medium and the backscattered signal yopt(n) are

recorded.

IV. RESULTS

Fig. 4 shows the input and second harmonic output signals in the case of standard time reversal and in the case of time reversal

for second harmonics. Note that the second harmonic extraction was made by a second-order Hammerstein decomposition.

Their respective spectra are depicted in Fig. 4a. As an illustration, the spectra of the initial Gaussian pulse at 2 MHz and

the the harmonic basckettered signal after focusing are shown. Note that this focusing is obtained by a standard beamforming

using Euclidean geometry [2].

By using time reversal, the second harmonic waves focused on the target position. However, if the time reversal was dedicated

to the second harmonics, the amplitude of the second harmonic signal was higher. This results was confirmed on the spectra

with a second harmonic components higher than 15 dB by using time reversal for second harmonics than standard time reversal

or than standard beamforming.
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Fig. 4. (a) Driving pressures transmitted to the medium thanks to the center element of the probe in case of time reversal and of time reversal for second
harmonics. (b) Harmonic backscattered signals received by the center element of the probe in case of time reversal and and of time reversal for second
harmonics. (c) Spectra of Harmonic backscattered signals in case of time reversal and and of time reversal for second harmonics. As an illustration, the spectra
of the initial Gaussian pulse and the harmonic basckettered signal after focusing by beamforming are depicted.

Moreover, on the harmonic backattered signals, the SNR was measured in case of time reversal for second harmonics using

frequency shifting. This SNR is compared to the method using time reversed second harmonics without frequency shifting

as in [9], standard time reversal and a focusing by beamforming. They are shown in Fig. 5. The SNR could increase sighlty

by using time reversal rather a standard beamforming. However, the SNR increase could reach 7 dB in comparison the time

reversal for second harmonics. Note that no harmonic extraction were used to evaluated the SNR on time reversed second

harmonics without frequency shifting, since the retropropagation was a linear process.

Finally, as an illustration, pressure propagating in the medium by using time reversal for second harmonics are shown at the

beginning of the propagation and at the focusing. As soon as the beginning of the propagation, the wavefront was deformed

to take into account the inclusion. Thus the wave focused even with the presence of this inclusion.
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Fig. 6. Image of pressure propagating in the medium by using time reversal for second harmonics at the beginning of the propagation (a) and at the focusing
(b). As an illustration, the target is depicted with a red cross and the inclusion with a white line. Note that the ultrasound probe was located at 0 mm (on the
bottom in the figures).

V. DISCUSSIONS AND CONCLUSION

In contrast with the standard time reversal, the method presented here is adjusted to magnify the second harmonics. By

finding a wave which could take into account the medium complexity, the wave focused on the target and wave coherence is

preserved. Therefore it generated a higher quantity of second harmonics and it made possible to highly increase the SNR.



Moreover, this magnification lies in the annihilation of the harmonic effects before sending the time-reversed signal. This

annihilation was possible because we assumed that the ultrasound system could be modelled by a Hammerstein model using

frequency shifting. However, this assumptions could become wrong for high nonlinearity. Moreover, taking into account the

phase was crucial for the demodulation. However, the phase estimation was not precise and yet was sufficient to improve the

SNR.

From this point of view, the optimization process can be viewed as an extension of the matched filtering feature of the

time reversal principle to second harmonics. This method could help to improve the harmonic imaging in the case where the

aberration phase can be high. We will carry on validating this concept experimentally. Moreover, the method will be generalized

at high order of nonlinearity by adjusting the nonlinear annihilation.
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