
HAL Id: hal-01371232
https://hal.science/hal-01371232v1

Submitted on 24 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards improving feature extraction and classification
for activity recognition on streaming data

Nawel Yala, Belkacem Fergani, Anthony Fleury

To cite this version:
Nawel Yala, Belkacem Fergani, Anthony Fleury. Towards improving feature extraction and classifi-
cation for activity recognition on streaming data. Journal of Ambient Intelligence and Humanized
Computing, 2016, �10.1007/s12652-016-0412-1�. �hal-01371232�

https://hal.science/hal-01371232v1
https://hal.archives-ouvertes.fr

Journal of Ambient Intelligence and Humanized Computing manuscript No.
(will be inserted by the editor)

Towards Improving Feature Extraction and Classification for Activity
Recognition on Streaming Data

Nawel Yala · Belkacem Fergani · Anthony Fleury

Received:Jan. 22, 2016 / Revision received: May 27, 2016 and June 24, 2016 / Accepted:

Abstract An Activity Recognition system on streaming data
must analyze the drift in the sensing values and, at any sig-
nificant change detected, decide if there is a change in the
activity performed by the person. The performances of such
system depend on both the Feature Extraction (FE) and the
classification stages in the context of streaming data. In the
context of streaming and high imbalanced data, this paper
proposes and evaluates three FE methods in conjunction with
five classification techniques. Our results on public smart
home streaming data show better performances for our pro-
posed methods comparing to the state-of-the-art baseline tech-
niques in terms of classification accuracy, F-measure and
computational time. Test on Aruba Database show an im-
provement in term of accuracy and computation time of the
results when using the proposed method, using a KNN-based
classifier (both around 87% of correct classification but with
a largely higher computing time for SVM).

Keywords Activity Recognition · streaming data · SVM ·
KNN · Imbalanced data

1 Introduction

Sensor-based Activity Recognition (AR) is a key feature of
many ubiquitous computing applications such as healthcare
and elder care. It aims to identify the actions performed by a
person given a set of observations in her own environment.

Nawel Yala and Belkacem Fergani
LISIC Laboratory
USTHB, Faculty of Electronics and Computer Sciences
Algiers, Algeria
E-mail: ynawel@hotmail.com, b.fergani@usthb.dz

Anthony Fleury
Mines Douai, URIA (Computer Sciences and Automatic Control Dpt.)
F-59508 Douai and University of Lille, F-59000 Lille, France.
E-mail: anthony.fleury@mines-douai.fr

Many projects around the world work on activity recogni-
tion in smart environment such as the CASAS project (Cook
et al, 2009), and PlaceLab (Intille et al, 2006).

We can classify the researches on activity recognition
according to the type of sensors used to collect information,
the feature extraction, classification algorithm and the nature
of activities performed (simple or complex).

Independently of the sensors used, in the feature extrac-
tion step, most AR systems discretize data from the sensors
into time slices of constant or variable length, and each time
slice is labeled with only one activity. There is relatively no
problems when activities are performed sequentially (one
after another), but this is not the case when activities are
interleaved, that is to say one time slice may contain infor-
mation about more than one activity. To deal with this prob-
lem, techniques that work on online/streaming setting are
required. There is another need for online/streaming activity
recognition, when a specific application track the execution
of a daily living activity step-by-step for delivering in-home
interventions to a person or for giving brief instructions de-
scribing the way a task should be done for successful com-
pletion (Pollack et al, 2003).

Following the pioneering work done by Krishnan and
Cook (2014), this paper aims to improve the classification
of every sensor events based on the information encoded
in a sliding window containing the preceding ones. It ex-
plores both static and dynamic window size. It uses Mul-
ticlass Support Vector Machines (SVM) to model activities.
SVM Techniques tries to find the best separation hyperplane
for a given set of data solving an optimization problem. It
has been shown to be effective for many classification prob-
lems. It gained popularity due to its ability to generalize.
However, it becomes less efficient or impractical when ap-
plied to the analysis of huge streams of data. This is ex-
plained by the fact that when SVM is trained, a quadratic
programming problem must be solved, which is a computa-

2 Nawel Yala et al.

tionally expensive task. Due to this drawback, we are moti-
vated by other classifiers that can be trained faster and that
provides good performances when dealing with streams in a
big data context.

The present paper, that extends our previously published
conference paper Yala et al (2015), addresses feature extrac-
tion and classification on streaming data proposing the fol-
lowing significant improvements:

1. Two modified machine learning algorithms based on KN-
earest Neighbors (KNN) adapted to deal with big stream-
ing data.

2. A comparison of our original proposed methods to the
state-of-the-art.

This paper is structured as follows. Section 2 introduces
background knowledge of data stream classification tech-
niques. A discussion on the different techniques to segment
streaming data is depicted in Section 3. Our features extrac-
tion methods on streaming data are presented in section 4
while the proposed modified KNN technique is presented in
section 5. Section 6 presents the experimental setup for eval-
uating the proposed approaches. In this section, the results
are presented and discussed. Conclusion and future works
are found in Section 7.

2 Background

Human activity recognition is a classification problem. Sev-
eral popular algorithms have been used to build activity mod-
els. Decision Tree, the Artificial Neural Networks, the K-
Nearest Neighbor, the Hidden Markov Model, the Condi-
tional Random Field and The Support Vector Machines are
among the most popular modeling techniques. Choosing the
appropriate classifier depends on our objectives and on the
context. If a high accuracy is desired, the SVM and different
variants is among the best classifiers when limited data are
considered. That is not the case when dealing with streaming
data (Collobert et al, 2002). Some authors propose alterna-
tive implementation of SVM suitable for online applications
known as Incremental SVM.

