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Bearing Rigidity Theory in SE(3)

Rigidity theory has recently emerged as an efficient tool in the control field of coordinated multi-agent systems, such as multi-robot formations and UAVs swarms, that are characterized by sensing, communication and movement capabilities. This work aims at describing the rigidity properties for frameworks embedded in the three-dimensional Special Euclidean space SE(3) wherein each agent has 6DoF. In such scenario, it is assumed that the devices are able to gather bearing measurements w.r.t. their neighbors, expressing them into their own body frame. The goal is then to identify the framework transformations that allow to preserve such measurements maintaining it rigid. Rigidity properties are mathematically formalized in this work which differs from the previous ones as it faces the extension in three-dimensional space dealing with the 3D rotations manifold. In particular, the attention is focused on the infinitesimal SE(3)-rigidity for which a necessary and sufficient condition is provided.

I. INTRODUCTION

The term rigidity usually concerns a combinatorial theory for characterizing the stiffness of structures formed by rigid bodies connected by flexible linkages or hinges [START_REF] Asimow | The rigidity of graphs, II[END_REF]. Specifically, the goal is studying whether one can deform the shape of such type of structure preserving the relative poses among the agents in terms of distances and/or directions.

For this reason, rigidity theory is involved in the properties evaluation of several systems deriving from different fields of research, e.g., mechanical and building structures, biological and artificial compounds, industrial materials, and recently, it has taken an outstanding position in the interactive multiagent context [START_REF] Williams | Distributed combinatorial rigidity control in multi-agent networks[END_REF]- [START_REF] Williams | Redundantly rigid topologies in decentralized multi-agent networks[END_REF]. Indeed, rigidity framework fits for applications connected to the motion control of mobile robots and to the sensors cooperation for localization, exploration, mapping and tracking of a target. More generally, it turns out to be an important architectural property of many multiagent systems where a common inertial reference frame is unavailable but the agents involved are characterized by sensing, communication and movement capabilities.

According to the available sensing measurements, rigidity properties for a framework deals with inter-agent distance and/or direction maintenance. When agents are able to gather only range information, distance constraints can be imposed to preserve distance rigidity properties. On the other hand, parallel/bearing rigidity properties are determined by direction contraints defined upon angle/bearing measurements.

Main notions about distance rigidity are illustrated in [START_REF] Jackson | Notes on the rigidity of graphs[END_REF]- [START_REF] Zelazo | Decentralized rigidity maintenance control with range measurements for multi-robot systems[END_REF]: these works explain how distance constraints for a framework can be summarized into a unique matrix whose rank determines the infinitesimal rigidity properties of the system, providing a necessary and sufficient condition. In such a context, a framework is generally represented by means of the bar-and-joint model where agents are represented as points joined by bars whose fixed lengths enforce the interagent distance constraints. Infinitesimal rigidity properties concern with distance-preserving motions of the framework which thus consist of only global roto-translations of the entire system as a rigid body.

As far as bearing rigidity in R 2 (or parallel rigidity) is concerned, it is determined by the definition of normal constraints over the directions of neighboring agents, namely the edges of the sensing/communication graph associated to the framework, as explained in [START_REF] Eren | Sensor and network topologies of formations with direction, bearing, and angle information between agents[END_REF]- [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF]. These constraints entail the preservation of the angles formed between pairs of agents and the lines joining them, i.e., the inter-agent bearings. As a consequence, allowed collective infinitesimal motions consist of only global translations and uniform scaling of the whole set of positions in the framework.

The same infinitesimal motions characterize the infinitesimally bearing rigid frameworks in R d with d > 2, where the bearing measurement between agents i and j coincides with the angle between the x-axis of the local coordinate system of node i and the line segment joining node i with node j, as stated in [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF], [START_REF]Bearing-based distributed control and estimation of multi-agent systems[END_REF]. In literature, some distinctions are usually made between the 2D case and the higher dimensional ones, although in [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF] a unified dissertation for bearing rigidity is presented. Several theoretical results are also provided in [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF], however the main contribution is the necessary and sufficient condition to guarantee that a given framework is infinitesimally bearing rigid in R d , d ≥ 2. This is related to the rank and eigenvalues of a certain matrix which summarizes the involved constraints.

