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NONLINEAR MOBILE SENSOR CALIBRATION USING INFORMED SEMI-NONNEGATIVE
MATRIX FACTORIZATION WITH A VANDERMONDE FACTOR

Clément Dorffer, Matthieu Puigt, Gilles Delmaire, and Gilles Roussel

Univ. Littoral Côte d’Opale, EA 4491 – LISIC, F-62228 Calais, France

ABSTRACT

In this paper we aim to blindly calibrate a mobile sensor net-
work whose sensor outputs and the sensed phenomenon are
linked by a polynomial relationship. The proposed approach
is based on a novel informed semi-nonnegative matrix fac-
torization with a Vandermonde factor matrix. The proposed
approach outperforms a matrix-completion-based method in
a crowdsensing-like simulation of particulate matter sensing.

Index Terms— nonlinear sensor calibration, informed
semi-NMF, structured matrix factorization

1. INTRODUCTION

Crowdsensing consists of acquiring some geolocalized and
time-stamped data from a crowd of mobile sensors provided
by mobile devices, e.g., smartphones [1]. However, crowd-
sensing sensors are usually low cost and must be oftenly cal-
ibrated in the wild, as it may not be possible to request them
to regularly go to a laboratory. To deal with such an issue,
specific blind sensor calibration methods have been proposed.
Such techniques are usually divided into two main families,
namely micro- and macro-calibration. Micro-calibration con-
sists of independently calibrating each sensor of a network
while macro-calibration operates on the whole set of sensors
[2]. Most blind calibration approaches allow to tackle gain
[3, 4], gain/offset [5, 6, 7, 8, 9], gain/phase [10, 11] cali-
bration, and sensor drift [12]. When the sensors of the net-
work can move, Blind Mobile Sensor Calibration (BMSC)
techniques are usually exploiting the rendezvous model [13]
which assumes that sensors in the same spatio-temporal vicin-
ity should acquire the same data. Contrary to [12], the authors
in [6, 7, 8, 9] consider the situation when some sensors are
perfectly calibrated, thus helping the calibration of the rest
of the sensor network. In particular, the work in [6, 7] pro-
poses a multi-hop micro-calibration structure. That is, cali-
brated sensors are used to calibrate uncalibrated ones which
lie in the same vicinity. These sensors are then considered as
calibrated and used to calibrate other ones when they move.
The operation is then repeated until any sensor in the network
is calibrated. On the contrary, our previous work in [8, 9]
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is based on macro-calibration and is revisiting BMSC as an
informed Nonnegative Matrix Factorization (NMF) problem.
Our approaches are assuming a nonnegative affine calibration
function, which is valid for a limited number of sensors only.

In this paper, we extend our previous work by proposing a
novel nonlinear calibration method where the nonlinear func-
tion is assumed to be polynomial. Interestingly, while being
extremely general, such a model for BMSC has been consid-
ered in a very limited number of papers, i.e., [14, 15]. The
work in [14] also considers a polynomial calibration function
and proposes two BMSC approaches based on nullspace—
i.e., an extension of [5]—and on moments, respectively. The
work in [15] considers an extended moment-based calibration
method, where the nonlinear calibration function is assumed
to be piecewise linear. However, it should be noticed that
the nullspace-based method is very sensitive to noise [14] and
needs some knowledge on the true subspace where the sensed
data should lie. The moment-based calibration approach is
more robust to noise but it needs a very long integration time
to perform an accurate calibration [14, 15]. On the contrary,
the method we propose in this paper—which is extending our
previous work—is based on an informed semi-NMF frame-
work and neither requests the exact knowledge of the sensed
data subspace nor needs a long integration time.

The remainder of this paper is organized as follows. We
introduce the nonlinear BMSC problem in Section 2 and our
proposed approach in Section 3. Its experimental perfor-
mance is investigated in Section 4 while we conclude and
discuss about future work in Section 5.

2. PROBLEM STATEMENT

In this paper we consider a set of m heterogeneous, geolocal-
ized, time-stamped, mobile, and possibly uncalibrated sen-
sors to provide measurements over a fixed area and over time.
We now introduce the definitions used in this paper.

Definition 1 ([13]) A rendezvous is a temporal and spatial
vicinity between two sensors.

A rendezvous is characterized by a time interval ∆t and a spa-
tial distance ∆d which depend on the observed phenomenon.

Definition 2 ([8]) A scene S is a discretized area observed
during a time interval [t, t+∆t). The size of the spatial pixels
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Fig. 1. From a scene S (with n = 16 spatial samples, m = 3
sensors and 2 rendezvous) to the data matrix X (white pixels
mean no observed value).

are set so that any couple of points inside the same pixel have
a distance below ∆d.

As shown in Fig. 1, a scene is a grid of locations where the
sensors go to. When two sensors share the same location in
S, they are in rendezvous and should acquire the same data.

