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Abstract
We study the optimization problem of designing the
program of a conference with parallel sessions, so
that the intended participants are as happy as possi-
ble from the talks they can attend. Interestingly,
this can be thought of as a two-dimensional ex-
tension of a scheme proposed by Chamberlin and
Courant [1983] for achieving proportional repre-
sentation in multi-winner elections. We show that
different variations of the problem are computa-
tionally hard by exploiting relations of the problem
with well-known hard graph problems. On the pos-
itive side, we present polynomial-time algorithms
that compute conference programs that have a so-
cial utility that is provably close to the optimal one
(within constant factors). Our algorithms are either
combinatorial or based on linear programming and
randomized rounding.

1 Introduction
Motivated by research on multi-winner election schemes that
has been published in AI venues recently, we consider the
design of the program of a scientific conference as a social
choice problem. We assume that a conference center has been
booked to host the conference and the conference duration is
divided into time slots; a time slot coincides with the duration
of a single talk. The conference center has a number of avail-
able rooms, so that different talks can take place in parallel
in each time slot. The talks will be selected from contributed
papers and the objective is to accept those papers, so that cor-
responding talks can be scheduled within the available space
and time frame in such a way that the intended audience finds
the program as attractive as possible.

In order to make the term “attractive” more precise, as-
sume that the satisfaction of an intended participant is given
by a non-negative utility she has for attending each of the con-
tributed talks. A naive idea for optimizing the total utility (or
social utility) of the intended audience is to select the very
best papers (i.e., those that maximize the sum of utilities of
the audience) among the submitted papers and fit them in the
available time slots and rooms arbitrarily. This can result in
a program that does not satisfy the audience as much as it
could. For example, by scheduling talks on the top papers

(papers that everybody likes) of the conference in parallel is
a very bad choice. Indeed, each participant can attend only
one of these talks and her value from the particular time slot
is limited to her utility on only one of the talks in this time
slot. This indicates that one should try to spread the papers
with high social utility across different time slots so that each
participant finds the talks she likes the most in different time
slots and she is able to attend them. On the other hand, the
number of time slots is limited and this makes our conference
program design problem a computational challenge.

The problem can be thought of as an extension of a multi-
winner election scheme proposed by Chamberlin and Courant
[1983]. In this scheme, there is a set of alternatives (e.g., can-
didates for serving on a committee) and a set of voters with
utilities (expressed as cardinal or ordinal preferences) over
the alternatives. The goal is to elect a predefined number of
alternatives and assign each voter to one of the elected alter-
natives (that will act as the representative of the voter) so that
the total utility of the votes from their representatives is max-
imized. In this way, a kind of proportional representation of
the voters is achieved in the elected set of alternatives; this has
inspired the title of the current paper. To see the analogy with
the conference program design problem, it suffices to con-
sider a conference with a single time slot (and many parallel
sessions). Here, the papers are the alternatives, the intended
participant are the voters and the representative of each voter
is the talk that each intended participant will attend.

Many papers have focused on multi-winner voting rules
and proportional representation schemes recently. The ones
that have received the most of attention are the schemes of
Chamberlin and Courant [1983] and Monroe [1995]. As these
schemes are computationally hard to resolve — a statement
that has been formalized by Procaccia et al. [2008] — several
papers have focused either on efficient (i.e., polynomial-time)
approximation algorithms of the original rules so that social
utility is provably close to the optimal one or on their ex-
act resolution when utilities have a particular structure. For
the Chamberlin-Courant scheme, Lu and Boutilier [2011] ob-
serve that the utility of the agents on their representatives in
a set of alternatives forms a monotone submodular set func-
tion and resorted to a greedy algorithm (for maximizing such
functions subject to a cardinality constraint) which, accord-
ing to the analysis of Nemhauser et al. [1978], computes
(1� 1/e)-approximate solutions in polynomial time.
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For more structured utilities (e.g., Borda-like utilities),
Skowron et al. [2015a] present a polynomial-time approxi-
mation scheme. An interesting case is that of binary util-
ities (later, we call such utilities uniformly dichotomous).
Then, the problem is equivalent to MAX COVER, which is
well-known to be inapproximable within a factor better than
1�1/e in polynomial time [Feige, 1998]. Hence, the positive
result of Lu and Boutilier [2011] for general utilities is best
possible. Skowron and Faliszewski [2015] present improved
approximations by exponential-time and FPT algorithms for
this case. For Monroe’s scheme — which is more distantly re-
lated to our setting — and Borda-like utilities, approximation
algorithms with constant approximation ratios are presented
in [Skowron et al., 2015a].

