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Abstract
Workflow-level provenance declarations can improve

the precision of coarse provenance traces by reducing the
number of “false” dependencies (not every output of a
step depends on every input). Conversely, fine-grained
execution provenance can be used to improve the pre-
cision of input-output dependencies of workflow actors.
We present a new logic-based approach for improving
provenance precision by combining downward and up-
ward inference, i.e., from workflows to traces and vice
versa.

1 Introduction

Many scientific workflow systems have been instru-
mented to capture workflow execution events as prove-
nance. Typically, such events record the computational
steps that were invoked as part of a workflow execu-
tion as well as the data that were input to and output by
each step. These recorded events can be used to trace
data provenance by identifying the input values that con-
tributed to an output data value generated as a result of
the workflow execution. In practice, however, this appli-
cation is limited by the black box nature of the actors—
the computational modules that implement the steps of
the workflow.

To illustrate this, consider the actor A shown in Fig. 1.
Assume that an execution of A uses the input values vI1
and vI2 for the input ports I1 and I2, respectively, and
output ports O1 and O2 produce values vO1 and vO2 , re-
spectively. Because the actor is a black box we cannot
assert whether the value vO1 was derived from (i) vI1 , (ii)
vI2 , (iii) both vI1 and vI2 , or (iv) none of the inputs. Sim-
ilarly, we can not assert how the value vO2 was derived
from vI1 and vI2 . By derivation, we refer to the trans-
formation of a data value into another, an update of a
data value resulting in a new one, or the construction of
a new data value based on a pre-existing one [13]. All
we can safely conclude is that the invocation of the actor
used the input values vI1 and vI2 and generated the values
vO1 and vO2 . While useful, this information is not suf-
ficient to trace fine grained dependencies of data values
produced by workflow executions. For the actor A shown
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Figure 1: An actor A with two input ports I1, and I2 and two
output ports O1 and O2. Do the outputs depend on none, one,
or both of the inputs?
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Figure 2: Three examples of internal port dependencies
of the actor A shown in Fig. 1. There could be 13 more
such dependencies.

in Fig. 1, there could be 16 possible ways output ports are
dependent on the input ports, three of which are shown
in Fig. 2. If we determine that one of the input values
was incorrect, e.g., due to a malfunctioning sensor, we
would potentially need to invalidate many useful results
than if we knew that the input was only used for an in-
significant output. This is one of many reasons showing
the importance of finding fine-grained dependencies.

In general, if there are n input ports and m output ports
for an actor, then there are 2mn possible internal port
dependencies. With k such actors in a workflow, there
are 2kmn possible internal port dependency models of the
workflow, i.e., possible models of the workflow.

In this paper, we propose a framework that takes a
workflow specification and a set of provenance informa-
tion to generate all possible data dependency models. By
dependency models, we mean a graph in which the nodes
represent the input and output ports of the actors, and
the edges specify derivation dependencies between the
ports. Notice that the framework generates multiple de-
pendency models, all of which are possible. Fig. 2 shows
three possible dependency models of the workflow with
a single actor A shown in Fig. 1. However, given the ex-
ecution trace of a workflow execution, only one of the
possible data dependency models reflects the true depen-
dencies between the ports, whereas the remaining data
dependency models are false positives. Figure 3 depicts
the overall framework of our proposal towards reducing
the number of false positive data dependency models.



Infer dependencies from the 
workflow specification 

Generate possible 
dependency models 

1 

4 

Validate provenance data 

5 

Infer dependencies from the 
provenance graph structure 

Infer dependencies from the 
input-output values 

2 3 

Figure 3: Components of our solution for inferring de-
pendencies.