The sensor output xi,j—provided by Sensor j at Loca-
tion i of a scene S—is linked to the corresponding physical
value—denoted yi—through a nonlinear calibration function
Fj accurately inferred by a polynomial (of degree N ), i.e.,

xi,j ≈ Fj(yi) ≈f1,j + f2,j · yi + · · ·+ fN+1,j · yNi , (1)

where the fk,j terms are the calibration parameters associated
with Sensor j. Please note that such a relationship is extend-
ing the affine calibration model [8, 9] as the latter is derived
from Eq. (1) by assuming that fk,j = 0 for k ≥ 3.

Assuming a scene composed of n locations and fully ob-
served by m nonlinear mobile sensors (with min(n,m) �
N ), we respectively define the n× (N + 1) and (N + 1)×m
matrices G and F as

G,

 1 y1 . . . yN1
...

...
...

1 yn · · · yNn

 , F,
 f1,1 · · · f1,m

...
...

fN+1,1 · · · fN+1,m

, (2)

and we derive the matrix form of Eq. (1), i.e.,

X≈G · F, (3)

where X , [xi,j ]i,j is a low-rank well-conditionned ma-
trix. G is a Vandermonde matrix—denoted G , VDM(y,N)
below—whose columns provide the monomial expansion of
the sensed physical values y , [y1, . . . , ym]T while F con-
tains the calibration parameters.

It should be noticed that estimating both G and F from
X is a specific nonlinear matrix factorization problem, which
has never been investigated to the best of the authors’ knowl-
edge. Indeed, most nonlinear matrix factorization approaches
were proposed for bilinear source separation [16, 17, 18],
whose nonlinear dependencies in one matrix factor are differ-
ent from the Vandermonde factor considered in this paper1.

1However [19] considers a Vandermonde factor in tensor factorization.

As the sensors are unconstrained in their moves, none
might sense the whole scene, thus leading to missing values
which are taken into account by applying a binary mask W—
informing the presence/absence of data in X—on the factor-
ization, i.e., denoting ◦ the Hadamard product:

W ◦X ≈W ◦ (G · F ), (4)

Lastly, we assume that X and G are nonnegative, which
is a valid assumption in many environmental applications2.
Moreover, we assume that one sensor—say Sensorm—is cal-
ibrated and that its calibration parameters read

f2,m = 1 and fk,m = 0 if k 6= 2. (5)

This implies that an available data point in the last column of
X—say xi,m—is equal to the sensed phenomenon yi in the
second column of G. Since G is a Vandermonde matrix, its
monomial expansions are known too, i.e., the whole i-th row
of G is known. As a consequence, we get some knowledge
on both G and F that may help to enhance the factorization
(and in particular, to suppress the scale ambiguity inherent to
matrix factorization and that we must avoid to perform sensor
calibration). Using the parameterization proposed in [20], we
rewrite G and F with respect to their set and free parts, i.e.,

G , ΩG ◦ΦG +Ω̄G ◦∆G, F , ΩF ◦ΦF +Ω̄F ◦∆F , (6)

where ΩG (respectively, ΩF ) is a binary matrix informing
the presence/absence of constraints in G (respectively, F ),
ΦG (respectively, ΦF ) is the matrix containing the set en-
tries in G (respectively, F ), ∆G (respectively, ∆F ) is the ma-
trix of the free parameters in G (respectively, F ), and Ω̄G ,
1n×(N+1)−ΩG (respectively, Ω̄F , 1(N+1)×m−ΩF ), where
1i×j is the i× j matrix of ones.

In this paper, we thus aim to estimate F (and G) from:

{Ĝ, F̂} = arg min
G,F
||W ◦ (X −G · F )||2F

s.t. G = VDM(y,N) ≥ 0,
G = ΩG ◦ ΦG + Ω̄G ◦∆G,
F = ΩF ◦ ΦF + Ω̄F ◦∆F ,

(7)

which is possible, provided enough diversity in y and F .

3. PROPOSED APPROACH

As Eq. (7) is non-convex w.r.t. both G and F , we split it into

Ĝ = arg min
G
||W ◦ (X −G · F )||2F

s.t. G = VDM(y,N) ≥ 0,
G = ΩG ◦ ΦG + Ω̄G ◦∆G,

(8)

and
F̂ = arg min

F
||W ◦ (X −G · F )||2F

s.t. F = ΩF ◦ ΦF + Ω̄F ◦∆F ,
(9)

which then can be alternately and iteratively solved, as ex-
plained in Subsections 3.1 and 3.2, respectively.

2xi,j and yi may respectively represent a voltage and a concentration [8].



