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We study the transmission and conductance of a disordered matter wave guide subjected to a
finite bias force field. We show that the statistical distribution of transmission takes a universal
form. This distribution depends on a single parameter, the system length expressed in a rescaled
metrics, which encapsulates all the microscopic features of the medium. Excellent agreement with
numerics is found for various models of disorder and bias. For white-noise disorder and a constant
force, we find algebraic decay of the transmission with distance, irrespective of the value of the force.
The observability of these effects in ultracold atomic gases is discussed, taking into account specific
features, such as finite-range disorder correlations, inhomogeneous forces, and finite temperatures.
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Introduction.— Anderson localization in homogeneous
disordered materials is traditionally signaled by expo-
nential suppression of diffusion and conductance [1–3].
The connection between the two is firmly established by
linear-response theory and the Einstein-Sutherland rela-
tion [4, 5]. Hence, the decay of localized wave packets
and transmission coefficients with distance are charac-
terized by the same localization length. Bias fields, such
as electric forces, induce strong nonlinear response, which
significantly affect localization and question this relation.
For a weak bias field, algebraic (rather than exponential)
localization of the wave-functions has been established
by previous numerical [6] and analytical [7] work. Fur-
thermore, Ref. [7] presented a rigorous proof that states
become extended beyond a critical value of the dimen-
sionless parameter α = ~2F/mUR (with F the force, m
the particle mass, and UR the disorder strength), see also
Ref. [8]. This is qualitatively consistent with a diagram-
matic calculation of the asymptotic density of an expand-
ing wave packet [9], yielding n(x) ∼ 1/xβdens in the direc-
tion of the force, with βdens = 1 + (1− α)2/8α for α < 1.
For α > 1, the asymptotic density is not normalizable,
hence signaling a delocalization transition at α = 1. In
contrast, numerical evidence was provided in Ref. [6] that
the transmission coefficient remains algebraic for arbi-
trary large values of the force, exp

(
lnT

)
∼ 1/xβtr , and

is thus unaffected by the delocalization transition. More-
over the exponent βtr ' 1/2α found numerically signif-
icantly differs from the exponent βdens. While striking,
it is worth noting that this result was found for the spe-
cific Kronig-Penney lattice model and by averaging the
logarithm of the transmission rather than the transmis-
sion itself. Therefore the behavior of physical quanti-

ties that are directly related to the transmission, such
as the Landauer conductance, remains unclear, in par-
ticular for generic models of disorder. This question has
direct applications in mesoscopic physics to understand
the electric response to a bias field in disordered carbon
nanotubes [10] or silicon nanowires [11] for instance. It
may have even greater relevance to ultracold atoms where
Anderson localization has been extensively studied [12–
22]. In those systems, a tunable bias field can easily be
applied, and the conductance is now accessible via the
discharge between well-controlled reservoirs [23–25].

Here we study the transmission of a one-dimensional
disordered matter wave guide subjected to arbitrary dis-
order and bias force field. For white-noise disorder and
a constant force, we find algebraic decay of the trans-
mission coefficient for arbitrary force strength and derive
the exponent βtr = 1/2α analytically, hence generaliz-
ing the result of Ref. [6] to generic white-noise disorder.
Moreover, we derive a universal form of the statistical
distribution of the transmission coefficient. It is charac-
terized by a unique parameter, the length of the wave
guide expressed in a rescaled metrics, which encapsu-
lates all microscopic features of the medium. We also
perform numerical calculations for various models, and
obtain excellent agreement with analytical calculations.
Application to Landauer conductance measurements in
ultracold-atom experiments is discussed. In particular,
we consider the effect of finite disorder correlations, in-
homogeneous forces, and finite temperatures.