So, multi-winner voting schemes belong to an area within
the field of computational social choice [Brandt et al., 2016]
where approximation algorithms have found many applica-
tions. Other members of this area include the also hard-to-
resolve single-winner rules by Kemeny [Ailon et al., 2008;
Coppersmith et al., 2010; Kenyon-Mathieu and Schudy,
2007] and Dodgson [Caragiannis et al., 2012; 2014]. Other
recent papers related to Chamberlin-Courant scheme study its
parametrized complexity [Betzler et al., 2013] and its com-
plexity in restricted domains [Skowron et al., 2015b] and on-
line settings [Oren and Lucier, 2014].

Clearly, conference program design is computationally
hard as a generalization of the Chamberlin-Courant scheme.
We argue that it is the additional structure required by the
solution (talks organized in parallel sessions and time slots)
that makes the problem hard even in extensions of trivial
Chamberlin-Courant elections. One such case is when all
the contributed papers fit in the program and paper selec-
tion is not necessary. In Section 3, we show that instances
of this kind with uniformly dichotomous utilities are APX-
hard for programs with two time slots and NP-hard for pro-
gram with three parallel sessions. Our proofs use reductions
from the well-known graph problems MAX BISECTION and
PARTITION INTO TRIANGLES.

Then, we present approximation algorithms, i.e.,
polynomial-time algorithms that design conference pro-
grams in which the social utility is provably close to the
social utility of the optimal conference program. This turns
out to be a very challenging task. Unlike in the case of
Chamberlin-Courant, our problem does not correspond to
submodular function maximization any more (at least, not
in any way that is apparent to us) and greedy solutions
either seem too complicated to analyse or have obvious
counter-examples with poor social utility. So, we have re-
sorted to non-greedy techniques for designing approximation
algorithms.

In Section 4, we present a combinatorial deterministic
algorithm, which uses a graph matching computation and
solves the problem exactly (i.e., computes a program of max-
imum social utility) for conferences with two parallel ses-
sions; this algorithm is used to approximate the problem in
the case of more sessions. The approximation ratio (i.e., the
worst-case social utility guarantee of the algorithm compared
to the solution of maximum social utility) grows linearly with
the number of sessions. So, we present two more approxima-

tion algorithms that do not have this drawback and achieve
constant approximation ratios. Our second algorithm runs
in polynomial time when the number of parallel sessions is
constant (Section 5) while the third algorithm does not have
any such restriction but achieves a slightly worse approxima-
tion ratio (Section 6). Both our second and third algorithm
are based on the paradigm of linear programming and ran-
domized rounding that has been very successful in the de-
sign of approximation algorithms (the book by Williamson
and Shmoys [2011] provides a nice coverage of the field).

We continue with preliminary definitions; a discussion on
open problems and extensions can be found in Section 7.

2 Definitions
We abbreviate our problem as CPD (standing for conference
program design). Instances of CPD consist of a set L of n

agents, a set X of m items, two positive integers k and q such
that m � kq, and a utility function u

`

: X ! R�0 for each
agent ` 2 L. A solution S is a collection of k disjoint subsets
S1, ..., Sk

of X , with |S
i

| = q for i 2 [k] = {1, 2, ..., k}.
Agents enjoy their most preferred item in each set S

i

and have
additive utilities; the utility of agent ` for S is defined as

u

`

(S) =
kX

i=1

max

x2Si

u

`

(x).