A purely online SVM approach can be found in (Pog-
gio and Cauwenberghs, 2001). Its incremental algorithm up-
dates an optimal solution of an SVM training problem after
each addition of instance, and in that way construct the exact
solution. However, it is not suitable for large datasets as the
update time could be non-negligible. To our knowledge, no
successful practical application of this algorithm have been
reported.

In the semi-online SVM approach, training dataset is
partitioned in batches of fixed size and the SVM is incre-
mentally trained on them preserving the support vectors be-

tween the steps (Syed et al, 1999). The method requires
an initialization step to build the first model and can con-
struct an optimal solution close to the one built by traditional
SVM. As the online method, it keeps in memory (only) the
support vectors at each incremental step. To face memory
growing problems, a memory controlled incremental SVM
is proposed by Pronobis et al (2010). It discards in randomly
way support vectors of the model only if the performance of
the classifier does not decay. Domeniconi and Gunopulos
(2001) suggest three techniques to alleviate this problem.
The first technique discards the least relevant support vec-
tors i.e. the support vectors with the smallest value of the
weight. The second technique removes the oldest support
vector of the current model. It could be useful for appli-
cations in which the distribution of the data changes over
the time. Finally, the last technique filters the new data at
each incremental step as follow. At a given step the previous
model classifies the new data. If the data is misclassified, it
is kept, otherwise it is discarded. The support vectors of the
model of previous data together with the misclassified points
are used as training data to obtain the new model.

If we consider imbalanced dataset, batches can be more
imbalanced than the original dataset, thus at each step the
model cannot be properly learned. Memory-controlled al-
gorithms may discard support vectors belonging to minority
classes which intensify the imbalanced data problem. The
classification approach introduced in this paper uses KNN
rule. It aims to avoid SVM complexity discussed above while
providing a good performance in term of accuracy of classi-
fication and time of execution.

3 Segmentation of streaming data

The segmentation step aims to divide the data into segments
or windows most suitable for activity recognition. On each
window, features are computed and then used as an instance
for learning or testing phase. It is a difficult task since hu-
mans perform activities regularly and consecutive activities
cannot be clearly distinguished, as the exact boundaries of
an activity are difficult to define. In this section, we present
briefly the most used segmentation techniques in the context
of human activity recognition on streaming data.

3.1 Activity-based windowing

This method divides streaming data events into windows at
the points of detection of changes in an activity (Bao and
Intille, 2004). Each window likely corresponds to an ac-
tivity. It has however some drawbacks. Since the activities
are generally not well distinct, resulting activity boundaries
are not precise. Moreover, finding the pertinent separation
points occur during training phase, which complicates the

Towards Improving Feature Extraction and Classification for Activity Recognition on Streaming Data 3

Fig. 1: Illustration of the different segmentation approaches
of streaming data.

calculations. This technique is not suitable for online recog-
nition since it has to wait for future data to take a decision.
This method is more suitable for labeling data.

3.2 Time-based windowing

For this method, streaming data events are divided into fixed
time windows. It is the most commonly used segmentation
method for activity recognition due to its simplicity of im-
plementation (Bao and Intille, 2004; Tapia et al, 2004; Wang
et al, 2012) and for well dealing with continuous data sen-
sor. However, many of the classification errors using this
method come from the selection of the window length (Gu
et al, 2009). If a small length is selected, there is a possibil-
ity that the window contains insufficient information to take
an appropriate decision (or in the training phase to construct
correctly the models). On the contrary, if the length is too
wide, information of multiple activities can be embedded
in one window. As a result, the activity that dominates the
frame will be more represented compared to other activities,
which badly affects the decision. Furthermore, if sensors do
not have a constant acquisition rate (case of motion and door
sensors that are “event-based”), it is possible that some win-
dows do not have any sensor data in them.

3.3 Sensor-based windowing

In this method, data are divided into windows of equal num-
ber of sensor events. On Fig. 1 (c), the sensor windows are
obtained using a sliding window of length 6 sensor events. It
is clear that the windows duration differs. During the execu-
tion of activities, multiple sensors could be triggered, while
during silent periods, there will not occur many sensor fir-
ings. The sensor events preceding the last event in a win-
dow define the context for the last event. This method has
also some inherent drawbacks. For example, lets consider

Fig. 2: Sample raw and activity annotated sensor
data.Sensors IDs starting with M are motion sensors while
IDs starting with D are door sensors.

the segment S27, on Fig. 1 (c). The last sensor event of
this segment corresponds to the beginning of activity A2.
There is a significant gap between this event and the preced-
ing. The relevance of the use of all the sensor data in this
segment with this last event might be small considering the
large elapsed time. The method has another drawback in the
case of two or multiple residents in a smart home. One seg-
ment can contain sensor events of two residents. Indeed, in
a large window, the different events could belong to differ-
ent users. Thus processing all the sensor events in a large
window with equal importance for all the data might not be
a good approach. This method as it is generally used may
not be attractive; modifying it to account for the relation-
ship between the sensor events is a good way to process the
data stream (Krishnan and Cook, 2014). This approach of-
fers computational advantages over the activity-based win-
dowing and does not require future sensor events for classi-
fying the current one. In this paper, we use this technique to
deal with streaming sensor data with some modifications to
overcome its drawbacks. This new method is introduced in
the next section.

4 Features Extraction

In the context of human activity recognition, some applica-
tions such as prompting systems need to know at which ac-
tivity a single sensor event belongs, to provide the necessary
assistance at the right time. Approach proposed by Krishnan
and Cook (2014) aims to classify every single sensor event
into a label to the best possible extent.