3.1. Updating strategy for the Vandermonde matrix G

From the parameterization (6), it should be noticed that only
the free part of G, i.e., ∆G, has to be updated in the optimiza-
tion problem (8). The associated cost function then reads

JG(∆G) =
m∑
i=1

n∑
j=1

W 2
i,j ·

(
X̃i,j − ((Ω̄G ◦∆G) · F )i,j

)2
,

(10)
where X̃ , X − (ΩG ◦ ΦG) · F . As explained above, if a
value of y is known, then all the corresponding line ofG is set
in ΦG. On the contrary, when a value—say yi—is unknown,
then all the i-th row of G must be estimated, i.e., the i-th row
of ∆G must be updated. Expressing Eq. (10) with respect to
∆y—the second column of ∆G—reads

JG(∆y) =
m∑
i=1

n∑
j=1

W 2
i,j ·

(
X̃i,j −

N∑
k=0

(Ω̄G)i,k · (∆y)ki · Fj,k

)2

.

(11)
Using this last expression, we propose a two-step update

of the whole matrix G which first consists of updating ∆y

using one iteration of a projected gradient descent—in or-
der to respect the data nonnegativity—and then propagating3

this updated column into G so as to respect the Vandermonde
structure (2). Deriving the cost function (11) yields to

∇JG(∆y) = diag
[
(W 2 ◦ Z) · (F s)T · (Ω̄s

G ◦ U ◦∆s
G)T

]
,

(12)
where Z , (Ω̄G ◦∆G) ·F − X̃ , U is a N ×N matrix whose
(i, j)-th element uij , j, W 2 , W ◦W , Ω̄s

G is the matrix
composed of the N − 1 last columns of Ω̄G, ∆s

G is the matrix
composed of the N − 1 first columns of ∆G and F s is the
matrix composed of the N − 1 last rows of F . The projected
gradient descent update then reads

∆y ←
[
∆y − λG · ∇JG(∆y)

]+
, (13)

where λG is the descent step size for G and [.]+ is the projec-
tion operator on R+.

3.2. Updating strategy for the parameter matrix F

Using the parameterization (6), the cost function (9) can be
expressed with respect to ∆F as

JF (∆F ) =

m∑
i=1

n∑
j=1

W 2
i,j ·

(
˜̃Xi,j − (G · (Ω̄F ◦∆F ))i,j

)2
,

(14)
where ˜̃X , X −G · (ΩF ◦ ΦF ). Its gradient reads

∇JF (∆F ) = Ω̄F ◦
[
GT ·

(
W 2 ◦

(
G · (Ω̄F ◦∆F )

)
− ˜̃X

)]
.

(15)
3A similar strategy was proposed in [16, 18] in a linear-quadratic (non-

negative) matrix factorization framework.

As F is not subject to any sign constraint, we thus propose to
update it by one gradient descent step which leads to

∆F ← ∆F − λF · ∇JF (∆F ), (16)

where λF is the descent step size for F .

3.3. Algorithmic strategies

We here discuss some implementation issues which were met
in some preliminary tests. As the proposed method is itera-
tive, it should be initialized. We follow a similar strategy as
in [8], i.e., we first apply matrix completion [21] to X . Using
its completed version, we derive from Eqs. (5) and (2) an esti-
mation of y and G, respectively. A naive calibration—which
was used to initialize the approach in [8]—consists of esti-
mating F by least squares. However, the semi-NMF with this
initialization did not always provide a good enhancement. On
the contrary, initializing F with random realizations around
known theoretical average values—which are provided by the
sensor manufacturer—was found to be a better strategy.

A tricky aspect of the proposed gradient-based method is
the choice of the step sizes λG and λF , respectively intro-
duced in Eqs. (13) and (16). Indeed, if these step sizes are too
small, the proposed approach needs a lot of iterations to con-
verge, which is time consuming. On the contrary, if it is too
big, the projection in the update of G tends to be massively
applied, hence providing a very poor performance along iter-
ations. Moreover, we found in preliminary tests that choosing
well-suited step sizes is also depending of the missing data
proportion4. We thus found from preliminary tests a trade-off
by setting step sizes varying with the missing value propor-
tion ρ in X , i.e.,

λG = 0.001(ρ+ 0.1), λF = 0.01(ρ+ 0.1). (17)

4. EXPERIMENTAL VALIDATION

In this section, we aim to investigate the enhancement
provided by our proposed informed nonlinear Semi-NMF
method for BMSC. For that purpose, we simulate a crowdsensing-
like particulate matter sensing during a time interval [t, t +
∆t), which satisfies the assumptions in Section 2. The scene
is a 10 × 10 discretized area (the length of y is thus equal to
n = 100) which is observed by m = 31 sensors, i.e., m − 1
uncalibrated and mobile dust sensors [22] and one calibrated,
high quality, and mobile sensor5.

