Discussions

SNR Improvement by Subharmonic Extraction with Hammerstein Models for Microbubble Signals

<u>Sébastien Ménigot</u>, Emma Kanbar, Ayache Bouakaz and Jean-Marc Girault

Université François-Rabelais de Tours, Inserm, Imaging and Brain UMR U930, Tours, France

September 21, 2016

Hammerstein

Experiments

Discussions

Introduction

Ménigot et al. (Tours, France)

Ménigot et al. (Tours, France)

Ménigot et al. (Tours, France)

Hammerstein

Experiments

Discussions

Hammerstein Decomposition: Optimal filtering

niversité François-Rabelais

Optimal Wiener Filtering

Linear Model

•
$$\hat{z}(n) = \sum_{m=1}^{M} h_p(m) x(n-m)$$

Linear optimal filtering

Discussions

Scheme of output spectrum

Optimal Extraction of Components

- Fundamental modelling
- Harmonic modelling
- Subharmonic modelling

Scheme of output spectrum

Optimal Extraction of Components

- Fundamental modelling
- Harmonic modelling
- © Subharmonic modelling

Scheme of output spectrum

Optimal Extraction of Components

- Fundamental modelling
- Harmonic modelling
- Subharmonic modelling

Ménigot et al. (Tours, France)

Subharmonic Extraction

Subharmonic Extraction

Hammerstein

Discussions

Experiments

Experiments

TÉ NIS

12 / 17

Iniversité François-Rabelais

A1S

Signal-to-Noise Ratio(SNR)

- SNR Improvement by 4.5 dB
- Comparison with a Butterworth filter
 - Centre frequency 5 MHz
 - Bandwidth of 40% at -3 dB

Ménigot et al. (Tours, France)

Subharmonic Extraction

Discussions and Conclusion

16 / 17

- Optimal and automatic extraction of all the components (harmonics, subharmonics and ultraharmonics)
- Increase the SNR by 4.5 dB compared to a non-optimal frequency filtering
- A priori knowledge: only the transmitted signal and the order of the subharmonics
- Reasonable computation time (pprox 1 minute per 1000 samples)
- Prospect: Subharmonic extraction on a whole image

niversité François-Rabelais

17

Thank you for your attention

sebastien.menigot@univ-tours.fr ayache.bouakaz@univ-tours.fr emma.kanbar@etu.univ-tours.fr jean-marc.girault@univ-tours.fr

Program example available on Runmycode.org

versité François-Rabelais

Discussi

Hammerstein

Experiments

Discussions

Discussions and Conclusion

Algebraic form

$$\boldsymbol{\hat{z}} = \boldsymbol{W}^{\mathcal{T}}\boldsymbol{h}$$

- Model $\mathbf{\hat{z}} = [z(M+1), ..., z(N)]^T$
- Coefficients $\mathbf{h} = [h_1(1), ..., h_1(M), h_2(1), ..., h_4(M),]^T$
- Input Matrix $W = [w_1 w_2 w_3 w_4]$

$$\mathbf{w}_{p} = \begin{pmatrix} v_{p}(M) & v_{p}(M+1) & \dots & v_{p}(N) \\ v_{p}(M+1) & v_{p}(M+2) & 0 \\ \vdots & & \ddots & \\ v_{p}(N) & 0 & & 0 \end{pmatrix} \text{ and } v_{p}(n) = w(n)\cos\left(2\pi \frac{(p-1)\frac{f_{0}}{2}n}{F_{s}}\right)$$

$$\mathbf{h} = \left(\mathbf{W}^{\mathsf{T}}\mathbf{W}\right)^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{z}$$

Subharmonic extraction

$$\mathbf{z}_{\textit{sub}} = \mathbf{w}_1^T \mathbf{h}_{\textit{sub}}$$

with the odd coefficients $\mathbf{h}_{sub} = [h_1(1), \dots, h_1(M), h_3(1), \dots, h_3(M)]^T$