In this section, we introduce and compare four methods
used to extract features from the sequence of sensor events.
Two of them are proposed by Krishnan and Cook (2014) and
the other two methods are our contribution.

Lets consider [E1,E2, . . . ,EN], a sequence of events col-
lected from a one resident smart home test-bed. An example

4 Nawel Yala et al.

Fig. 3: Events widely separated in time share the same win-
dow.

of such sequence is depicted on Fig. 2. Each event is de-
scribed by its date and time of occurrence, sensor ID, sensor
status and activity associated (from indexation). Sensors IDs
starting with M are motion sensors and with D door sensors.

The segmentation technique that we use is the sensor-
based windowing. Each window contains an equal number
of events. The sensor events preceding the last event in a
window define the context for the last event. Thus, from a
window, we extract one feature vector that represents the
last events, and is labeled with the label of the last event in
the window.

If we consider m as being the number of events in a win-
dow, sensor event Ei is represented by the sequence of firings
[Ei−m,Ei−m+1, . . . ,Ei]. m is selected empirically. It is influ-
enced by the average number of sensor events that span the
duration of different activities.

The next sections will describe the different methods for
feature computation from the sensor data.

4.1 Baseline method

Once the sensor event window Ei is defined, we can now
transform this window into a feature vector. For this, we
construct a fixed dimensional feature vector Xi containing
the time of the first and last sensor events, the duration of
the window Ei and a simple count of the different sensor
events within the window. For instance, if 34 is the number
of sensors installed in the smart home, the dimension of the
feature vector Xi will be 34+ 3. Xi is tagged with the label
Yi of Ei (Krishnan and Cook, 2014).

One problem with the sensor-based windowing method
is the possibility for the window to contain sensor events that
are widely separated in time. We can illustrate this problem
by the example given on Fig. 3. This is an example of a se-
quence of sensor events from Aruba CASAS dataset. We can
observe that there is a difference of six hours between the
two last sensor events. All the sensor events that represent
the last event have occurred in the “distant” past. Thus in
the absence of any weighting scheme, even though the sen-
sor event corresponding to the “work-end” activity occurred
in the past, it has an equal influence on defining the context
of the event corresponding to the activity “sleeping-begin”.

In order to overcome this problem, Krishnan and Cook
(2014) proposed a time-based weighting scheme that takes

Fig. 4: Sensor dependency.

into account the relative difference in the triggering of each
event. Another problem appears when a window contains
sensor events corresponding to the transition between two
activities. Most of these events have no relation with the last
event in the window and sensors from a particular activity
dominate the window. This leads to a wrong description of
the last event in the window. To overcome this problem, they
define a weighting scheme based on a mutual information
measure between the sensors as described in the next sec-
tion.

4.2 Sensor Dependency method

As described earlier, when a window contains sensor events
coming from two different activities, it is likely that the sen-
sors that dominate the window do not really participate in
the evaluation of the activity that induced the last event in
the window. Such case is illustrated on Fig. 4.

To reduce the impact of such sensor events on the de-
scription of the last sensor event, the previous works use a
mutual information based measure between the sensors.

Mutual information measures how much one of the ran-
dom variable tells us about another. In the current context,
each individual sensor is considered to be a random variable
that has two outcomes, “ON” and “OFF”. The mutual infor-
mation or dependence between two sensors is then defined
as the chance of these two sensors occurring consecutively
in the entire sensor stream (a prior knowledge). If Si and S j
are two sensors, then the mutual information between them
denoted MI(i, j), is defined as:

MI(i, j) =
1
N

N−1

∑
l=1

δ (Sl ,Si) ·δ (Sl+1,S j) (1)

s.t. δ (Sl ,Si) =

{
0 i f Sl 6= S j

1 else
(2)

The term takes a value of 1 when the current sensor is Si
and the next sensor is S j. The value of this mutual informa-
tion is linked to the proximity of both sensor events.

The mutual information matrix is computed offline using
the training sensor sequence. It is then used to add a weigh

Towards Improving Feature Extraction and Classification for Activity Recognition on Streaming Data 5

defining the influence of the sensor events in a window while
constructing the feature vector. Each event in the window is
weighted with respect to the last event in the window. Thus
instead of counting the different sensor events, it is the sum
of the contributions of every sensor event based on mutual
information that defines the feature vector. The approach is
denoted as Sensor Window Mutual Information (SWMI) for
future reference.

4.3 Sensor Dependency modified method

Mutual information of two sensors as previously described
depends on the order of occurrence of a couple of sensors in
the entire data stream. For instance, we can consider 4 sen-
sors installed in a tight place of a smart home and that partic-
ipate in the performance of a specific activity. The inhabitant
can take the path that fires in the following order the sensors:
S1→ S2→ S3→ S4 or in a second way: S1→ S3→ S2→
S4 to perform this activity. Assuming that the first path is
statistically less used than the second path, but also that the
two paths lead to the same activity, we can clearly see that
there is a dependency between sensors S1 and S2 whatever
path is used. If we adopt the previous way for computing the
mutual information between sensors S1 and S2, we will lose
some dependency between these sensors.

Furthermore, there are activities that are often performed
in parallel, and sensor events of an activity can be descriptive
for the other and traditional mutual information cannot take
into consideration this situation.