The social utility is defined as U(S) =

P
`2L

u

`

(S). On
input an instance (L,X, (u

`

)

`2L

, k, q), the objective of CPD
is to compute a solution S that maximizes U(S). In brief:

Conference program design (CPD)
Input: A set L of n agents, a set X of m items,

positive integers k and q such that m � kq,
and a utility function u

`

: X ! R�0 for each
agent ` 2 L

Output: A collection S of k disjoint subsets S1, ..., Sk

of X , each of size q

Goal: To maximize the quantity
U(S) =

P
`2L

P
k

i=1 max

x2Si u`

(x)

The analogy of CPD to the conference scenario is as fol-
lows. Each item corresponds to a contributed paper. The pa-
rameters q and k indicate the number of parallel sessions and
the number of time slots, respectively. A solution consisting
of k disjoint q-sized sets of items should be thought of as sets
of q talks that can be given in parallel in k available time slots.
Agents correspond to intended participants. In each time slot,
a participant can attend one talk and obtain a utility from that
talk only. Naturally, in each time slot, an agent will get the
highest utility among the available talks.

As an example, suppose we have 7 items i1, i2, ..., i7 and
3 agents a1, a2, and a3 with the utilities in the table below:

i1 i2 i3 i4 i5 i6 i7

a1 4 3 5 1 2 0 4
a2 1 4 3 9 6 2 0
a3 6 1 2 0 0 4 5

We have k = 3 time slots and q = 2 parallel sessions.
Consider the solution S = ({i3, i6}, {i4, i7}, {i1, i5}) in-
dicating that the talks corresponding to items i3 and i6 are
scheduled in the two parallel sessions of the first time slot,
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the talks corresponding to i4 and i7 in the second time slot,
and the talks corresponding to i1 and i5 in the third time
slot. Using our definitions, the utility of agent a1 from the
solution S is the sum of her utility on the three time slots,
i.e., u1(S) = u1({i3, i6}) + u1({i4, i7}) + u1({i1, i5}) =

max{5, 0} + max{1, 4} + max{4, 2} = 13 and, similarly,
we obtain u2(S) = 18 and u3(S) = 15 for a social utility of
U(S) = u1(S) + u2(S) + u3(S) = 46.

Note that each item can appear in at most one set and there
can be items that do not belong to any set of the solution (e.g.,
item i2 in the example). Also, note that the problem does not
constrain in any way the assignment of items (talks) to rooms
or the order of the time slots. For example, the social utility of
solution S does not depend at all on whether the set of items
{i3, i6} is scheduled before the set {i4, i7} or not.

In the following, we sometimes distinguish between two
different types of CPD instances. In those with m = kq, the
available items fit in the program and the question is just to
partition them into k equally sized sets in order to form the
final solution. Our hardness results apply on such instances.
Another assumption made there is that of uniformly dichoto-
mous utilities that take values in {0, 1}. Our algorithmic re-
sults in Sections 4, 5, and 6 apply to any CPD instance (with-
out restrictions on k and q or on the agent utilities).

3 Hardness Results
The hardness of the multi-winner rule of Chamberlin and
Courant [1983] (i.e., the restriction of CPD to instances with
k = 1) is due to the difficulty in selecting the q items that
maximize the social utility among many more available items.
In contrast, the two hardness results presented below apply
specifically to conference programs that have enough room
to accommodate all items and the question that turns out to
be hard is how to schedule the items in different time slots.
The first hardness result (Theorem 1) applies to conference
programs with only two time slots; the second one (Theo-
rem 2) applies to conference programs with three parallel ses-
sions. Both statements apply to uniformly dichotomous util-
ities. Reductions from different problems (MAX BISECTION
and PARTITION INTO TRIANGLES) are used in the proofs.
Theorem 1. The restriction of CPD to instances with k = 2,
m = 2q, and agents with uniformly dichotomous utilities is
NP-hard to approximate within a factor of 50/51 ⇡ 0.9804.

Proof. We will use a polynomial-time approximation-
preserving reduction from MAX BISECTION; this is the op-
timization version of the well-known NP-hard decision prob-
lem [GT16] from the book of Garey and Johnson [1979]).