In [START_REF] Zelazo | Rigidity theory in se (2) for unscaled relative position estimation using only bearing measurements[END_REF], [START_REF] Zelazo | Bearing-only formation control using an se(2) rigidity theory[END_REF], bearing rigidity theory has been studied for systems embedded in SE(2), i.e., frameworks where the underlying graph is directed and bearings are expressed in the local frame of each agent of the framework modeled as a SE(2)-point having its own position and attitude in the plane. Because of the nature of the SE(2) manifold, bearing-preserving infinitesimal motions for a given framework are composed of motions in R 2 with motions in S 1 (1-dimensional manifold on the unit circle). Hence, these result to be rigid-body translations and uniform scaling of the whole set of positions but also coordinated rotations, namely the synchronized rotations of all the agents about their own body axis at the same angular speed, coupled with a rigid-body rotation of the whole framework in R 2 .

The current state of the art motivates the study of bearing rigidity for formations in SE(3), which is the main contribution of this work. As for SE(2) case, the principal features of such theory concern the bearing measurements that are referred to the local frame of each agent (SE(3)-point having its own position and attitude in the 3D space) corroborating the use of a directed graph to represent agents interactions. Nevertheless, the extension from the two-dimensional Special Euclidean space to the three-dimensional one is not trivial. The main challenge deals with the attitude representation of the agents: while in SE(2) a single angle is sufficient to determine the orientation of a robot on the plane, in 3D space three degrees of freedom have to be managed involving different and more complex type of manifolds. In this sense, even though the infinitesimal motions are still translations, uniform scaling and coordinated rotations, they have been redefined in the new higher-dimensional context. In addition, it has been proven that they span the null-space of the so called SE(3)-rigidity matrix and, similarly to [START_REF] Zelazo | Rigidity theory in se (2) for unscaled relative position estimation using only bearing measurements[END_REF], that a framework is infinitesimally rigid in SE(3) if and only if the size of the null-space of this matrix is equal to seven.

The paper is organized as follows. The notation used is depicted in Sec. II and a brief review of the bearing rigidity theory in R 3 is provided in Sec. III. Sec. IV is devoted to the development of rigidity theory for SE(3), clearly illustrating the properties of allowed infinitesimal motions, while some examples are given in Sec. V. Finally, concluding remarks and future research directions are discussed in Sec. VI.

II. PRELIMINARIES AND NOTATION

In this work, SE(3) = R 3 × SO(3) indicates the threedimensional Special Euclidean group describing the rigidbody transformations in 3D space. Specifically, SO(3) refers to the 3D rotation group, while the 2-dimensional manifold on the unit sphere in R 3 is denoted as S 2 . Note that SO(3) is not isomorphic to S 2 , while in 2D space it holds SO(2) S 1 .

The standard Euclidean norm of a vector v ∈ R 3 is indicated as v so that v 2 = v v. The cross product between the vectors v, u ∈ R 3 is instead computed as v × u = S(v) • u, where S(•) is the map that associates any vector in R 3 to its corresponding skew-symmetric matrix belonging to the Special Orthogonal Lie algebra, so [START_REF] Roy | Rigidity Maintenance Control for Multi-Robot Systems[END_REF].

A directed graph G = (V , E ) is specified by a vertex set V and an edge set

E ⊆ V × V , such that |V | = n and |E | = m.
The graph with all the possible directed edges, i.e., the complete directed graph with m = n(n -1), is denoted as K n . The relationship between the sets V and E is described by the incidence matrix E ∈ R n×m , namely the {0, ±1}-matrix such that

[E] ik =      1 if e k = (v i , v j ) ∈ E (outgoing edge) -1 if e k = (v j , v i ) ∈ E (ingoing edge) 0 otherwise
Similarly, the {0, 1}-matrix E out ∈ R n×m is designed so that

[E out ] ik = 1 if e k = (v i , v j ) ∈ E (outgoing edge) 0 otherwise
The notation

E = E ⊗ I 3 ∈ R 3n×3m and E out = E out ⊗ I 3 ∈ R 3n×3m is also introduced.
Finally, given a generic matrix A ∈ R p×q , its null-space is indicated as N (A) and its (column) rank as rk(A), while diag({A i }) ∈ R rp×rq refers to a block diagonal concatenation of all the matrices {A i ∈ R p×q , i = 1, . . . , r}.

III. BEARING RIGIDITY THEORY IN R 3

Some fundamental concepts of bearing rigidity are here briefly reviewed, focusing on frameworks embedded in R 3 . A more exhaustive dissertation is reported in [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF].