Statistical distribution of transmission.— To start
with, consider the transmission of a matter wave of en-
ergy E ≥ 0 in a disordered material of length L in the
presence of a bias force field F (x) (see dashed black rect-
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Figure 1. Transmission and conductance of a matter wave
guide of length L (black rectangle) in the presence of a bias
force F (x) and disorder (random green line). The bias po-
tential is shown for a constant force (red line). The incident
and reflected wave vectors are k(0) and the transmitted one
is k(L). The Landauer conductance is measured from the
discharge between two reservoirs (left and right blue boxes)
with average chemical potential µ and infinitesimal potential
difference ∆V .

angle in Fig. 1). In the following, we will use the semi-
classical kinetic energy K(x) ≡ E +

∫ x
0

dx′ F (x′) as well

as its associated wave vector k(x) =
√

2mK(x)/~ and
wavelength λ(x) = 2π/k(x). We assume that the force
F (x) has no strong negative values, so that K(x) is posi-
tive everywhere. The disordered potential V (x) is homo-
geneous and Gaussian. Its average is zero and its two-
point correlation function reads C(x) ≡ V (x′ + x)V (x′).
The latter may model white-noise disorder, C(x) =
URδ(x) with UR the disorder strength, or correlated dis-
order, C(x) = (UR/σR)×c(x/σR) with σR the correlation
length and the normalization

∫
du c(u) = 1.

To compute the statistical distribution of the trans-
mission coefficient, we use the transfer matrix approach.
We briefly outline its generalization to include a, possibly
inhomogeneous, bias force field (see details in the Sup-
plemental Material). Assuming that the (non-averaged)
transmission, T (x), and reflection, R(x) = 1− T (x), co-
efficients from the origin to the distance x are known,
we add an infinitesimal cell of material of length ∆x,
with transmission and reflection coefficients T∆x(x) and
R∆x(x), respectively. The transmission coefficient at
length x + ∆x is then computed from the product of
the two transfer matrices. It yields

T (x+ ∆x) =
T (x)T∆x(x)

|1−
√
R(x)R∆x(x) eiθ∆x(x) |2

, (1)

where θ∆x(x) is the phase accumulated during one to-
tal internal reflection at point x. For weak disorder, i.e.
`−(x) � λ(x), σR with `−(x) the back-scattering mean
free path at kinetic energy K(x), we may choose inter-
mediate elementary lengths ∆x, such that λ(x), σR �
∆x � `−(x). Since ∆x � `−(x), the non-vanishing
value of the reflection coefficient R∆x(x) results from typ-

ically less that one scattering and it may thus be com-
puted in the single-scattering approximation. Assuming
that the work of the force on the length of the elementary
cell is small, F (x)∆x � K(x), ~2k(x)/2m∂k ln C̃[2k(x)],
we find R∆x(x) ' ∆x/`−(x)� 1 with

`−(x) ' 2~2K(x)/mC̃[2k(x)], (2)

where C̃[2k(x)] is the disorder power spectrum. We may
then develop the right-hand-side of Eq. (1) in powers of
R∆x(x). It yields a Markov process for the variable T (x).
The Kramers-Moyal expansion of the master equation for
the distribution of transmission at point x, P (T, x), re-
duces to its first two moments under the random-phase
approximation on θ∆x(x). We thus find the Fokker-
Planck equation

`−(x)
∂P

∂x
=
∂ T 2P

∂T
+

∂2

∂T 2

(
T 2(1− T )P

)
, (3)

with the initial condition P (T, x = 0) = δ(T − 1). Note
that, for a positive bias force field F and a bounded dis-
order power spectrum C̃, the back-scattering mean free
path `−(x) increases and the wave length λ(x) decreases
with the distance x, so that all the validity conditions
of Eq. (3) are always fulfilled, at least in the asymptotic
limit x→∞.