MAX BISECTION
Input: A simple graph G = (V,E) with 2n nodes
Output: A partition of V into two sets V1, V2 with

|V1| = |V2| = n

Goal: To maximize the number of edges with one
endpoint in V1 and the other one in V2

Starting from an instance of MAX BISECTION consisting
of a graph G = (V,E) with an even number of nodes, we
construct an instance I of CPD that has an item for each node

of G (i.e., X = V ), an agent a
vv

0 for every edge (v, v

0
) 2 E

with utility 1 for items v and v

0 and 0 for every other item,
and by setting the two parameters to k = 2 and q = |V |/2.
Clearly, the utilities of instance I are uniformly dichotomous;
the construction is polynomial-time.

Observe that there is a one-to-one correspondence between
bisections of G and solutions to I. A bisection hV1, V2i of G
has the corresponding solution S = (V1, V2) of I. The utility
of an agent a

vv

0 that corresponds to an edge (v, v

0
) with its

endpoints in different sides (respectively, in the same side) of
the bisection hV1, V2i is 2 (respectively, 1). Hence,

|hV1, V2i| = U(S)� |E|. (1)

Due to the one-to-one correspondence between solutions of
the two problems, equation (1) holds for the optimal solu-
tions of the two problems, namely the size of the maximum
bisection hV ⇤

1 , V
⇤
2 i and the optimal social utility U(S⇤

) of
I. Thus, any polynomial-time algorithm that returns a ⇢

0-
approximate solution S for CPD (i.e., U(S) = ⇢

0U(S⇤
)) im-

plies a ⇢-approximate solution for MAX BISECTION such that

⇢ =

|hV1, V2i|
|hV ⇤

1 , V
⇤
2 i|

=

U(S)� |E|
|hV ⇤

1 , V
⇤
2 i|

=

⇢

0U(S⇤
)� |E|

|hV ⇤
1 , V

⇤
2 i|

=

⇢

0|hV ⇤
1 , V

⇤
2 i|� (1� ⇢

0
)|E|

|hV ⇤
1 , V

⇤
2 i|

� 3⇢

0 � 2,

where the last inequality follows by the well-known fact (e.g.,
see Lee et al. [2013]) that the optimal bisection includes at
least half of the edges in a graph. So, any result stating that
approximating MAX BISECTION within a factor of ⇢ or bet-
ter is NP-hard implies that approximating CPD within a factor
of 2+⇢

3 or better is NP-hard. The theorem follows by apply-
ing the classical inapproximability bound of 16/17 for (MAX
CUT and, consequently, for) MAX BISECTION due to Håstad
[2001].

A strengthened analysis (omitted due to lack of space)
yields an inapproximability bound of approximately 0.944,
assuming the Unique Games Conjecture and using the hard-
ness results of Khot et al. [2007].
Theorem 2. The restriction of CPD to instances with q = 3,
m = 3k, and agents with dichotomous utilities is NP-hard.

Proof. We will prove the theorem using a polynomial-
time reduction from PARTITION INTO TRIANGLES (problem
[GT11] in [Garey and Johnson, 1979]), defined as follows:

PARTITION INTO TRIANGLES
Input: A graph G = (V,E), with |V | = 3p for

some integer p
Question: Can V be partitioned into p disjoint sets

V1, V2, ..., Vp

, each containing exactly
three nodes, such that for every i 2 [p],
all the three edges (u

i

, v

i

), (u
i

, w

i

) and
(w

i

, v

i

) belong to E?

Starting from an instance I of PARTITION INTO TRIAN-
GLES (i.e., a graph G = (V,E) with 3p nodes), we build an
instance I 0

= (X,L, (u

`

)

`2L

, k, q) of CPD as follows. In-
stance I 0 has an item for each node in G, i.e., X = V . For
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each pair of nodes v, v0 2 V such that (v, v0) /2 E, I 0 has an
agent a

vv

0 who has utility 1 for items v and v

0 and utility 0

for every other item v

00 2 X \ {v, v0}. The two parameters
are set to k = p and q = 3. Clearly, the number of items is
3k and the utilities are uniformly dichotomous.

