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ABSTRACT 
 
Automatic identification of jump Markov systems (JMS) is 
known to be an important but difficult problem. In this 
work, we propose a new algorithm for the unsupervised 
estimation of parameters in a class of linear JMS called 
“conditionally Gaussian pairwise Markov switching 
models” (CGPMSMs), which extends the family of classic 
“conditionally Gaussian linear state-space models” 
(CGLSSMs). The method makes use of a particular 
CGPMSM called “conditionally Gaussian observed Markov 
switching model” (CGOMSM). The algorithm proposed 
consists in applying two EM algorithms sequentially: the 
first one is used to estimate the parameters and switches of 
the discrete pairwise Markov chain (PMC), which is a part 
of CGOMSM. Once estimated, it is used to sample switches 
and then the second one, called switching EM, is used to 
estimate the parameters of the distribution driving hidden 
states given the observations and the switches. The entire 
algorithm is evaluated with respect to data simulated 
according to CGPMSMs, and comparisons with several 
supervised methods attest its good efficiency. 
 

Index Terms—Jump Markov linear systems, 
Expectation-Maximization, parameter estimation. 
 

1. INTRODUCTION 
 
Let us consider three random sequences    

  and , 
taking their values in , and , 
respectively.  
 

      (1) 

 is a Markov chain and the couple  is 
assumed Markov and Gaussian conditionally on . The 
distribution of  is defined by , 
Gaussian distributions  transitions 

, and the system (1), in which  represents the 
noises independent of  and 
 

 

 
Thus, system parameters ,  depend on 
the switches , and  
denotes the item about the mean values, 

 

  

 
where  and  are the means of the two 
processes respectively, which are only decided by the value 
of  and without dependence on . 

Such a system, named “conditionally Gaussian pairwise 
Markov switching model” CGPMSM [1], extends the well-
known “conditionally Gaussian linear state-space model” 
(CGLSSM) [2-3]. The latter in which  and 

 in (1) are set to be zero, is considered as the 
“natural” switching Gaussian system, however, its 
application is quite limited as it does not allow fast optimal 
filters [4-5]. Another recent particular case of CGPMSM, 
called “conditionally Gaussian observed Markov switching 
model” (CGOMSM), consists in taking CGPMSM with 

. Decisive advantage of CGOMSM over 
classic switching systems is that it does allow fast exact 
optimal filtering. 

This paper proposes a novel algorithm to automatically 
estimate the parameters  
and the parameters defining the distribution of the switches 
of CGPMSM described above from a limited-size set of 



 

 

observations only, with  assumed to be known 
as zero. The interest of such a general algorithm relies on 
the fact that it is theoretically possible to approximate any 
non-linear and non-Gaussian system by the linear switching 
system (1). 

The new proposed method, called “double expectation-
maximization-CGPMSM” (DEM-CGPMSM), uses the well-
known EM method at two different levels: 
(i) The first one is to consider that  is Markov, 
and to use EM to estimate its parameters from . This is 
an approximation, as  is not necessarily Markov 
in general CGPMSM. However, this approximation does not 
seem too strong for what is to be done, and different 
experiments show a good robustness of the whole 
unsupervised filtering method with respect to it; 
(ii) Once the parameters of  are estimated, they 
are used to sample a realization  of  using 

, and taking  as it were a true realization of 
. Then the “true” switches so obtained are taken for 

applying an adaptation of a recent EM [8] for estimating the 
parameters of . 

The proposed method can be considered as an extension 
to the classical EM method [6-9] for switching cases, and 
also as an alternative to particle filter based methods [10-
11], which can be time consuming. Moreover, it is more 
general than the ones described in [12], in which the system 
at the origin of the observations is supposed to be known 
(and in which sampling can be used for parameters 
estimation). 

The remaining of the paper is organized as follows. 
Section 2 explains the implementation details of the DEM-
CGPMSM algorithm proposed. The Switching EM and the 
integrated DEM-CGPMSM algorithm are tested in Section 3 
to verify the robustness of parameter estimation and 
smoothing performance against several supervised methods. 
Some potential impact factors on the performance of our 
algorithm are analyzed. Finally, Section 4 presents further 
possible improvements for our algorithm. 
 

2. DOUBLE EM ALGORITHM FOR PARAMETER 
ESTIMATION OF CGPMSM 

 
As mentioned in the Introduction, the DEM-CGPMSM is 
based on two EM algorithms. It runs as follows: 
1. Consider the distribution of  in CGPMSM as 
being a PMC distribution; apply EM to estimate the related 
parameters. Sample  according to , and 
estimate  through empirical estimation; 
2. Consider the  sampled and the means 

 estimated in step 1. The second EM (Switching 
EM) is applied to get the remaining parameters  and 

. Use the estimated parameters to restore . 
2.1. EM for discrete pairwise Markov chain 
 

Let us consider ,  
 above, and , with . 