It follows from Eq. (3) that the quantity `−(x) pro-
vides the natural metrics in the disordered material in
the presence of the bias field. Using the inhomogeneous
dimensionless coordinate

s(x) =

∫ x

0

dx′

`−(x′)
, (4)

the quantity `−(x) disappears from Eq. (3) [26]. The
resulting differential equation for P (T, L) admits the an-
alytic solution [27]

P (T, L) =
2 e−s(L)/4

√
πs(L)3/2T 2

∫ ∞
cosh−1

√
1/T

dy
y e−y

2/s(L)√
cosh2y−1/T

,

(5)
which generalizes the celebrated log-normal law. The
main result of this approach is that the solution (5) is
universal. All the microscopic features of the medium,
such as disorder correlations and bias field, are fully en-
capsulated into the definition of the metrics, Eq. (4).
Algebraic localization.— We now compute characteris-

tic quantities and compare them to exact numerical cal-
culations. Let us start with the logarithm of the trans-
mission. We find lnT (L) = −s(L), which calls for several
remarks. First, this formula exactly matches the heuris-
tic formula proposed in Ref. [6] to interpret numerical
results found for the specific Kronig-Penney model. Our
analysis justifies this formula on rigorous grounds and
generalizes it to any model of disorder and bias field. Sec-
ond, for white-noise disorder and constant force, where
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Figure 2. Analytical prediction versus numerical results for T (solid black line and filled symbols) and exp(lnT ) (dashed-
dotted gray line and open symbols), for α = 0.08 and 2mF/~2k3in = 0.01 in the following cases: constant force and white-noise
disorder (blue squares), constant force and Gaussian correlated disorder with σRk(0) = 0.3 (magenta circles), harmonic force
with 2mω/~k(0)2 = 0.01 and uncorrelated disorder (brown diamonds). (a) Results plotted as a function of the metrics s(L)
[for white noise and constant force, s(L) ∝ ln(1 + FL/E), see Eq. (6)]. (b) Results plotted as a function of 1 + FL/E.
Inset: Probability distribution of lnT for FL/E = 28, as found from numerical simulations (histogram) compared to analytical
prediction (line), for a constant force, with correlated (dark, magenta) and uncorrelated (light, blue) disorder.

C̃(2k) = UR and K(x) = E + Fx, we find

s(L) =

∫ L

0

dx
mUR

2~2(E + Fx)
=

1

2α
ln

(
1 +

FL

E

)
, (6)

where α = ~2F/mUR is the relative strength of the force
and the disorder [9]. It yields the characteristic alge-
braic decay exp

(
lnT

)
∼ 1/L1/2α. Excellent agreement

with exact numerical calculations is found for continu-
ous white-noise disorder [see the open blue squares and
dotted-dashed line on Fig. 2(a)]. Third, the relative fluc-
tuations of the logarithmic transmission equal 1 at small
s(L) and decrease as ∆ lnT (L)/| lnT (L)| =

√
2/s(L)

for large values of s(L). Hence, the quantity lnT is
self-averaging for white-noise disorder and constant force
since the rescaled length s(L) then diverges in the long-
distance limit.

We now turn to the average transmission, which is
more directly related to physically-relevant quantities
(see below). Using Eq. (5), we find the exact formula

T (L) =
4 e−s(L)/4

√
πs(L)3/2

∫ ∞
0

dy
y2 e−y

2/s(L)

cosh(y)
. (7)

Again, it is in excellent agreement with exact numeri-
cal calculations [see filled blue squares and solid line on
Fig. 2(a)]. Note that the relative fluctuations of T rapidly
increase for large s(L), ∆T/T ∼ s(L)3/4 e+s(L)/8, so that
the numerical calculation of T requires a huge number
of realizations of the disorder. For white-noise disor-
der and constant force, we find the asymptotic behav-
ior T (L) ∼ 1/L1/8α, up to logarithmic corrections. The

difference of the scalings exp
(

lnT (L)
)
∼ 1/L1/2α and

T (L) ∼ 1/L1/8α is not surprising. It is reminiscent of

the large fluctuations associated to the log-normal law as
well known in the absence of a bias field [28].