Based on these assumptions, we propose to compute mu-
tual information between two sensors Si and Sj by comput-
ing their frequency of occurrence in an interval of n sensor
events along the entire data stream, as defined by the follow-
ing equation:

MI(i, j) =
1

W

W−1

∑
l=1

{
(Si,S j) ∈ [Ew·n+1, . . . ,Ew·n+n]

}
(3)

Such that W is the number of windows and n is the num-
ber of events in each window (fixed and selected empiri-
cally). Feature vector is then computed using the original
method, previously presented. We denote this approach as
Sensor Windows Mutual Information extension (SWMIex)
for future reference.

4.4 Last-state sensor method

There is another issue concerning the type of motion sen-
sors installed in the smart home from which our dataset is
extracted. There are large cone and small cone sensors (as
shown in Fig. 5). Considering this fact; some windows can
contain sensors with active and inactive status. The active

Fig. 5: Smart home floor plan in which Aruba dataset is col-
lected.

status is due to the large time taken by the large cone sen-
sor to be deactivated and not to the interaction of the person
with it. For this, last-state of a sensor within a window can
be more informative and descriptive for the last event Ei in
the window.

In this method, the feature vector Xi is computed as fol-
low: for each sensor Si, if its last state within a window is
ON/OFF then it will be represented by respectively 1/-1 in
the feature vector Xi, otherwise it will be represented by 0 (if
absent). We denote this approach as Sensor Windows Last
State (SWLS) for future reference.

5 Classification Stage

Choosing the appropriate classifier depends on our objec-
tives, on the context, on some specificity of the data etc.
SVM and different variants is often the best classifiers, when
the hyperparameters are correctly chosen. They solve the
problem trying to construct the best possible classifier con-
sidering the data, with the highest margin for “safety” and
with an appropriate kernel they can work well even if the
classes are not linearly separable in the original feature space
(projecting the data in a higher dimensional space). How-
ever, they require solving a quadratic programming problem
in a number of coefficients equal to the number of training
examples. Since our experiments represent a large problem,
SVM become quickly unusable for their high running time
complexity training phase.

As a consequence, another classifier that can lead to a
trade-off between classification accuracy and running time
complexity is required. For its simplicity and high accuracy,
the K-Nearest Neighbor (KNN) algorithm is often consid-
ered. It has successfully been used in various data analysis
applications (Blanzieri and Melgani, 2008; Li et al, 2008; Ni
and Nguyen, 2009). It is instance-based learning, i.e. there
is no training (no model to build). Moreover, it has only
one parameter, the number of neighbors used (K). For huge
datasets it is memory consuming, but the processing can be

6 Nawel Yala et al.

very fast using efficient algorithms that have been published
these last years.

To classify a new data, the system finds the K nearest
points among the training data (considering a specific met-
rics), and use a majority vote to determine the class of this
data.

When facing highly imbalanced dataset with a relatively
high value of K, the only limitation could be that there is at
least enough data in the less represented class to be able to
win a majority vote for it.

There are several KNN alternatives to overcome tradi-
tional algorithm drawbacks. The next sections presents some
variants of the KNN initial algorithms that will be used fur-
ther for our application.

5.1 The Class Based kNN Classifier CB-kNN

CB-kNN Voulgaris and Magoulas (2008) will try to deal
with the unbalancing of the dataset by first selecting K Near-
est Neighbors for the test points but from each of the classes
that are presents. Once these K times the number of classes
samples are chosen, for each class, we will compute the Har-
monic Means of the points for each class (Harmonic Means
will be a mean that is weighted by the distance to the test
point, giving less importance to the farther points). The class
that has a minimum value for this harmonic mean will then
be selected as the decision for this new point.

5.2 Modified k Exemplar-based Nearest Neighbor
(MkENN)

We can summarize the main idea of this second algorithm
as follows: the lack of data in the minority (positive) class
prevents the classification model to learn an appropriate de-
cision boundary. As is shown in Fig. 6, there are 3 sub-
concepts P1, P2 and P3. P2 and P3 have a small number of
representative data. The classification models learned from
these data is represented by the dashed line. Two test in-
stances that are indeed positives (defined by P2) fall outside
the positive decision boundary of the classifier and similarly
for another test instance defined as positive by P3.

How KNN deal with the subspace of instances at the
lower right corner? Fig 7.1 shows the Voronoi diagram for
sub-concept P3 in the subspace, where positive class bound-
aries of the traditional 1NN are represented as the polygon
in bold line. The decision boundaries are smaller than the
real class boundaries (circle) and the test instance that in-
deed belongs to positive class is classified as negative class.

To achieve more accurate prediction, the decision bound-
ary for the positive class should be expanded so that it is
closer to the true class boundary. For this, Li and Zhang
(2011) suggest an approach that generalizes every positive

Fig. 6: An artificial imbalanced classification problem (Li
and Zhang, 2011).

Fig. 7: The Voronoi diagram for the subspace of sub-concept
P3 of Fig. 6 (Li and Zhang, 2011)

instance in the training instance space from a point to a
Gaussian ball. Since many false positives can be introduced
if every positive instance is generalized, the author intro-
duces a recurrence on the Exemplar positive instances (the
positive instances that can be generalized to reliably clas-
sify more positive instances of the test set). These Exemplar
instances are the strong instances at (or close to) the cen-
ter of a disjunct of positive instances in the training instance
space. Authors in Li and Zhang (2011) calls exemplar in-
stances pivot positive instance (PPIs) and defines them from
their neighborhood.

Definition 1 The Gaussian ball B(x,r) centered at an in-
stance x in the training instance space Rn (n is the number
of features defining the dimension of the space) is the set of
instances within distance r of x: {y ∈ Rn|distance(x,y)≤ r}.