A framework in R 3 , denoted as (G , p), is a pair consisting of an undirected graph G = (V , E ) and a configuration p = [p 1 . . . p n ] ∈ R 3n such that each vertex v i ∈ V in the graph is associated to the point p i ∈ R 3 . In other words, it is a set of n agents able to interact according to the the edge set E , each of them with a specific position p i into the three-dimensional space. As a consequence, for each pair (v i , v j ) ∈ E the unit vector pi j = p i j / p i j , where p i j = p j -p i , represents the relative bearing between v i and v j expressed w.r.t. some common reference frame.

Bearing rigidity theory in R 3 aims at determining when a framework can be uniquely determined up to a translation and a uniform scaling (bearing-preserving transformations) by the set of inter-neighbor bearings.

In order to tackle this issue, it is advantageous to define the orthogonal projector operator P : R 3 → R 3×3 , which geometrically projects any nonzero vector v ∈ R 3 onto its orthogonal complement. Explicitly it holds

P(v) = I 3 - vv v 2 .
The resulting orthogonal projection matrix P(v) is symmetric, idempotent and positive semi-definite, and its nullspace coincides with the space generated by vector v, i.e., N (P(v)) = span{v}.

The orthogonal projection operator provides a convenient way to describe parallel vectors in R 3 where the bearing rigidity notion relies on the the parallelism conservation for the line segment between any pair of nodes of a framework. Indeed, two frameworks (G , p) and (G , p ) are said to be bearing equivalent if

P(p i -p j ) • (p i -p j ) = 0 for all (v i , v j ) ∈ E and bearing congruent if P(p i -p j )•(p i -p j ) = 0 for all v i , v j ∈ V .
Hence, two bearing congruent frameworks are always related by an appropriate finite sequence of rigidbody translations and scaling.

Definition 1 (Bearing Rigidity [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF]Def. 3]). A framework (G , p) is bearing rigid if there exists an ε > 0 such that every framework (G , p ) which is bearing equivalent to (G , p) and satisfies p i -p i < ε for all v i ∈ V , is bearing congruent to (G , p). Definition 2 (Global Bearing Rigidity [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF]Def. 4]). A framework (G , p) is globally bearing rigid if all bearing equivalent frameworks to (G , p) are also bearing congruent to (G , p).

All the bearings in a given framework can be summarized through the bearing rigidity function b ,G : R 3n → R 3m that maps the configuration p into the stacked bearings vector, Node domains

Measurement domains

Measurement properties Nomenclature References

p i ∈ R d d i j = p i -p j ∈ R d d ji = d i j (undirected underlying graph) (distance) rigidity [5], [6], [7] b i j = p j -p i p i -p j ∈ S d-1
b ji = -b i j (undirected underlying graph) parallel/bearing rigidity [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF], [START_REF] Eren | Sensor and network topologies of formations with direction, bearing, and angle information between agents[END_REF], [START_REF] Franchi | Decentralized control of parallel rigid formations with direction constraints and bearing measurements[END_REF], [START_REF] Eren | Using angle of arrival (bearing) information for localization in robot networks[END_REF] The infinitesimal bearing rigidity properties of a framework are linked to the null-space and the rank of the corresponding bearing rigidity matrix. Moreover, it can be proven that the infinitesimal bearing rigidity is a stronger property than both bearing and global bearing rigidity which are equivalent.

χ χ χ i = (p i , θ i ) ∈ SE(2) b i j = R(θ i ) p j -p i p i -p j ∈ S 1 b i j , b i j independent (directed underlying graph) SE(2)-rigidity [11], [12] χ χ χ i = (p i , R i ) ∈ SE(3) b i j = R i p j -p i p i -p j ∈ S 2 b i j , b i j independent (directed underlying graph) SE(3)-rigidity
Theorem 2 (Rigidity Properties). For a framework (G , p) in R 3 , the following implications are valid:

bearing global rigidity ⇔ bearing rigidity [START_REF] Zhao | Bearing rigidity and almost global bearingonly formation stabilization[END_REF]Thm. 3]; -bearing infinitesimally rigidity ⇒ bearing global rigidity [13, Thm. 5]; -bearing infinitesimally rigidity ⇒ bearing rigidity. Some main features of the bearing rigidity in R 3 can be derived from the Tab. I that provides an overview on the taxonomy used in the rigidity literature according to the domain of nodes and measurements.