In turn, it is quite surprising that the scaling T (L) ∼
1/L1/8α differs from that found for the density profile

of an expanding wave packet, n(x) ' 1/x1+(1−α)2/8α [9].
To understand this difference, consider a particle initially
at position x = 0 and look at the probability that it has
been transmitted beyond x = L after infinite time. If
the disorder is restricted to the space interval [0, L], this
probability is given by the transmission coefficient T (L)
and therefore decays as L−1/8α. In contrast, if the disor-
der extends over the full x line, it turns into

∫∞
L

dx n(x),

which decays as L−(1−α)2/8α. This slower decay may
be ascribed to the presence of long-range algebraically-
localized eigenstates, centered beyond x = L, whose over-
lap with the initial wavefunction is significant, thus en-
hancing the probability of finding the particle at x > L.
Note that this effect is expected to be less important
when the eigenstates are more strongly localized, i.e.
when α vanishes. This is consistent with the equality
of the two exponents, (1 − α)2/8α ' 1/8α in the limit
α→ 0.

Landauer conductance.— The statistical distribution
of transmission determines a number of physical quanti-
ties, and in the first place Landauer conductance [29, 30].
The latter is defined as the ratio of the current I induced
by the potential imbalance between two charge reservoirs
to their potential difference ∆V , at zero temperature.
In the limit ∆V → 0, the disorder-average conductance
reads Gn(µ) =

∫
dT P (T, L)fn[T (µ)], where µ ± ∆V/2

are the chemical potentials of the reservoirs (see Fig. 1),
P (T, L) is given by Eq. (5), and the function fn(T ) de-
pends on the specific scheme [30]. Here we focus on the
simplest case where ∆V is measured inside the reservoirs
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(two-terminal scheme). One then finds the conductance
G2(µ) = G0 × T (µ) with G0 the conductance quantum.
The quantity G2 may be measured in mesoscopic [31] or
ultracold-atom [23–25] systems for instance. Extension
to multi-terminal configurations is straightforward.

To discuss the behavior of G2, or equivalently T ,
it is worth including specific features beyond the ideal
case considered so far, in particular disorder correla-
tions. Using the Gaussian correlation function C(x) =
UR

σR

√
2π

exp
(
−x2/2σ2

R

)
, where σR is the correlation length,

we find that the algebraic decay is clearly visible at
short distance but is strongly suppressed in large-distance
limit [see numerics on Fig. 2(b), magenta filled (T ) and
open (lnT ) circles]. This entails correlation-induced de-
localization. This behavior is easily understood from that
of the metrics s(L), which now reads

s(L) =

∫ L

0

dx
mC̃[2k(x)]

2~2(E + Fx)
, (8)

where C̃[2k(x)] = UR exp
(
− E+Fx

~2/4mσ2
R

)
. Compared to

white-noise disorder, here the linear increase of the ki-
netic energy K(x) = E + Fx, which appears in the ar-
gument of the power spectrum C̃, suppresses the loga-
rithmic divergence of s(L). Hence the metrics s(L), the
distribution P (T, L), and all disorder-average functions
of T saturate when L→∞. This delocalization effect is
not specific to Gaussian correlations but applies to any
model of disorder with finite-range correlations. Sim-
ilarly, faster-than-linear bias also entails delocalization
since it makes s(L) converge. This is confirmed by nu-
merical calculations performed with the slightly linearly
increasing force F (x) = F +mω2x [see Fig. 2(b), brown
diamonds].

Correlation-induced delocalization effects appear for
∆k(x)σR ∼ 1, with ∆k(x) = k(x) − k(0) and σR is
the disorder correlation length. In the two-terminal con-
figuration of Fig. 1, k(0) = kF =

√
2mkBθF/~ is the

Fermi wavevector of the left-hand-side reservoir, with
θF the Fermi temperature and kB the Boltzmann con-
stant. Using ∆k(x) ∼ ∂xk(0) × x ∼ mFx/~2kF, we

find x ∼
√

2kBθF
mσ2

R

~
F . For mesoscopic channels designed

in ultracold-atom systems [23, 25], where typically θF ∼
500nK and σR ∼ 0.5µm, and assuming that the force re-
sults from gravity on 6Li atoms, F ' 10−25N, we find
x ∼ 80µm. Since this value is of the order of magnitude
of the channel length, correlation-induced delocalization
effects can be significant in these systems. To circumvent
this issue, one can take advantage of the universality of
the distribution of transmission (5). Indeed, as shown on
Fig. 2(a), we recover a universal behavior of the trans-
mission by rescaling the Euclidean distance L to the met-
rics s(L) for correlated disorder, as well as non-constant
force [32].