During the design of a workflow, the designer knows
some internal details of the actors, e.g., (i) data on an
output port can only be produced only after using data
from a specific subset of input ports, (ii) two outputs are
generated using exact set of inputs, etc. In step 1©, we as-
sume that our workflow model captures these additional
design level information and analyze them to generate
additional dependencies. In 2©, we analyze the prove-
nance graph structure and infer further dependencies by
computing the transitive closure of data dependencies.
Given a set of provenances either by (i) collecting ac-
tual workflow execution traces, or (ii) probing the in-
put values, executing the workflow, and collecting prove-
nances from the execution traces, in 3© we analyze input
and output data values towards understanding the input-
output dependencies. Steps 1©, 2©, and 3© generate ad-
ditional dependency information, which this framework
encodes as constraints and uses them while generating
all the possible models of the workflow in step 4©. Each
of these models is an “improved” version of the given
workflow, i.e., they have more dependency information,
and these models are in turn used in step 5© to validate a
provenance graph of an unknown origin (i.e., workflow)
and improve it by injecting more dependencies. This im-
proved provenance then can be used to have better result
analysis, debugging, etc.

Running Example. We use the Climate Data Collec-
tor workflow to showcase the features of the proposed
framework. We assume a set of sensors that collect tem-
perature, pressure, and other climate observations includ-
ing various flags. Given a sensor id, the ReadSensor ac-
tor reads from the sensors and returns temperature, pres-
sure, and three flags, flagA, flagB, and flagC. The sec-
ond actor, SensorLogic, takes these three flags and re-
turns two flags weatherCode and temperatureCode. The
flag weatherCode specifies if the weather was normal
or not and temperatureCode indicates if the tempera-
ture was read in Celsius or in Fahrenheit. Another ac-
tor, ConvertToKelvin, uses the temperatureCode flag
and the temperature reading to convert the temperature
to Kelvin. A final actor RangeCalculation accepts the

Figure 4: Climate Data Collector workflow, an example
workflow that processes climate data read from a sensor.

pressure and temperature and computes a range. This
workflow, defined in VisTrails, is shown in Figure 4.

If we consider all these actors as black boxes,
ReadSensor, SensorLogic, ConvertToKelvin, and
RangeCalculation actors individually have 32, 64, 4,
and 4 input-output dependency models and thus, the
workflow as a whole has 32768 possible dependency
models. These many models makes it impossible to
make any specific claims about dependencies, but if we
use provenance information, we can reduce the number
of possibilities.

For example, all the outputs of ReadSensor depend
on a single input and there is no output if the sensor is not
available. These information reduces 32 possible depen-
dency models to exactly one which makes result analysis
easier. Unfortunately, neither the workflow specification
nor the provenance clearly capture these dependencies.
We use this example workflow and show how we can
capture additional dependency information, how we can
use this information, and how we can improve the possi-
ble dependency models in Section 4.

The paper is organized as follows. We start by stating
the assumptions needed for workflow model and prove-
nance model used in our approach in Section 2. We then
explain our proposed framework and the logical archi-
tecture in Section 3. In Section 4, we discuss our imple-
mentation using the example workflow and then describe
related work in Section 5. We conclude the paper and
discuss ongoing work in Section 6.

2 Models

Workflow Model. We base our workflow model on [3,
4]. A workflow W = (Vw,Ew) is a directed graph whose
nodes Vw = A∪P∪C are actors A, ports P, and channels
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Figure 5: Logical architecture of how components inter-
act to improve a workflow specification.

C. Actors (a.k.a. processes) are computational entities.
An invocation of an actor reads data from channels and
writes data into channels. The edges Ew = in∪out∪pdep
are either input edges in ⊆ C×P, output edges out ⊆
P×C, or port dependency edges pdep⊆ P×P. We also
maintain an additional relation port(P,A,Pt) where P is a
port in actor A and Pt specifies the type of port (input or
output).