The process  is called a “pairwise Markov chain” (PMC), 
if it is Markov, i.e. its distribution can be written as: 
 

       (2) 
 
Assuming that the PMC is “Stationary” and “Gaussian”, 
which means that the  do not depend on and 

 are Gaussian. The distribution is 
then given by: 
 

              (3) 
where 

                        

              

 
with . EM can be applied on this Gaussian 
PMC system [13]. For later use, we define: 

 

           (4) 

 
2.1.1. Forward & Backward probabilities 

 and  in (4) can be calculated recursively by 
Baum's algorithm [14]: 
 

                          (5) 

(6) 

 
where  and  denote the “normalized” forward and 
backward probabilities defined by: 
 

                         (7) 

               (8) 

 
The recursive computation of  and  are: 
 

 (9) 
2.1.2. EM parameter estimation 



 

 

For starting the EM, the switches are initialized by K-means. 
 is denoted as function  and 

 The initialization of 
parameters is calculated from the following empirical 
equations: 
 

(10) 
and the EM updates the parameters by maximizing the 
likelihood function of , as 
 

 (11) 
Iterations are stopped after sufficient iterations, assuming 
that the estimated parameters do not change a lot. Once 

 are got, Maximizer of the posterior marginal (MPM) 
is applied for sampling  with , then  
are estimated through the empirical estimation: 
 

          (12) 

in which 
. 

 
2.2. Switching EM 
 
This section is based on the assumption that switches are 
known, and the object is to expand the recent EM for 
parameter estimation of pairwise Markov models to a 
“Switching EM”, which is new suiting the switch models. 
 
2.2.1. Forward & Backward probabilities 
Assuming the switches  are given, from the 
properties of CGPMSM, we have: 
 

  (13) 

 
To simplify, let us remove the fixed  in the derivation. 
Calculate the intermediates for forward probabilities: 

               (14) 

    (15) 
with 

                  

                 

therefore, 
              (16) 

        (17) 
where 

          

 
Backward probabilities (smoothing): 
 

     (18) 
(19) 

               (20) 
in which 

                
 

2.2.2. EM algorithm for switching model 
Let  be the 

parameters in CGPMSM, in which  
assuming that   with 

 and . 
The recursion function of the EM algorithm is 
 

           (21) 
where 

          
 

Let 

                  

 

 

 
and



 

 

Maximizing the likelihood function of the complete data, we 
can get the recursive EM update for  and . 
 

                    (22) 

 (23) 
where 

                    

 
and the update of  and  are: 

               (24) 
 
2.3. Integrated Double EM-CGPMSM algorithm 

 
The integrated DEM-CGPMSM algorithm is constructed by 
the EM for discrete PMC and the Switching EM described 
in previous subsections. For reducing the failure of 
parameter initialization, a feedback of parameters: 

 and  is added from the result of Switching 
EM to EM for discrete PMC. It is based on the assumption 
that data follows a homogeneous CGPMSM system, in 
which the parameters do not depend on , given by the 
covariance matrix of   as 
 

                      (25) 

 
with   

         

 
for all . Thus, the conversion formula 
between  and the co-variances are given by: 
 

 (26) 
 
The feedback parameters are calculated through the 

inverse of relations in (26) and empirical estimation from 
parameters estimated by the two EMs at previous iteration. 
The  can be reconstructed as: 

 

     (27) 

 
 

Fig. 1. Flowchart of DEM-CGPMSM. 
 
in which  is the inverse function of the operator 
vector that stacks the columns of a matrix and  represents 
the Kronecker product. So, the feedback  can be 
restored by the corresponding covariance elements of 

 in  estimated. The other two feedback 
parameters are calculated as: 
 

 (28) 

 
The flowchart of the integrated DM-CGPMSM 

algorithm is shown in Fig. 1. 
 

3. EXPERIMENTS 
 
We present here the results of two series of experiments on 
scalar data ( ). The first series allows analyzing 
the robustness of the switching EM part only, and the 
second series experiments the global DEM-CGPMSM 
algorithm. Evaluations are performed using the Mean 
Square Error (MSE) between the estimated states and the 
simulated ones (ground truth). Comparisons are performed 
with respect to the Optimal Smoother Approximation (OSA) 
and other supervised methods which assume that all 
parameters are known. 