Let us finally consider the effect of a finite tempera-
ture, which is typically θ ∼ 0.1−0.3 θF in ultracold-atom

systems [23, 33]. Using the Sommerfeld expansion of the
current-potential characteristic function, we find

G2(L) = G0

{
T [s(L)] +

π2(kBθ)
2

6
A(L)

}
(9)

where, for a constant force F ,

A(L) =
1

F

∂

∂µ

[
1

`−(L)
− 1

`−(0)

]
× ∂T

∂s
(10)

+
1

F 2

[
1

`−(L)
− 1

`−(0)

]2

× ∂2T

∂s2
.

For the parameters above and the typical disorder
strength VR/kB ∼ 0.5µK, we find that finite-temperature
effects contribute the conductance G2 from less than 2%
for θ ∼ 0.1 θF up to 15% for θ ∼ 0.3 θF. Since the quan-
tity A(L) is not a universal function of the rescaled length
s(L), such finite-temperature effects break universal scal-
ing. However, if the system is sufficiently large so that
`−(L)� `−(0), universal scaling is recovered.
Outlook.— In conclusion, we have computed the statis-

tical distribution of transmission in a disordered matter
wave guide in the presence of a bias force. For white-
noise disorder and a constant force, we have shown that
the transmission decays algebraically, irrespective of the
value of the force, in agreement with numerical calcula-
tions [6]. This behavior differs from the expansion of a
wave packet, which features a delocalization transition [9]
(see also Refs. [7, 8]). These different behaviors have
been traced back to the long-range character of the alge-
braic decay of the localized eigenstates in the presence of
the bias. They could be directly observed in ultracold-
atom experiments, which allow for both transmission and
expansion schemes [15, 16, 25]. While finite-range disor-
der correlations or non-constant forces may entail satura-
tion of the transmission, we have shown that a universal
behavior can be recovered using appropriate rescaling.
Finite-temperature effects have also been discussed.
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–Supplemental Material–

Effect of a Bias Field on Disordered Wave Guides: Universal Scaling of Conductance
and Application to Ultracold Atoms

In this supplemental material, we provide details about the transfer matrix formalism for an inhomogeneous medium
and the derivation of the Fokker-Planck equation [Eq. (3) of the main paper].

To compute the transmission coefficient of a particle submitted to a bias force field F (x) through a disordered
sample in the space interval [0, L], it is convenient to define the semi-classical kinetic energy K(x) ≡ E+

∫ x
0
dx′ F (x′)

and the associated wave vector k(x) =
√

2mK(x)/~. At any position x, we may write the particle wave function ψ(x)
and its derivative ∂xψ(x) in the form(

ψ(x)
∂xψ(x)

)
=

(
eik(x)x e−ik(x)x

ik(x)eik(x)x −ik(x)e−ik(x)x

)(
ψ+(x)
ψ−(x)

)
(S1)

A unique solution (ψ+(x), ψ−(x)) exists provided the determinant of the above matrix does not vanish, i.e. k(x) 6= 0.
The particle flux, j(x) ≡ ~

2im (ψ∗∂xψ − ψ∂xψ∗) then reads j(x) = j+(x) + j−(x), where

j±(x) = ±~k(x)

m
|ψ±(x)|2 (S2)

are the right-moving (+) and left-moving (−) fluxes. The transmission coefficient is then defined as the ratio of
right-moving fluxes at the boundaries of the sample in the case where the incident flux is right-moving, i.e. j−(L) = 0,
and reads