Provenance Model. The starting point for our prove-
nance model is [12]. A provenance graph is a directed
acyclic graph G = (Vg,Eg) where the nodes Vg = D∪ I
represent either data tokens D or invocations I. The
edges Eg = used∪ genBy∪ derBy are either used edges
used ⊆ I ×D, generated-by edges genBy ⊆ D× I, or
derived-by edges derBy ⊆ D×D. Here, a used edge
(i,d) ∈ Eg means that invocation i consumes d as input;
a generated-by edge (d,i) ∈ Eg means that d is an out-
put token, generated by invocation i; and a derived-by
edge (di,dj) ∈ Eg means that data di was derived using
data dj. We use two more relations data and invoc. The
relation data(D,P,A,R,V ) specifies that data D appeared
at port P of actor A during the run R with a value V . The
relation invoc(I,A) maps an invocation I to its actor A.
In addition, we use the auxiliary relation ddep(X ,Y ) to
specify that data Y depends on data X and ddep∗(X ,Y ) is
the transitive closure of ddep(X ,Y ).
(1) ddep(X,Y) :- used(I,X),genBy(Y,I).
(2) ddep∗(X,Y) :- ddep(X,Y).
(3) ddep∗(X,Y) :- ddep(X,Z),ddep∗(Z,Y).

3 Proposed Framework and Architecture

This framework takes a workflow specification W and a
set of provenance graphs Gs and infers the internal (i.e.,

internal to an actor) port dependencies by analyzing W
and Gs. It then encodes all these inferred dependencies
as constraints, which are used to reduce the number of
possible workflow models. It uses the Generate-and-Test
pattern from Answer Set Programming (ASP) [11], i.e.,
we use sets of stable models [9] to represent all possible
models that are consistent with the generated constraints.

Let us consider the snippet of ASP program we have
used in this framework.
pd(X,Y) v pnd(X,Y):- in(X,A), out(A,Y).

Here, pd(X ,Y ) relation means that Y depends on X
and npd(X ,Y ) relation means that Y does not depend on
X . If there are n in(X ,A) relations and m out(A,Y ) re-
lations in W , then there would be 2mn dependency mod-
els for the actor A. In one extreme possible model, we
would have all the pd(X ,Y ) as “true” and in another ex-
treme possible model, we would have all the npd(X ,Y )
as “true”. In all possible models, we would have some of
pd(X ,Y ) as “true” and some npd(X ,Y ) as “true”. Now,
this framework applies the constraints in the following
way: if a possible model has one npd(X ,Y ) as “true”
and for the same (X ,Y ) pair a constraint has been ob-
served to be “true” as discussed in Section 1 then its a
contradiction as the constraint specifies that node Y de-
pends on node X . The framework applies the negation as
failure principle and excludes this model.

The proposed framework, as shown in Fig. 5, has
several components including the Constraint Generator,
Model Generator, Model Reducer, and Trace Validator.
The Constraint Generator takes a workflow W and a
set of provenance traces Gs, and performs three analy-
sis tasks to generate constraints using the techniques we
present next.

We analyze provenance graphs and capture such in-
ferred data dependencies and use them to reduce the
number of models. More specifically, in our prove-
nance model, we capture used(I,D), genBy(D, I), and
derBy(D1,D2) edges. The used(I2,D), and genBy(D, I1)
edges along with the mappings invoc(I1,A1), and
invoc(I2,A2) unambiguously states that the actor A2 de-
pends on actor A1. However, edges used(I,D1), and
genBy(D2, I) are unable to unambiguously state that
data artifact D2 depends on data artifact D1. The
derBy(D1,D2) edges describe dependencies among data
artifacts and thus these edges are able to infer internal
port dependencies of an actor. This framework analyzes
these derBy/2 (i.e., derBy is a two arity relation) rela-
tions and infers further data dependencies.

We use the provenance graph shown in Fig. 6 to de-
scribe how this framework analyzes these derBy/2) re-
lations. This provenance graph has seven data artifacts
T though Z and two derBy/2 edges, derBy(Z,Y ) and
derBy(Z,T ) . Considering the derBy(Z,T ) edge we in-
fer that Z depends on W . Thus, given the derBy(Z,Y )
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Figure 6: A provenance graph with two derived-by
edges derBy(Z,Y) and derBy(Z,T). Circles and rectangles
represent data artifacts and processes, respectively.

and derBy(Z,T ) edges, we conclude that output port as-
sociated with Z depends on input ports associated with
W and Y , which reduces the number of possible depen-
dency models.

