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After a short introduction to Generalized Finite Element Methods (GFEM) for two-dimensional triangular elements, a technique is presented to impose Dirichlet-type boundary conditions to global higher order GFEM ansatz spaces. The convergence rates of h-, p-, hp-and enriched p-versions of the GFEM are discussed with respect to singularities. The method is applied to a two dimensional Poisson model problem and the global errors measured in energy norm are compared.

Introduction 1.GFEM

The generalized finite element method (GFEM) was first introduced in [START_REF] Melenk | On generalized finite element methods[END_REF] and [START_REF] Babuška | The partition of unity finite element method: Basic theory and applications[END_REF]. It combines desirable features of the standard finite element method and meshless methods.

The key difference of the GFEM compared to the traditional FEM is the construction of the ansatz space. Each node of the finite element mesh carries a number of ansatz functions, expressed in terms of the global coordinate system. Those ansatz functions are multiplied by a partition of unity and serve as element ansatz functions in the patch constituted by the elements incident at the node.

The partition of unity can be formed by the linear ansatz functions also used in the h-version of the FEM. For two-dimensional triangular elements this leads to the Hat functions in figure 1. The minimal set of ansatz functions is the constant trial function at each node. The result is the classic linear ansatz space of the h-version of the FEM.

To improve the approximation quality of the ansatz space, higher order polynomials may be used. This leads to the p-version of the GFEM.

If a-priori knowledge about the problem is present (e.g. analytical solutions or pre-calculated high quality solutions), it can be also included in the ansatz as an enrichment.

Integration and element assembling remain unchanged compared to the classical FEM. Because the influence of ansatz functions vanishes outside the patch boundaries, the equation system remains banded, but may contain linear dependent entries and needs therefore appropriate solvers.

Higher Order GFEM

Higher order methods achieve optimal, exponential convergence rate on smooth problems. On the presence of singularities, however, only twice the linear convergence of the h-version can be achieved.

One possibility to circumvent this is the use of mesh refinements around the singularities. This leads to the hp-version of the FEM.
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To impose the essential boundary condition, the functions of the ansatz spaces at the nodes P 1 , P 2 , P 4 and P 5 are multiplied with the linear Hat function composed the corresponding element shape functions and the blended linear Hat function respectively (( 5), ( 6), (7), figure 4 and figure 5). The ansatz spaces of nodes which do not lie on a Dirichlet boundary remain unchanged.

φ 1 (x, y) = s 1 φ 2 (x, y) = s 2 φ 3 (x, y) = s 3 (5) with x y = s 1 x 1 y 1 + s 2 x 2 y 2 + s 3 x 3 y 3 + v 1 (t 1 ) • (1 -s 3 ) + v 2 (t 2 ) • (1 -s 1 ) + v 3 (t 3 ) • (1 -s 2 ) (6)
and

t 1 = 2 • s 2 s 1 +s 2 -1 t 2 = 2 • s 3 s 2 +s 3 -1 t 3 = 2 • s 1 s 1 +s 3 -1 (7) 
The function used to impose a Dirichlet boundary condition should have the following properties to avoid degradation of the ansatz space:

• C 0 continuous between elements

• smooth everywhere else

• (piecewise) linear

The unblended Hat functions meet these criteria and lead to an exact and minimal conforming ansatz. They are therefore a natural choice to impose Dirichlet boundary conditions on edges resolved in the mesh. Our experiments show that also linear blended (and therefore nonlinear) Hat functions could be used for this purpose. Other functions (e.g. cone function) could even be used to impose a boundary condition independent of the mesh. In this case non-smooth features (e.g. center peak of a cone) of

Curved domain boundary

In this example the model problem is solved on a domain bounded by linear and circular edges. Figure 7 shows the mesh used for GFEM discretization.

Figure 7: GFEM p-version mesh

The performance of a standard p-version (table 1) and a GFEM p-version (table 2) is compared in figure 8.

Both methods perform equally well with respect to global error in energy norm. 

Analytical Enrichment

The following example solves the model problem on an L-shaped region.

The performance of the h-, p-, hp-and analytically enriched p-version of the GFEM is compared. 

Conclusion

We presented a method of imposing Dirichlet type boundary conditions to global higher order pure GFEM ansatz spaces. Using this type of polynomial ansatz together with analytical enrichment to cover singularities we achieved exponential convergence of the error in energy norm on an unchanged, coarse mesh with geometrically unresolved singularities.
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 1 Figure 1: Hat functions
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 9 Figure 9 shows the analytical solution in the area around the singularity at the reentrant corner and the resulting base function after multiplication with the Hat function. This base function is used to enrich the ansatz space of the patch around the node at the singular point in the enriched p-version calculation. Note that the analytical solution fulfills the Dirichlet boundary condition by construction.

Figure 9 :

 9 Figure 9: Analytical base function and resulting ansatz
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Table 1 :

 1 Domain with curved boundary, standard p-version

	DOF	energy relative error	β
	12 1.942324	29.6804%
	76 2.745970	0.5853% 2.13
	192 2.761660	0.0173% 3.80
	360 2.762089	0.0018% 3.62
	580 2.762130	0.0003% 3.83

Table 2 :

 2 Domain with curved boundary, GFEM p-version

	DOF	energy relative error	β
	6 2.046840	25.8965%
	26 2.638836	4.4640% 1.20
	62 2.758780	0.1216% 4.15
	114 2.761475	0.0240% 2.66
	182 2.762040	0.0035% 4.09

Table 3 :

 3 L-shaped domain, h-version

	DOF	energy relative error	β
	8 59.495192	11.0667%
	21 63.680628	4.8103% 0.86
	65 63.909366	4.4684% 0.07
	225 65.566258	1.9917% 0.65
	833 66.427336	0.7046% 0.79
	3201 66.744192	0.2309% 0.83
	12545 66.848280	0.0753% 0.82
	Table 4: L-shaped domain, p-version
	DOF	energy relative error	β
	21 63.680628	4.8103%
	63 66.128845	1.1507% 1.30
	126 66.589322	0.4624% 1.32
	210 66.719740	0.2675% 1.07
	315 66.804980	0.1401% 1.60
	441 66.835929	0.0938% 1.19
	588 66.854478	0.0661% 1.22
	756 66.865210	0.0500% 1.11
	945 66.872080	0.0397% 1.03
	Table 5: L-shaped domain, hp-version
	DOF	energy relative error	β
	64 66.584786	0.4692%
	134 66.831690	0.1001% 2.09
	239 66.886361	0.0184% 2.93
	386 66.896148	0.0038% 3.31
	582 66.897953	0.0011% 3.06
	834 66.898392	0.0004% 2.62
	Table 6: L-shaped domain, enriched p-version
	DOF	energy relative error	β
	22 65.602828	1.9370%
	64 66.720910	0.2657% 1.86
	127 66.878978	0.0294% 3.21
	211 66.897338	0.0020% 5.30
	316 66.898308	0.0005% 3.22
	442 66.898586	0.0001% 4.30
	589 66.898646	0.0000% 4.17