T (L) ≡ j+(L)

j+(0)
=
k(L)

k(0)

|ψ+(L)|2

|ψ+(0)|2
. (S3)

Under the same assumption of right-moving incident flux, the reflection coefficient is defined as the ratio of left-moving
emergent flux and the right-moving incident flux, and reads

R(L) ≡ |j−(0)|
j+(0)

=
|ψ−(0)|2

|ψ+(0)|2
. (S4)

Scattering matrix.— Consider now a finite sample in the interval [x1, x2], where 0 ≤ x1 < x2 ≤ L. We define the
scattering matrix

S =

(
r t′

t r′

)
(S5)

such that (√
k(x1)ψ−(x1)√
k(x2)ψ+(x2)

)
= S

(√
k(x1)ψ+(x1)√
k(x2)ψ−(x2)

)
. (S6)

Particle-flux conservation between x1 and x2 imposes that the scattering matrix is unitary, S†S = 1. Moreover,
time-reversal symmetry entails S∗ = S†. Those two relations lead to the usual relations

t = t′

|r|2 + |t|2 = |r′|2 + |t|2 = 1

t∗r′ + r∗t = 0.

(S7)

Straightforward calculations then lead to the usual relations for the transmission and reflection coefficients of samples
between the points x1 and x2,

T = |t|2 and R = |r|2 = |r′|2. (S8)
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Transfer matrix.— We now define the transfer matrix T(x2, x1) such that(√
k(x2)ψ+(x2)√
k(x2)ψ−(x2)

)
= T(x2, x1)

(√
k(x1)ψ+(x1)√
k(x1)ψ−(x1)

)
. (S9)

Straightforward calculations yield

T =

(
1/t∗ r′/t
−r/t 1/t

)
(S10)

Transfer matrices can then be chained, i.e.

T(xn, x1) = T(xn, xn−1)T(xn−1, xn−2)...T(x2, x1). (S11)

Considering two samples in the intervals [0, x] and [x, x + ∆x] respectively, where ∆x is infinitesimal, one finds the
relation

T (x+ ∆x) =
T (x)T∆x(x)

|1−
√
R(x)R∆x(x) eiθ∆x(x) |2

, (S12)

where the sample [0,x] has transmission coefficient T (x) and reflection coefficient R(x) = 1−T (x), the sample [x, x+
∆x] has transmission coefficient T∆x(x) and reflection coefficient R∆x(x), and r′(x)r∆x(x) = |r′(x)r∆x(x)| eiθ∆x(x).
For ∆x� `−(x), we have R∆x(x)� 1 and we may use the following expansion of ∆T (x) ≡ T (x+ ∆x)− T (x):

∆T (x) = T (x)
{

2
√

(1− T (x))R∆x(x) cos θ∆x(x) +R∆x(x)
[
T (x)− 2 + 4(1− T (x)) cos2 θ∆x(x)

]}
+O(R∆x(x)3/2)

(S13)
The transmission coefficient is thus governed by a stochastic process when the system length x increases. The Kramers-
Moyal expansion of the corresponding master equation for the probability distribution of the transmission coefficient
at a given length, P (T, x), reads

∂P (T, x)

∂x
=

+∞∑
n=1

(−1)n

n!

∂n

∂Tn
[Mn(T )P (T, x)] (S14)

with

Mn(T ) =
(∆T (x))n

∆x

∣∣∣∣∣
∆x→0

. (S15)

The overline denotes averaging over the disorder. Assuming that the quantity θ∆x(x) is uniformly distributed on 2π
and using R∆x(x) is equal to ∆x/`−(x), the average on both quantities can be performed independently. We then
find

M1 = −T
2(x)

`−(x)
M2 =

2T 2(x)(1− T (x))

`−(x)
Mn = 0 for n ≥ 3. (S16)

The Kramers-Moyal expansion (S14) thus reduces to its first two moments, which yields the Fokker-Planck equation (3)
of the main paper.
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