More generally, given provenance traces Gs, the
derBy/2 relations in all the Gs are analyzed. A derBy
edge could specify the dependency of (i) an output and an
input of some actor or (ii) an output of one actor and an
input of another actor. The framework infers these con-
straints using an algorithm, which is represented by the
datalog rules 4 and 5 as shown below. Based on these two
inferences, we get that port P2 depends on P1, which is
a workflow specification level information by analyzing
the derBy/2 relation from the provenance graph. Note
that (i) provide exact dependency, but (ii) provides an
over estimate.
(4) pdep(P1,P2) :-

derBy(Y1,X1),data(X1,P1,A,R,_),
data(Y1,P2,A,R,_).

(5) pdep(P1,P2) :-
derBy(Y1,X1),data(X1,P1,A,R,_),
data(D,P2,A,R,_),ddep∗(D,Y1),
ddep∗(X1,D).

Input port dependencies can also be inferred by ana-
lyzing the input and output data values∗. The framework
computes the constraints using an algorithm, which is
represented using rule 6 shown below.
(6) pdep(IP,OP) :-

data(D1,IP,A,R1,IV1),data(D1,IP,A,R2,IV2),
data(D2,OP,A,R1,OV1),data(D2,OP,A,R2,OV2),
¬ R1=R2, ¬ IV1=IV2, ¬ OV1=OV2.

The Model Generator computes all possible depen-
dency models in which output ports may depend on input
ports for an actor and removes the models that contradict
the constraints generated by the Constraint Generator as
discussed in the beginning of this section. This compo-
nent returns only those models that have no contradic-
tions. The Model Reducer takes all the possible work-
flow models generated by Model Generator and com-
bines them into one workflow model. This workflow
model is an improved specification of the input workflow
∗In this work, we assumed a simple model for input and output data

value analysis. In this model, an output port of an actor depends on
an input port if the values on the output port changes while changing
values of an input and keeping the values for all other inputs same. In
our future work, we plan to investigate further complexities of an actor.
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Figure 7: Climate Data Collector workflow represented
by this framework. There are 32768 possible dependency
models for this workflow.

model W , in which some of overestimates of the internal
port dependencies have been removed. In Provenance
Validator, the framework uses this improved workflow
specification (i) to validate the provenance graph of un-
known origin, (ii) to improve provenance graph by re-
moving the inconsistencies.

4 Prototypical Implementation

In this section, we describe a prototypical implementa-
tion of the proposed framework.

Fig. 7 shows the Climate Data Collector workflow
represented using this framework; actors are represented
as rectangles and have ports “p01” through “p18”. The
edges represent channels which connect output ports of
one actor to input ports of another actor.

Fig. 8 shows that there are 32 possible dependency
models for the SensorLogic actor. Without additional in-
formation, the framework will generate all 32 models.
Similarly, other actors have many possible dependency
models (as discussed in Section 1), and are not displayed
because they mirror the SensorLogic actor.

The framework analyzes the workflow specification,
provenance traces, and user-specified constraints as dis-
cussed in Section 1, and generates the constraints as
shown in Fig. 9 which the framework applies while gen-
erating the possible dependency models. Fig. 9(a) shows
the constraints generated based on the additional speci-
fications† provided by the workflow designer. Fig. 9(b)
shows all the constraints generated by the framework by
analyzing the input-output value dependencies. Fig. 9(c)
and Fig. 9(d) show all the constraints generated by the
framework by analyzing the derBy/2 edges from the
provenance graphs.