IV. RIGIDITY THEORY IN SE(3)

The concepts introduced in previous section are required to extend the rigidity theory for frameworks that are embedded in the three-dimensional Special Euclidean group SE(3).

Here, each agent is characterized by a position and an attitude in the 3D space and is assumed to interact with its neighors according to a certain directed graph. In literature various well-known formalisms exist to represent the attitude of an agent able to move in 3D space, e.g., Euler angles, quaterions, axis-angle representation. In this work, the agents orientation is expressed through the rotation matrices which belong to the Special Orthogonal group SO(3). This group includes all the 3 × 3 orthogonal matrices having unit determinant. Therefore, in the following, the attitude of each agent i has to be interpreted as a rotation matrix R i ∈ R 3×3 such that R i R T i = I 3 and det(R i ) = +1. Hereafter, for notation convenience, the position and attitude of the node 3) n indicate the position and attitude components of the complete framework configuration, respectively.

v i ∈ V is denoted by (p(v i ), a(v i )) = (p i , R i ) = (χ χ χ p (i), χ χ χ a (i)) = χ χ χ(i) ∈ SE(3), whereas p(V ) = χ χ χ p (V ) ∈ R 3n and a(V ) = χ χ χ a (V ) ∈ SO(
Similarly to the SE(2) case (see [START_REF] Zelazo | Rigidity theory in se (2) for unscaled relative position estimation using only bearing measurements[END_REF], [START_REF] Zelazo | Bearing-only formation control using an se(2) rigidity theory[END_REF] for details), the extension to SE(3) explicitly handles frameworks where the underlying graph is directed and bearings are expressed in the local body frame of each agent (SE(3) point). These assumptions are justified by real multi-agent scenarios where a robot can gather the relative bearings between itself and other robots through sensors attached to its body frame such as, e.g., robots flying in 3D with onboard cameras.

In this venue, the agent i accesses the bearing of the agent j if and only if the directed edge (v i , v j ) belongs to the graph G . Furthermore, the relative bearing b i j ∈ S 2 is measured from the body coordinate system of the i-th agent, but it can be expressed in terms of the relative positions and attitudes of the two points w.r.t. the world frame. It holds

b i j = R i p i -p j p i -p j = R i pi j ,
where the matrix R i is the rotation matrix describing the orientation of the world frame w.r.t. the body frame of agent i, and pi j is a shorthand notation for the normalized relative position vector from i to j.

Bearing rigidity theory in SE(3) seeks to evaluate the rigidity properties of a given framework (G , p, a) which rest on its bearing measurements preservation. In other words, the main goal is to identify the allowed motions that do not modify the whole systems in term of inter-agent bearings. 

R i p i -p j p i -p j = R i p i -p j p i -p j ∀(v i , v j ) ∈ E .
Two frameworks (G , p, a) and (G , s, o) are congruent if 

R i p i -p j p i -p j = R i p i -p j p i -p j ∀v i , v j ∈ V .
G (χ χ χ(V )) = -diag R i p i -p j E χ χ χ p (V ).
In such a scenario, a framework (G , p, a) is SE(3)-rigid if and only if for any χ χ χ (V ) ∈ SE(3) n sufficiently close to χ χ χ(V ) with the same bearing measurements, namely b G (χ χ χ(V )) = b G (χ χ χ (V )), there exists a (local) bearingpreserving transformation taking χ χ χ(V ) to χ χ χ (V ). 

Definition 7 (Rigidity in SE(3)). A framework (G , p, a) is rigid in SE(3) if there exists a neighborhood S ⊂ SE(3) n of χ χ χ(V ) such that b -1 K n (b K n (χ χ χ(V ))) ∩ S = b -1 G (b G (χ χ χ(V ))) ∩ S, where b -1 K n (b K n (χ χ χ(V )))
G (b G (χ χ χ(V )))-b -1 K n (b K n (χ χ χ(V )))
is the set of all the possible transformations of χ χ χ(V ) constrained by G that are not admissible by K n and allows to define the property of roto-flexibility for a framework.