 

 

For simplification, all experiments assume two jumps 
only and  
with transition matrix:  and 

 
The abbreviations and meaning of all comparative 

method used in this section are: 
1. DEM (no feedback): DEM-CGPMSM without feedback; 
2. DEM (one feedback): DEM-CGPMSM with one 

feedback; 
3. OS: Optimal Smoothing with true  and true 

parameters 
4. OSA: Optimal Smoothing Approximation with true 

parameters modified to be CGOMSM. 
5. CGLSSM: Classical Smoothing with true  and 

true parameters modified to be CGLSSM. 
 

3.1. Experiment regarding the Switching EM 
 
The aim of this series is to test the performance of the 
Switching EM which is a part of our integrated method for 
parameter estimation.  = 2000 samples of  
are simulated according to a CGPMSM with zero means. 

The true parameters for data simulation are reported in 
column “ ” of Table II, then parameters are estimated from 
the observation and switches through Switching EM with 
500 iterations. The initialization was set according to 
column “ ” in which “ ” means to take the 
variance of the subseries of  according to current value 
of  The same initialization and iteration are executed 
when doing parameter estimation through Classical EM 
which assumes no switch in data. The parameters estimated 
from Switching EM and Classical EM are shown 
respectively under the column “ ” and column “

”. 
Table I shows all the restoration MSE including the 

Optimal Kalman Smoothing (or Optimal Smoothing) with 
true parameters for comparison. Results are averages of 100 
independent experiments. 

From table I, we find that Switching EM is more 
suitable for switch models than Classical EM; in addition, 
its performance can be close to the Optimal Smoothing with 
true parameters. Besides, the parameters estimated through 
Switching EM can be very similar to the true parameters, 
even with initial values set far from the true ones.  

 
3.2. Experiment regarding the entire DEM-CGPMSM 
 
The aim of this series is to analyze the performances of 
DEM-CGPMSM with respect to several supervised 
methods. 

Data is sampled according to a homogeneous 
CGPMSM described as (25). To simplify, we assume that 
all variances are 1 and . Thus, the parameter 
matrices  and  is defined by the co-variances: , , ,  
and  (Dropping the explicit dependence on current switch), 

Table I  Restoration results. 

 
 

Table II  True and estimated parameters. 

 
 

Table III   estimated from DEM-CGPMSM. 

 

 
(a) Error ratio of estimated R. 

 
(b) MSE of restored X. 

Fig. 2. Restoration results of series 2. 
 

and when , we have , 
the CGPMSM becomes a CGOMSM. 

In this experiment, we set the co-variances to be: 
    



 

 

   and  are got by setting 
.  = 2000 samples are generated with  

ranging from  to , while  means the absolute 
value of the mean of  corresponds to the two switches. For 
example:  indicates that  and 

. Results are averages from 100 independent 
experiments, with 100 iterations for EM (PMC), 500 
iterations for switching EM and valid feedback situation (the 
estimated feedback  is positive semidefinite). 

The error ratio of the estimated  through OSA and 
DEM-CGPMSM are shown in Fig. 2 (a). Comparing the 
error ratio result of DEM (no feedback) and DEM (one 
feedback), feedback from the Switching EM part effectively 
offers the proper initialization when  is near zero, 
which means a difficult situation for K-means to initialize 
the switch. In fact, EM is sensitive to the initialization and 
one feedback is enough for finding the proper one under this 
model. Fig. 2 (b) shows the restoration MSE of all methods 
applied. The confidence interval of DEM (one feedback) is 
displayed in light cyan. We can conclude that, when  
increases, the switches are better estimated, and the DEM-
CGPMSM gets better and steadier performance that can 
even surpass the OSA and CGLSSM, which are exact 
computation for approximation models. In fact, DEM-
CGPMSM does have the chance to perform better than OSA 
and CGLSSM since it assumes no permanent 0 in 
parameters at special position of the model. 

Table III reports the estimated value of  with 
the value of  set for data simulation in first line. 
 

4. CONCLUSION 
 
An unsupervised parameter estimation and restoration 
method is proposed for “conditionally Gaussian pairwise 
Markov switching models” (CGPMSMs), which is based on 
two EM algorithms applied successively, named “double 
expectation-maximization-CGPMSM” (DEM-CGPMSM). 
The newly proposed partial algorithm (Switching EM) and 
the entire DEM-CGPMSM have been evaluated by 
simulated data. Results show that, the Switching EM, as an 
extension of the EM algorithm for switching models with 
known switches, can estimate the parameters effectively. 
The performance of DEM-CGPMSM can even surpass 
some sub-optimal supervised restoration methods. 

Our future prospect includes: (i) the improvements on 
the initialization of the Switching EM part; (ii) the 
introduction of non-Gaussian distributions, taking into 
account recent results on hidden Markov chain and copula 
theory [15]; and (iii) the application of this method to non-
linear real data. 
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