The reduction is certainly polynomial-time. We claim that
there is a solution of I 0 with social utility 2

��3p
2

�
� |E|

�
if

and only if I is a “yes” instance.
Indeed, given a solution S of I 0 with social utility 2 ·��3p
2

�
� |E|

�
, let V1, ..., Vp

be a solution of I such that V
i

=

S

i

, i = 1, ..., p. The utility of an agent a
vv

0 will be either 1 or
2, depending on whether the items v and v

0 belong to the same
set of S or not. Since I 0 contains

�3p
2

�
� |E| agents, they all

must have utility 2 in S . This implies that, for i = 1, ..., p, the
three edges {(u

i

, v

i

), (u

i

, w

i

), (w

i

, v

i

)} belong to E since,
otherwise, we would have an agent with utility 1.

Now, starting with a partition of G into triangles V1, ..., Vp

,
let S be a solution of I 0 with S

i

= V

i

for i = 1, ..., k. We
have u

`

(S) = 2 for every agent ` because the two items that
she values by 1 are in different sets. Since there are

�3p
2

�
�|E|

agents, we obtain U(S) = 2 ·
��3p

2

�
� |E|

�
, as desired.

4 A Combinatorial Approximation Algorithm
Our first approximation algorithm for CPD is based on an ex-
act polynomial-time algorithm for the case q = 2 which in
turn exploits the relation of CPD to graph matchings in this
case. The main idea is to build an edge-weighted graph, in
which each node corresponds to an item and an edge between
two items has the total utility of all agents for the pair of
items. Then, CPD is equivalent to selecting a matching with
exactly k edges that has maximum total weight, since such
a matching corresponds to a collection of k disjoint pairs of
items and maximum total weight corresponds to maximum
social utility.

More formally, on input an instance I =

(X,L, (u

`

)

`2L

, k, q) with q = 2 and m � 2k, our algorithm
constructs a graph G with m nodes corresponding to the
items in X (item nodes) and m�2k additional dummy nodes.
There is an edge (x, x

0
) in G between every pair of item

nodes x and x

0 and an edge (x, y) between every item node x
and every dummy node y. The weight of an edge (x, x

0
) be-

tween item nodes is set equal to
P

`2L

max{u
`

(x), u

`

(x

0
)},

the total utility of all agents from the pair of items {x, x0}.
The weight of an edge (x, y) between an item node and
a dummy node is 0. The algorithm computes a perfect
matching of maximum weight using a (polynomial-time)
implementation of the algorithm of Edmonds [1965a;
1965b] (e.g., see Gabow [1990]). Since an edge of the graph
has at most one dummy node as an endpoint, any perfect
matching of G will have exactly k edges between item nodes
and m � 2k edges involving one dummy node each. The
item pairs corresponding to the k edges between item nodes
form the final CPD solution for I. The next statement should
now be clear.
Theorem 3. The matching-based algorithm above solves ex-
actly CPD instances with q = 2 in polynomial-time.

Now, given an instance I of CPD with q > 2, we first

use the algorithm above to compute the optimal solution T
to the restriction I2 of the problem with q = 2. The solu-
tion to instance I is obtained by putting additional items into
each set of T so that each set has size q and no item appears
in two different sets. We will show that this yields a 2/q-
approximation, proving the next theorem.

Theorem 4. The matching-based algorithm described above
is a polynomial-time 2/q-approximation algorithm for in-
stances of CPD with q � 2.

Proof. Since the algorithm computes an optimal solution T
for the restriction I2 of instance I for q = 2, it suffices to
show that T has social utility at least 2/q times the optimal
social utility for I. Indeed, let S be an optimal CPD solution
for instance I and consider any set S

i

(for i 2 [k]) in S . We
claim that there exist a pair T

i

of items (to be thought of as
part of a solution for I2) in S

i

such that
X

`2L

max

x2Ti

u

`

(x) � 2

q

X

`2L

max

x2Si

u

`

(x). (2)

The desired result will then follow by summing inequality (2)
over all i 2 [k] and using the fact that the additional items put
into the sets of T do not decrease the social utility.

To see why (2) is true, let top
`

(S

i

) denote the item
of S

i

for which agent ` has highest utility, breaking
possible ties arbitrarily. Then,

P
`2L

max

x2Si u`

(x) =P
x2Si

P
`2L:top`(Si)=x

u

`

(x), i.e., we have expressed the
total utility of the agents as a sum of utilities over the q

items in S

i

. Clearly, there are two terms in this sum that
contribute at least a fraction of 2/q to it, and it suffices to
use the corresponding two items to form set T

i

. Hence,P
x2Ti

P
`2L:top`(Si)=x

u

`

(x) � 2
q

P
`2L

max

x2Si u`

(x),
which is equivalent to (2).