Definition 8 (Roto-flexibility in SE(3)). A framework (G , p, a) is roto-flexible in SE(3) if there exists an analytic path η : [0, 1] → SE(3) n such that η(0) = χ χ χ(V ) and η(t) ∈ b -1 G (b G (χ χ χ(V ))) -b -1 K n (b K n (χ χ χ(V ))
) for all t ∈ (0, 1]. Using the language of Def. 8, a smooth motion along a path η with η(0) = χ χ χ(V ) such that the initial rate of change of the rigidity function is zero (bearing measurements do not change), constitutes an infinitesimal motion of a SE(3) framework. It can be proven that the set of infinitesimal motions is characterized by the null-space of the Jacobian of the SE(3)-rigidity function, namely by the null-space of the As a consequence, if a path η is contained entirely in

SE(3)-rigidity matrix B G (χ χ χ(V )) = ∇ χ χ χ b G (χ χ χ(V )) ∈ R 3m×6n such that ∂ b i j ∂ χ χ χ(i) = ∂ b i j ∂ p i ∂ b i j ∂ R i = - P(b i j ) p i -p j R i S (b i j ) , ∂ b i j ∂ χ χ χ( j) = ∂ b i j ∂ p j ∂ b i j ∂ R j = P(b i j ) p i -p j R i 0 .
b -1 K n (b K n (χ χ χ(V ))
) for all t ∈ [0, 1], then it correspond to an infinitesimal motion. Hence, the infinitesimal motions are completely described by the tangent bundle

T p of b -1 K n (b K n (χ χ χ(V ))) and it holds T p = N [B K n (χ χ χ(V ))].
These premises lead to a formal definition for infinitesimal rigidity of frameworks in SE(3).

Definition 9 (Infinitesimal Rigidity in SE(3)). A framework (G , p, a) is infinitesimally rigid in SE(3) if N [B G (χ χ χ(V ))] = N [B K n (χ χ χ(V ))]. Otherwise it is infinitesimally roto-flexible in SE(3).
Def. 9 suggests that any SE(3) framework whose underlying graph is complete, i.e., (K n , p, a) where p and a are suitable defined, is infinitesimally rigid (see Fig. 1); however it is not a necessary condition as explained in the following.

A. Infinitesimal Motions Properties

The main challenge regarding the extension of the rigidity theory to SE(3) rests upon the identification of the bearingpreserving transformation in the 3D rotation manifold. Indeed, infinitesimal motions of a SE(3) framework are the composition of motions in R 3 with motions in SO(3) for each point. Each infinitesimal motion δ δ δ χ ∈ N (B G (χ χ χ(V ))) is therefore characterized by the velocity component δ δ δ χ p ∈ R 3n and the angular velocity component δ δ δ χ a ∈ R 3n .

If all agents do not alter their attitude, i.e., δ δ δ χ a = 0, then the condition δ δ δ χ ∈ N (B G (χ χ χ(V ))) reduces to the constraints for bearing rigidity in R 3 . Hence translations and uniform scaling of the framework result to be infinitesimal motions still in SE(3) context. On the contrary, if the angular velocities of the agents are non-zero, then the only infinitesimal motions of the framework consists of the bearing-preserving motion termed (3D) coordinated rotation. It envisages a 3D synchronized rotation of all the agents in their frameworks jointly to an equal rotation of the whole framework as a rigidbody in R 3 (the angular velocity of each agent is equal to the one of the center of mass of the system). Fig. 2 proposes an explanatory example of the just described infinitesimal motions.

To characterize these inifitesimal motions in SE(3), it is suitable to introduce the permutated SE(3)-rigidity matrix B G (χ χ χ(V )) that results from the permutation of the columns of B G (χ χ χ(V )) so as to be 3) framework (K 4 , p, a) (Fig. 2a) is translated along the x axis (Fig. 2b), scaled by a factor α = 0.5 (Fig. 2c), counterclockwise coordinated rotated of θ = π/4rad (Fig. 2d).

B G (χ χ χ(V )) = ∇ χ χ χ p b G (χ χ χ(V )) ∇ χ χ χ a b G (χ χ χ(V )) = diag - P(b i j ) p i -p j R i •E diag S(b i j ) •E out . Proposition 1. Every infinitesimal motion δ δ δ χ ∈ N [B G (χ(V ))] satisfies diag - P(b i j ) p i -p j R i E δ δ δ χ p + diag S(b i j ) E out δ δ δ χ a = 0.
Proof. The null-space N ( B G ) derive from the permutation of the vectors in the null-space of B G . Therefore, the thesis is proved evaluating the permuted SE(3)-rigidity matrix. 

• F(χ χ χ p (V )) = -diag( R i S(b i j ) )E out .
Proof. The result is obtained directly by Prop. 1 through substitution.