Each Gaussian ball defines a positive sub-concept and
only those positive instances that can form sufficiently ac-

Towards Improving Feature Extraction and Classification for Activity Recognition on Streaming Data 7

curate positive sub-concepts are pivot positive instances, as
defined below.

Definition 2 Given a training instance space Rn, and a pos-
itive instance x∈ Rn, let the distance between x and its near-
est positive neighbor be e. For a false positive error rate (FP
rate) threshold δ , x is a pivot positive instance (PPI) if the
sub-concept for Gaussian ball B(x,e) has an FP rate ≤ δ .

If we apply the definition of PPI on the P3 subspace in-
stances, the three positive instances at the center of the dis-
junct of positive instances are PPIs, and are used to expand
the decision boundary of 1NN. Fig 7.2 shows the Voronoi
diagram of the new situation. As a result, the test instance
(represented by *) is now enclosed by the boundary decided
by the classifier. Algorithm 1 illustrates the process of com-
puting PPIs from a given set of training instances.

After computing the set of PPIs, for every test instance t,
the distance to each training instance x is adjusted as follow:

AD(t,x) =

{
distance(t,x)− x · radius i f x is a PPI

distance(t,x) otherwise
(4)

By introducing the PPIs radius, we compute the distance
of the test instance to the edge of the Gaussian ball centered
at the PPI instead of the training instance x itself. Finally, la-
bel of test instance is predicted as the traditional KNN does.

The original method is a two class method; we adapt it
to fit our multi-classes problem by searching PPIs of each
minority class in the dataset while considering all the rest
of instances as one negative class. The multiclass kENN ap-
proach is denoted as MkENN.

Algorithm 1: Compute pivot positive instances
Input: Training Set T, n is the number of instances, false

positive error rate threshold δ

Output: The set of pivot positive instances P (with radius r for
each Gaussian Ball)

1 P← φ ;
2 forall the positive instance x ∈ T do
3 G← neighbors of x in increasing order of distance to x;
4 for k← 1 to |G| do
5 if G[k] is positive instance then
6 break /* G[k] is the nearest positive

neighbor of x */;
7 end
8 end
9 r← distance(x,G[k]);

10 f← k1
k+1 /* Gaussian ball B(x, r) has k + 1

instances and (k + 1 - 2) FPs */;
11 if f ≤ δ then
12 P← P∪{x} /* G[k] is the nearest positive

neighbor of x */;
13 end
14 end

To improve the MkENN algorithm for our own applica-
tion and constraints, we introduce two modifications:

1. Pivot positive instances are selected more carefully so
that e distance in the definition 2 must not exceed R value
which is defined as the mean Euclidian distance between
minority training instance pairs (xq,xp).

R[i] =
∑(xp,xq)∈Xi d(xq,xp)

2 ·ni · (ni−1)
(5)

ni: training instances number in minority class i.
Positive instances for which the e distance exceeds Ri
value may be a noisy pivot and cannot be filtered when
false positive error rate threshold δ has a large tolerance
value.
Algorithm 1 is modified as follows:

– R vector is added to Input. Its dimension is equal to
the number of minority classes in the dataset.

– Following line is added after line 2:

Algorithm 2: Addition after line 2 of Algorithm 1
1 i← class from which x is a positive instance

– Line 5 of Algorithm 1 is modified as follows:

Algorithm 3: Modification of line 5 of Algorithm 1
1 if G[k] positive instance of class i and d(x,G[k])< R[i] then ;

2. In the Gaussian ball B(x,e), centered at x with no false
positive instance, we consider the e distance as the dis-
tance between x and the jth nearest neighbor instead of
the first nearest neighbor. j is determined empirically,
so that |G| < j < 1.This step aims to enlarge x · radius
in the Adjusted-distance equation and, consequently, to
expand the decision boundary. Line 9 in Algorithm 1 be-
comes:

Algorithm 4: Modification of line 9 of Algorithm 1
1 if Label (G) == Label(x) then r← distance(x, G[i]);

The modified approach is denoted as MkRENN for fu-
ture reference.

6 Experiments and result

6.1 Dataset

To test the proposed methodology, we tried to select a dataset
as close as possible to the dataset used in the study that this
current work improves. For this, we chose Aruba and Tulum
real-world datasets collected from CASAS smart homes, a
project of Washington State University (CASAS Project, 2007).
Data collected from Aruba dataset was obtained using 31
motion sensors, three door sensors, five temperature sensors,

8 Nawel Yala et al.

Aruba Dataset Tulum Dataset

id Activity # of Events id Activity # of Events

1 Bed to Toilet 1 330 1 Cook Breakfast 11 343
2 Eating 16 037 2 Cook Lunch 5 350
3 Enter Home 2 018 3 Enter Home 11 998
4 Housekeeping 10 583 4 Group Meeting 23 787
5 Leave Home 1 922 5 Leave Home 11 200
6 Meal Preparation 285 149 6 R1 Eat Breakfast 10 395
7 Relax 354 585 7 R1 Snack 216 178
8 Resperate 542 8 R2 Eat Breakfast 12 312
9 Sleeping 32 682 9 Wash Dishes 24 392
10 Wash Dishes 10 464 10 Watch TV 50 280
11 Work 16 321
12 Other activity 871 320 11 Other activity 85 915

Table 1: Statistics of the used datasets

and three light sensors. 11 activities were performed for 220
days (7 months). Regarding Tulum dataset, data from 19
sensors were collected. 10 activities were performed for 83
days (4 months) by two residents. These data are all repre-
sented as a sequence of time-stamped sensor data, as shown
in Fig. 2. The two datasets are imbalanced, as some of the
activities occur more frequently than others.