Fig. 10 shows the improved workflow specifi-
cation based on the given workflow, provenance

†The definition of this specification is available in [5].
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Figure 8: Possible dependency models for the Sensor-
Logic actor. There are 32 possible dependency models
for this actor alone.

graphs, and constraints. Based on the constraints
generated by the framework, there is only one
model for actors ReadSensor, ConvertToKelvin, and
RangeCalculation. There are still 6 models for the
SensorLogic actor. Thus, there are total 6 possible
models for the Climate Data Collector workflow, and the
framework generates all of them.

Using this example, we have demonstrated that the
proposed framework can improve the workflow specifi-
cation, and this information can be used to later validate
provenance graphs with unknown origin.

pdep(p02,p01). 
pdep(p03,p01). 
pdep(p04,p01). 
pdep(p05,p01). 
pdep(p06,p01). 
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pdep(p14,p13). 

 

pdep(p17,p15). 
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(a) (b) 

(c) (d) 

Figure 9: All of the constraints that are generated by the
framework.

5 Related Work

The problem of defining or inferring data dependencies
in scientific workflows has been investigated by a hand-
ful of researchers. For example, Bowers et al. proposed
a declarative language for specifying fine-grained depen-
dencies at the level of the workflow definition, which
are propagated and applied to workflow trace events pro-
duced as a result of the workflow execution [2]. Their
approach is complementary to ours, and we adopt a sim-
ilar language to encode the dependencies that are dervied
from workflow specifications and their corresponding

Figure 10: Improved workflow specification of the Cli-
mate Data Collector workflow after including one pos-
sible dependency model. There are be 6 such possible
models, and this framework generates all of them.

trace events. However, that approach did not tackle the
problem of inferring data dependencies.

Ghoshal et al. investigated the use of static anal-
ysis techniques to derive dependencies (or what they
term mappings) between the inputs and outputs of an ac-
tor [10]. However, while they assume that the source
code of the program implementing an actor is available,
we tackle the problem of deriving data dependencies
when the source code for the actors is not avaiable.

Garijo et al. proposed a framework where they
identified data transformation and manipulation patterns
(which they term motifs) that are commonly found in
scientific workflows [8]. They distinguish two types
of motifs: data intensive activities that are observed in
workflows (data-oriented motifs), and different manners
in which activities are implemented within workflows
(workflow-oriented motifs). The first type is relevant to
our work. However, in our framework, we are partic-
ularly interested in identifying if there is a dependency
between an input and an output of an actor rather than
the kind of data manipulation performed by the actor.

The above work and others, e.g., [1], [14], are related
because they aim to understanding the kind of manip-
ulation carried out by workflows. However, none tackle
the problem of identifying fine-grained dependencies be-
tween input and output port for black box actors. In our
prior work [6], we used the same Generate-and-test ASP
based approach towards finding the possible orders of
events. However, in this work we focus on finding the
fine-grained dependencies using the same Generate-and-
test ASP based approach.

6 Discussion

In this paper, we have presented a framework for infer-
ring fine grained dependencies between the inputs and
output ports of actors. We have described a probing
based methods for inferring such dependencies. In doing
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so, we made the assumption that dependencies are static,
in the sense that they hold across all invocations of the
actors. In practice, however, dependencies may be dy-
namic, in the sense they may change across invocations
of the actor. For example, the VisTrails system [7] pro-
vides a conditional actor (If) that uses modified dataflow
logic to execute only one of two upstream workflows to
generate an output based on a boolean input. There are
also instances where two ports are provided to make the
specification of an input possible in different formats,
meaning only one port’s value will eventually be used
but is dependent on which are provided.

The framework that we presented in this paper needs
to be refined in order to cater for the identification of
dynamic dependencies. In particular, the user should be
able to understand the cases (conditions under which) a
given output is likely to depend or not on a given in-
put. Note also, that so far, we treated input-output port
equally. A classification of dependencies is needed to
provide the user (workflow designer or provenance user)
with better understading on the kind of relationship be-
tween the input and output ports. For example, distin-
guishing control-flow dependencies from data-flow de-
pendencies. The later can be further classified to specify
the kind of contribution a given input value had in the
construction of the output value.
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