The observed concentrations in y range from 1e-3 to
1.4 mg/m3, for which the nonlinear sensor response is ac-
curately inferred by a polynomial of degree N = 2 [22].

4Ideally, the optimal step size should be estimated within iterations. How-
ever, such an estimation is non-trivial for the Vandermonde factor and out of
the scope of this paper.

5Actually, we get k fixed, calibrated, and highly accurate sensors whose
outputs are modeled as those of the m-th sensor in the BMSC problem.
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Fig. 2. BMSC performance vs (left) the missing value proportion, (center) the rendezvous proportion, and (right) the input
SNR. Perf. criterion: RMSE.

In particular, following the datasheet [22], for each index
j = 1, . . . ,m − 1, the calibration parameters f1,j , f2,j , and
f3,j—defined in Eq. (1)—of the uncalibrated mobile sen-
sors are randomly set according to a Gaussian distribution
centered around 0.9, 13, and -2.5, respectively. We then
get a 31 × 100 theoretical observation matrix for which we
randomly keep k + l samples, where k (respectively, l) is
the number of calibrated (respectively, uncalibrated) sensor
samples—with k � l—hence providing the irregular sam-
pling over the scene. Lastly, Gaussian noise realizations may
be added to the observed uncalibrated sensor data.

In this section, we aim to investigate the performance
of the number of rendezvous between calibrated and uncali-
brated sensors, the number of missing entries in X , and the
influence of the input SNR to the BMSC performance. For
each test condition—i.e., one number of rendezvous, one pro-
portion of missing entries, or one input SNR—20 simulations
are performed. For each run, we randomly set the position of
the samples in X in the three experiments and we generate
different noise realizations in the last one. The number k of
calibrated sensor values in the m-th column of X is set to 4
in all the tests. Except when we make these values vary, the
proportion of uncalibrated sensors to have rendezvous with
calibrated ones, and the proportion of missing entries inX are
set to 30 and 80 %, respectively. In addition to the noiseless
case, the input SNR varies from 10 to 80 dB. Lastly, the runs
are stopped after 5e5 iterations. The estimation error of each
calibration parameter is measured by the Root Mean Square
Error (RMSE) computed between a row of true parameters in
F and the corresponding row of reconstructed ones. Their av-
erage provides a global RMSE for the considered simulation.
It should be noticed that state-of-the-art nonlinear calibra-
tion methods [14, 15] cannot be tested in this experimental
section, because they require the observed signal subspace
knowledge and/or some time synchronization of the sensors
measurements—which is a strong assumption not satisfied
in most crowdsensing applications, and not needed by the
proposed method.

Figure 2 shows the plots of the different experiments re-
alized in this paper. The blue (respectively, red) line cor-
responds to the median RMSE obtained with our proposed
method (respectively, the matrix-completion-based approach

discussed in Subsection 3.3) applied on 20 independent tests
while the blue (respectively, red) area shows the envelope
of the RMSEs obtained with our proposed method (respec-
tively, the matrix-completion-based approach). The left plot
shows the influence of the proportion ρ of missing values—
ranging from 0.1 to 0.9—on the obtained RMSE. Our pro-
posed method always outperforms the naive approach. Inter-
estingly, the median RMSE is very stable with respect to ρ:
it slightly increases when ρ = 90 % only. Lastly, it seems
strange that the low part of the envelope is almost decreas-
ing when ρ increases (until 70 %). In fact, in several sim-
ulations, the semi-NMF method did not converge to the op-
timal solution within 5e5 iterations, which should be solved
by running more iterations. The central plot shows the influ-
ence of the number rendezvous between calibrated and un-
calibrated sensors. Again, the proposed method outperforms
the naive approach and provides stable median RMSEs over
the rendezvous proportion. Strangely, the RMSE is not that
high when there is no rendezvous. In fact, the factorization
is obtained up to a scale ambiguity and, since the initializa-
tion is not too far from the true values, the RMSE remains
quite low. The right plot shows the influence of the input SNR
on the performance. The proposed approach outperforms the
naive method if the input SNR is above 35 dB. It should pro-
vide a better performance at lower input SNRs with more data
points, e.g., by considering several scenes and by stacking the
data matrices into a unique bigger one.

5. CONCLUSION

In this paper, we proposed an informed nonlinear semi-NMF
method for mobile sensor calibration. The proposed approach
is using a Vandermonde structure in one factor and is able
to process the factorization with missing data. The proposed
method was tested on a crowdsensing-like simulation and was
found to provide a stable median performance over the miss-
ing value proportion and the number of rendezvous between
calibrated and uncalibrated sensors. In future work, we aim to
speed up the proposed approach, e.g., by estimating optimal
gradient step-sizes. Moreover, we aim to consider other non-
linear calibration functions, e.g., to deal with sensor response
drift or saturation.
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