Left part of table 1 presents the statistics of the sensor
events and activities performed in the Aruba dataset. “Other
activity” class contains events with missing labels. It covers
54% of the entire sensors events sequence. Due to the very
large quantity of data to process with a normal computer
(4 cores processor at 1.5 GHz machine with 8GB RAM –
parallel execution was done on the 4 cores), we used only
the first six weeks of data in Aruba dataset and 3 months of
data in Tulum dataset.

Evaluation metrics used in this paper are classification
accuracy and F-measure (F-score). The accuracy shows the
percentage of correctly classified instances; while the aver-
age percentage of correctly classified instances per class is
shown by the F-measure. It is favored over accuracy when
we have an imbalanced dataset (as accuracy may be altered
by correct classification of the most important class in the
dataset).

6.2 Results and discussion

We conducted two sets of experiments to evaluate the ef-
fectiveness of the approaches presented in this paper. In the
first series of experiments, the system was trained on data
excluding “other activity” class. This class is incorporated in
the second set of experiments to evaluate the system in a real
environment situation. In the two sets of experiments, the
four feature extraction methods described in section 4, and
five different classifiers (traditional SVM, traditional KNN,
CB-kNN, MkENN and MkRENN) are evaluated. For SVM,

we used the LibSVM (Chang and Lin, 2011) library, with a
penalty parameter (C) fixed to the value of 100 (empirically
chosen) and an RBF kernel with the value of the variance
of the kernel determined via cross-validation on the training
data.

6.2.1 Learning on data excluding the “other” activity

We begin our experiment by testing Baseline features ex-
traction method with different number of events per window.
We obtained the best performances (classification) with 10
events per window. This number is lower than the average
number of sensor events that span the duration of the dif-
ferent activities that is 70. Once the number of events per
window is determined, we test the remaining features ex-
traction methods. The experimental results obtained by the
different features extraction and classification methods are
summarized in Table 2. From the table, we can conclude
two things about the different classifiers used. The first con-
clusion is that our modified algorithm of k Exemplar Near-
est Neighbors technique (MkRENN) outperforms all KNN
techniques. A second conclusion is that this presented ap-
proach (MkRENN) is comparable with traditional SVM clas-
sifier. When used in conjunction with the features extraction
methods SWMIex and SWLS, MkRENN achieves almost
the same results as SVM classifier.

On Aruba dataset, the accuracy obtained by SVM for all
the classes are close to each other, while there is a signifi-
cant improvement in F-measure when using our features ex-
traction method compared to the Baseline method. That can
be explained by the fact that Aruba dataset is a very imbal-
anced dataset where half of the activities have too few data.
F-measure is sensitive to any improvement in performance
of these activities while accuracy is less sensitive to it. KNN
classifiers results show a noticeable increase of 2% in ac-
curacy when our features extraction methods (SWMIex and
SWLS) are used. On Tulum dataset, our features extraction
methods outperform clearly Baseline and SWMI (Krishnan
and Cook, 2014) methods whatever the classifier used in the
next stage.

Fig. 8 (a and b parts) shows the F-measure of each activ-
ity obtained by SVM classifier. Some of the activities (“Res-
perate” (8) and “Wash Dishes” (10) from the Aruba dataset,
“R2 eat breakfast” (8) and “Wash dishes” (10) for Tulum
dataset) are identified only when the two presented extrac-
tion methods SWMIex and SWLS are used.

We decided to use KNN-based methods because they do
not require a training phase and because they have the abil-
ity to identify the minority class as described in section 4. In
this set of experiment, the “other activity” class that covers
over 54% of the Aruba dataset is excluded and SVM train-
ing phase spins in an acceptable time. The interest of using
KNN-based will appear in the second set of experiment.

Towards Improving Feature Extraction and Classification for Activity Recognition on Streaming Data 9

Aruba Dataset Tulum Dataset

Baseline SWMI SWMIex SWLS Baseline SWMI SWMIex SWLS

SVM Acc. 87.23 87.71 87.71 87.55 63.46 64.18 65.57 63.95
F-meas. 63.29 65.56 68.68 69.24 35.60 39.30 41.29 36.91

KNN Acc. 83.36 83.83 85.34 85.67 58.41 59.25 61.32 58.87
F-meas. 56.34 60.23 64.12 61.54 29.48 30.12 32.44 30.22

CB-KNN Acc. 84.50 85.11 85.84 86.19 59.45 60.22 62.76 60.49
F-meas. 58.54 62.75 64.78 61.96 31.51 33.89 36.12 33.18

MkENN Acc. 84.45 85.89 86.23 86.76 60.56 61.89 64.15 61.15
F-meas. 58.04 63.15 65.66 62.23 32.58 35.06 37.88 33.64

MkRENN Acc. 84.88 85.49 86.40 86.66 61.43 62.75 65.25 62.11
F-meas. 57.76 62.93 66.26 62.31 33.02 36.67 39.79 33.84

Table 2: Results of the different classification algorithms without considering “Other activity” class

Aruba Dataset Tulum Dataset

Baseline SWMI SWMIex SWLS Baseline SWMI SWMIex SWLS

SVM Acc. 67.82 64.18 67.38 69.09 63.32 63.48 65.26 63.90
F-meas. 49.52 47.54 50.39 47.38 35.75 36.71 39.01 34.81

KNN Acc. 65.21 62.73 65.59 64.53 58.17 58.8 60.23 58.87
F-meas. 49.19 46.72 51.35 44.17 27.52 29.47 31.59 28.42