Proposition 2. For the complete directed graph K n , the coordinated rotation subspace R (K n ) is not trivial and dimR

(K n ) = 3.
Proof. Consider a rigid-body rotation δ δ δ χ of the framework χ χ χ with angular velocity ω ω ω . In a (3D) coordinated rotation, for each i-th agent the linear velocity ṗi results from the cross product between its position p i and ω ω ω , while its angular velocity ω ω ω i is the expression of ω ω ω in its body frame. Formally

δ δ δ χ p i = ṗi = -S(p i ) ω ω ω , (1) 
δ δ δ χ a i = ω ω ω i = R i ω ω ω . (2) 
From Prop. 1, for the infinitesimal motions it must result

P(b i j ) p i -p j R i ( ṗi -ṗ j ) + S (b i j ) ω ω ω i = 0 ∀v i , v j ∈ V
and, substituting (1)-( 2), it is possible to verify that

P(b i j ) p i -p j R i (S(p i ) ω ω ω -S(p j ) ω ω ω ) + S b i j R i ω ω ω = = -P(b i j )R i S pi j ω ω ω + S R i pi j R i ω ω ω = = -P(b i j )S R i pi j R i ω ω ω + S R i pi j R i ω ω ω = = (I 3 -P(b i j ))S R i pi j R i ω ω ω = 0.
Hence, the coordinated rotation subspace is not trivial as it contains all the vectors whose components satisfy (1)-(2). Moreover, each arbitrary rigid-body rotation can be expressed as composition of rotations around the x-axis with angular velocity ω ω ω = [1 0 0] , the y-axis with angular velocity ω ω ω = [0 1 0] and the z-axis with angular velocity ω ω ω = [0 0 1] . As a consequence, dimR (K n ) = 3. Since Prop. 2 provides an analytic description for the vectors spanning the coordinated rotations subspace R (•), it is possible to exhaustively explicate the space of infinitesimal motions.

Corollary 2. For an infinitesimally rigid SE(3) framework,

N [ B G (χ χ χ(V ))] = span 1 n ⊗ I 3 0 , χ χ χ p 0 , R (G ) .
Finally, the main result of this section relates the infinitesimal rigidity of an SE(3) framework to the rank of the SE(3)-rigidity matrix.

Theorem 3. A SE(3) framework is infinitesimally rigid if and only if rk[B G (χ χ χ(V ))] = 6n -7. Proof. It holds rk[B G (χ χ χ(V ))] = rk[ B G (χ χ χ(V ))] = dim( B G (χ χ χ(V ))) -N [ B G (χ χ χ(V ))] = 6n -7, where the equivalence N [ B G (χ χ χ(V ))] = 7 is justified by Cor. 2.
The same conclusion can be derived by considering the bearing rigidity matrix in R 3 , introduced in Sec. III. Proof. The statement follows directly from the Def. 9 of infinitesimal rigidity in SE(3), Cor. 1 and Prop. 2.

Cor. 3 also allows to prove the necessary and sufficient condition for infinitesimal rigidity as follows. 

V. NUMERICAL EXAMPLES

In order to clarify the previous statements and definitions about infinitesimal rigidity in SE(3), this section is devoted to some numerical examples. In detail, Fig. 3 shows examples of non-infinitesimally SE(3)-rigid frameworks. On the other hand, Fig. 4 displays examples of infinitesimally SE(3)-rigid frameworks, for which it can be verified rk(B G (χ χ χ)) = 6n -7. All the links depicted are bidirectional, meaning linked agents are able to reciprocally gather the bearing measurements.

It is worth to notice that when the agents are aligned the infinitesimal SE(3)-rigidity property is not ensured, while it could be attained by adding a single link in the other situations.

VI. CONCLUSIONS AND FUTURE WORKS

This work introduces an extension of the rigidity theory to the case of frameworks embedded in SE(3). The main contribution is the characterization of infinitesimal rigidity properties that are related to the rank of the SE(3)-rigidity matrix. Moreover, it has been showed that the null-space of that matrix describes the infinitesimal motions of an SE(3) framework, including the rigid body translations and uniform scaling, in addition to (3D) coordinated rotations.

A considerable effort has been made in defining the concepts known in the rigidity literature for manifold dedicated to the representation of the rigid-bodies transformations in three-dimensional space. Nonetheless, this work aims to be the starting point for many future works concerning both the relative positions and orientation estimation and the control of 3D formation, e.g., UAVs swarms.