CB-KNN Acc. 65.67 63.74 66.07 65.29 58.88 59.68 61.43 60.1
F-meas. 50.01 48.84 51.32 45.02 31.19 32.47 35.24 31.44

MkENN Acc. 65.76 64.66 66.52 66.19 60.36 61.55 63.38 61.4
F-meas. 50.62 47.10 52.58 46.72 32.17 34.16 36.73 32.03

MkRENN Acc. 66.87 65.70 67.47 67.83 61.45 62.33 64.39 61.86
F-meas. 51.65 48.69 53.78 46.01 32.85 36.18 38.45 32.16

Table 3: Results of the different classification algorithms considering “Other activity” class

6.2.2 Learning on data containing “other activity” class

To evaluate the system in a real situation, “other activity”
class is now kept in the dataset. The results are summarized
in Table 3. The classification accuracy is defined by:

Accuracy =
nbA

∑
m=1

T PAM

NAM

(6)

Such that nbA is the total number of activities excluding the
“other activity”.

By comparing the results obtained in the first series of
experiments (Table 2) with the one obtained by this series
(Table 3), classification accuracy drops significantly from
87% to 69% in Aruba dataset. In Tulum dataset the perfor-
mance degradation is more limited. This is due to the impor-
tance of “other activity” class in Aruba dataset, while this
class is less present in Tulum dataset. Thus, the conclusions
in the first set of experiment on Tulum dataset are still valid
for this set of experiment.

From Table 3, we can conclude that MkRENN classi-
fier outperforms all KNN classifiers. In addition, it remains

comparable with traditional SVM. It can even perform bet-
ter (even if not statistically representative) than SVM as re-
sults on Aruba dataset show (Table 3: SWMI and SWMIex
columns).

On Aruba dataset, our SWLS feature extraction method
continues to outperform all the others, while our SWMIex
method provides a better F-measure. We observe that SWMI
approach loses its superiority over the Baseline.

Fig. 9 shows that when the training is done with an SVM
model, none of the feature extraction method is able to iden-
tify the “Resperate” and “Wash Dishes” activities, due to the
imbalanced problem intensified by the presence of “other
activity” which dominates the dataset. We also observe that
the system loses capability to recognize the “Housekeeping”
activity, where most of the instances are classified as “other
activity”. MkRENN show better results in identifying these
activities. Fig. 10 shows a comparison between individual
activities F-measure obtained by SVM and MkRENN classi-
fiers both following feature extraction by SWMIex method.

What we gained mostly in this set of experiment is clas-
sification performance that is close or better than the ones

10 Nawel Yala et al.

(a) Aruba dataset

(b) Tulum dataset

Fig. 8: SVM classification on both datasets. Individual activities F-measure for different features extraction methods when
“other” activity is excluded from dataset.

obtained by SVM without going through the learning phase.
To clarify this point, Table 4 provides CPU Time consump-
tion of this set of experiments. These measures have been
done using a computer with an 1.5 GHz processor and 8GB
RAM. KNN implementation used are Matlab (MathWorks,
Natick, Massachusetts, US) codes and the SVM used are
from LibSVM loaded from Matlab using a Mex-file. For
these experiments, the computing time for the resolution of
the whole training or testing set has been measured and to
obtain the computing time for one sample, this batch time is
divided by the number of samples in the set.

Although the part of the dataset that we used in this pa-
per represents only 20% of the whole, SVM classifiers took
three days to learn the activity models. To train the entire
dataset with SVM, it requires 23 days (with an optimized al-
gorithm using parallel computing capacity of the computer.

It is obvious that SVM becomes unfeasible when the size
of the available data is large (except if we do not want to
specialize or to update the model, in that case one training
is needed for every home and that is it). As in many applica-
tions more training data leads to better classifier, we cannot
be limited in this part. The test phase in SVM is fast since it
depends on the support vectors that are fewer than the train-
ing instances and since it does need only to project the new
data in the kernel space and to compute a distance to the
margin). As there is no model to build in KNN and its vari-
ants, the test phase depends on the size of training set and
on the capacity of the algorithm to determine quickly the
neighbors without having to go through the entire dataset. It
is a costly phase in term of time and memory in case of huge
dataset. In our situation even when working with the entire
dataset, KNN techniques are more suitable than SVM.

Towards Improving Feature Extraction and Classification for Activity Recognition on Streaming Data 11

Fig. 9: Aruba dataset. Individual activities F-measure for different features extraction methods when “other” activity is
included.

Classifier Phase CPU Time

SVM Training 3 days

Testing 0.23s for one sample

KNN Training None

Testing 0.28s for one sample

CB-KNN Training None

Testing 0.37s for one sample

MkENN Training 65 minutes to compute PPIs

Testing 0.31s for one sample

MkRENN Training 65 minutes to compute PPIs

Testing 0.31s for one sample

Table 4: CPU Time of each classifiers when learning
with the “other activity” class

Fig. 10: Aruba dataset. Individual activities F-measure
for SVM and MkRENN classifiers when “other” activity
is included

7 Conclusion and Future Work

In order to provide an automated monitoring system for dif-
ferent human needs, an online system that performs activity
recognition from sensor readings is required. Most of the
techniques used in the literature are not suitable to build
an online system. In this paper we propose and evaluate an
extension of a sensor window approach to perform activity
recognition in an online/streaming setting; recognizing ac-
tivities when a new sensor event is recorded.

As different activities can be better characterized using
different window length, mutual information based weight-
ing of sensor events within a window is incorporated in this
paper. A modification of how the mutual information is com-
puted is proposed in this paper. To account for the fact that
some sensors have different cone sizes (small, medium, large)

we propose a last-state of sensor feature set within the win-
dow to characterize activities. For the classification part of
our methodology, we proposed a Multi-classes Exemplar-
based Nearest Neighbors (MkRENN) classifier to overcome
the high computational cost of the SVM training phase.

These techniques were evaluated on Aruba datasets over
six weeks and on Tulum dataset over 3 months.

The results show that the proposed MkRENN classifier
could outperform SVM without the need to learn a model
for each activity. In the feature extraction techniques, there
was an improvement over the Baseline technique when any
events with missing labels were removed (the “other activ-
ity” class). Only one of these techniques shows a signifi-
cant improvement over Baseline when we incorporate events
with missing indexation in the data. Indeed, there are a large
confusion between “other activity” class and the different

12 Nawel Yala et al.

known activities. Our future work will include finding a way
to reduce confusion between this activity and the others.

References

Bao L, Intille SS (2004) Activity recognition from user-
annotated acceleration data. In: Pervasive Computing:
Second International Conference (PERVASIVE 2004),
Linz/Vienna, Austria, April 21-23, Springer-Verlag

Blanzieri E, Melgani F (2008) Nearest neighbor classifica-
tion of remote sensing images with the maximal margin
principle. IEEE Transactions on Geoscience and Remote
Sensing 46(6):1804–1811

CASAS Project (2007) Aruba, tulum datasets
from wsu casas smart home project. URL
http://ailab.wsu.edu/casas/datasets/

Chang CC, Lin CJ (2011) LIBSVM: a library for Support
Vector Machines. ACM Transactions on Intelligent Sys-
tems and Technology (TIST) 2(3):Art. num. 27

Collobert R, Bengio S, Bengio Y (2002) A parallel mixture
of SVMs for very large scale problems. Neural computa-
tion 14(5):1105–1114

Cook D, Schmitter-Edgecombe M, Crandall A, Sanders C,
Thomas B (2009) Collecting and disseminating smart
home sensor data in the casas project. In: Proceedings of
the 27th International Conference on Human Factors in
Computing Systems, CHI 2009, Boston, MA, USA, April
4-9

Domeniconi C, Gunopulos D (2001) Incremental support
vector machine construction. In: Data Mining, 2001.
ICDM 2001, Proceedings IEEE International Conference
on, IEEE, pp 589–592

Gu T, Wu Z, Tao X, Pung HK, Lu J (2009) epSICAR:
An emerging patterns based approach to sequential, in-
terleaved and concurrent activity recognition. In: Per-
vasive Computing and Communications, 2009. PerCom
2009. IEEE International Conference on, pp 1–9, DOI
10.1109/PERCOM.2009.4912776

Intille SS, Larson K, Tapia EM, Beaudin JS, Kaushik P,
Nawyn J, Rockinson R (2006) Using a live-in labora-
tory for ubiquitous computing research. In: Proceedings
of the 4th International Conference on Pervasive Com-
puting, Springer-Verlag, PERVASIVE’06, pp 349–365

Krishnan NC, Cook DJ (2014) Activity recognition on
streaming sensor data. Pervasive and mobile computing
10:138–154

Li B, Chen YW, Chen YQ (2008) The nearest neighbor al-
gorithm of local probability centers. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics)
38(1):141–154

Li Y, Zhang X (2011) Improving K Nearest Neighbor with
Exemplar Generalization for Imbalanced Classification.
In: Proceedings of the 15th Pacific-Asia Conference on

Advances in Knowledge Discovery and Data Mining
(PAKDD’11) - Volume Part II, Springer-Verlag, pp 321–
332

Ni KS, Nguyen TQ (2009) An adaptable-nearest neighbors
algorithm for mmse image interpolation. IEEE transac-
tions on image processing 18(9):1976–1987

Poggio T, Cauwenberghs G (2001) Incremental and Decre-
mental Support Vector Machine learning. Advances in
neural information processing systems, MIT Press 13:409

Pollack ME, Brown L, Colbry D, McCarthy CE, Orosz C,
Peintner B, Ramakrishnan S, Tsamardinos I (2003) Auto-
minder: An intelligent cognitive orthotic system for peo-
ple with memory impairment. Robotics and Autonomous
Systems 44(3):273–282

Pronobis A, Jie L, Caputo B (2010) The more you learn,
the less you store: Memory-controlled incremental svm
for visual place recognition. Image and Vision Computing
28(7):1080–1097

Syed NA, Huan S, Kah L, Sung K (1999) Incremental learn-
ing with Support Vector Machines. In: Workshop on Sup-
port Vector Machines at the International Joint Confer-
ence on Artificial Inteligence (IJCAI’99)

Tapia EM, Intille SS, Larson K (2004) Activity recogni-
tion in the home using simple and ubiquitous sensors.
In: International Conference on Pervasive Computing,
Springer, pp 158–175

Voulgaris Z, Magoulas GD (2008) Extensions of the K Near-
est Neighbour methods for classification problems. In:
The 26th IASTED Conference on Artificial Intelligence
and Applications, pp 23–28

Wang L, Gu T, Tao X, Lu J (2012) A hierarchical approach
to real-time activity recognition in body sensor networks.
Pervasive and Mobile Computing 8(1):115–130

Yala N, Fergani B, Fleury A (2015) Feature extraction
for human activity recognition on streaming data. In:
2015 International Symposium on Innovations in Intelli-
gent SysTems and Applications (INISTA’2015), Madrid,
Spain, Sept. 2-4, IEEE, pp 1–6