Theorem 1 (

 1 Condition for Infinitesimal Bearing Rigidity [13, Thm. 4]). For a framework (G , p) in R 3 , the following statements are equivalent: (a) (G , p) is infinitesimally bearing rigid; (b) rk(B ,G (p)) = 3n -4; (c) N (B ,G (p)) = span{1 ⊗ I 3 , p}.

Definition 4 (

 4 SE(3) framework). An SE(3) framework is a triple (G , p, a), where G = (V , E ) is a directed graph, p : V → R 3 is a function mapping each node to a point in R 3 (position) and a : V → SO(3) is a function associating each node with an element of SO(3) (attitude).

Definition 5 (

 5 Equivalence and Congruence in SE(3)). Two frameworks (G , p, a) and (G , p , a ) are equivalent if

Definition 6 (

 6 Global Rigidity in SE(3)). A framework (G , p, a) is globally rigid in SE(3) if every framework which is equivalent to (G , p, a) is also congruent to (G , p, a). The information about bearing measurements can be handled defining the SE(3)-rigidity function associated to the framework, namely the function b G : SE(3) n → S 2 m such that b G (χ χ χ(V )) = b 1 . . . b m , where b k denotes the measurement on the k-th directed edge in the graph G . It can be proven that the SE(3)-rigidity function can be rewritten in the more compact form b

  denotes the pre-image of the point b K n (χ χ χ(V )) under the SE(3)-rigidity map. The set b -1 K n (b K n (χ χ χ(V ))) ⊂ SE(3) n contains χ χ χ(V ) and all its possible transformations induced by the complete graph K n , while the set b -1 G (b G (χ χ χ(V ))) ⊂ SE(3) n contains (at least) χ χ χ(V ) and all its possible transformations induced by the graph G . Thus, b -1

Fig. 1 :

 1 Fig. 1: Example of infinitesimally rigid SE(3) framework, where n = 4, the underlying graph G is complete (m = 6), each agent has its own body frame.

Fig. 2 :

 2 Fig.2: Example of infinitesimal motions: the SE(3) framework (K 4 , p, a) (Fig.2a) is translated along the x axis (Fig.2b), scaled by a factor α = 0.5 (Fig.2c), counterclockwise coordinated rotated of θ = π/4rad (Fig.2d).

  χ ∈ N [B G (χ(V ))] satisfies the condition B ,G (χ χ χ p )δ δ δ χ p = -F(χ χ χ p )δ δ δ χ a , where • B ,G (χ χ χ p ) = diag P( pi j ) p i -p jE is the bearing rigidity matrix in R 3 (see Sec. III),

Corollary 3 .

 3 An SE(3) framework is infinitesimally rigid in SE(3) if and only if

Fig. 3 :Fig. 4 :

 34 Fig. 3: Examples of non-infinitesimally SE(3)-rigid frameworks.

Proof. of Theorem 3

 3 Assume that rk[B G (χ(V ))] = 6n -7. From Cor. 1 and Prop. 2, it can be concluded that rk[B K n (χ(V ))] = 6n -7. By definition of infinitesimal rigidity in SE(3), the framework (G , p, a) is infinitesimally rigid. On the contrary, assuming that the framework (G , p, a) is infinitesimally rigid in SE(3), from Cor. 3 it follows that rk[B ,G (χ p )] = 3n -4 and dimR (G ) = 3. Therefore, rk[B G (χ(V ))] = 6n -7.

TABLE I :

 I Summary of the state of the art about rigidity properties: different theories have been formulated according to nodes domain, measurements domain and properties.i.e., b ,G (p) = [ p 1 . . . p m ] where pk refers to the measurement on the k-th edge. The Jacobian of the bearing function B ,G (p) ∈ R 3m×3n , which is referred as bearing rigidity matrix, represents a key feature to study the rigidity properties of a framework in R 3 . Indeed, considering a variation δ δ δ p of the configuration p, if B ,G (p)δ δ δ p = 0, then δ δ δ p is called an infinitesimal bearing motion of (G , p). Moreover, if an infinitesimal motion corresponds to a bearing-preserving transformation, namely a translation or a scaling of the entire framework, it is referred as trivial.

Definition 3 (Infinitesimal Bearing Rigidity [13, Def. 5]).

A framework (G , p) is infinitesimally bearing rigid if every possible infinitesimal motion is trivial.
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