5 An LP-based Approximation Algorithm
Our next algorithm is based on linear programming and ran-
domized rounding, following a very successful approach in
the field of approximation algorithms for computationally
hard combinatorial optimization problems [Williamson and
Shmoys, 2011]. It uses a natural formulation of CPD as an
integer linear program, solves efficiently its linear program-
ming relaxation to obtain a fractional solution, and then
rounds the fractional solution into an integral one which can
be proved to be close to the optimal CPD solution.

Denote by Q the collection of q-sized subsets of X . For an
item i 2 X , let Q

i

be the sets of Q that contain item i. CPD
is equivalent to the integer linear program:

maximize
X

`2L

X

S2Q
x(S) · u

`

(S) (3)

subject to:
X

S2Qi

x(S)  1, 8i 2 X

X

S2Q
x(S) = k

x(S) 2 {0, 1}, 8S 2 Q
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ILP (3) has a binary variable x(S) for each set of Q that
indicates whether set S is part of the CPD solution (x(S) =

1) or not (x(S) = 0). The first constraint of (3) requires
that each item appears in at most one set in the CPD solution
which, by the second constraint, consists of exactly k sets.
The objective is to maximize to social utility, expressed using
the binary variables.

Our algorithm solves the relaxed version of (3) where the
integrality constraint x(S) 2 {0, 1} is replaced by the in-
equality x(S) � 0. So, the variables in the relaxed version
can take any (fractional) value between 0 and 1 (values higher
than 1 would violate the first set of constraints). Observe that,
if q is a constant, the number of variables is polynomial (in
terms of the number of items and, consequently, in terms of
the number of bits in the representation of the input); hence,
the linear program can be solved in polynomial time.

Then, using the fractional solution x of the LP relaxation of
(3), the algorithm performs the following randomized round-
ing procedure. For j = 1, 2, ..., k, it casts a die having a face
for each set S of Q with associated probability x(S)/k. The
set corresponding to the die casting outcome is temporarily
selected to be the j-th set in the integral solution. So far, there
is no guarantee that the same item does not appear more than
once (i.e., in different sets selected) and an elimination step
is executed to produce a feasible integral solution: for each
item i that appears in more than one sets that were selected,
one of these sets is selected uniformly at random (this will be
the only set in which item i will appear in the final integral
solution) and item i is removed from the other sets. The final
CPD solution is obtained by putting additional items into each
set so that each set has exactly q items and no item appears in
two different sets. The analysis of the algorithm follows.
Theorem 5. Given an instance of CPD with constant q � 2,
the LP-based algorithm above runs in polynomial time and
computes a solution with expected social utility that is at least
1� 1/e ⇡ 0.6321 times the optimal social utility.

Proof. Denote by x the fractional solution of the LP and by
ˆ

x the final integral solution. By overloading notation, we de-
fine two (artificial) quantities that will be useful in the proof.
In particular, the utility of agent ` 2 L from a fractional
solution x is defined as u

`

(x) =

P
S2Q x(S) · u

`

(S) =P
S2Q x(S) ·max

i2S

u

`

(i) and the social utility of a frac-
tional solution x is defined as U(x) =

P
`2L

u

`

(x).
Our main goal is to prove that

E[u
`

(

ˆ

x)] � (1� 1/e) · u
`

(x) (4)

for every agent ` 2 L. The claimed approximation guarantee
will then follow easily. Indeed, summing inequality (4) over
all agents and using linearity of expectation, we will get

E[U(ˆx)] =
X

`2L

E[u
`

(

ˆ

x)] � (1� 1/e)

X

`2L

u

`

(x)

� (1� 1/e)

X

`2L

u

`

(x

⇤
) = (1� 1/e)U(x⇤

),

where x

⇤ is the optimal solution for the given instance of
CPD. Here, we have used the property that the optimal objec-
tive value of the LP relaxation of (3) is equal to

P
`2L

u

`

(x)

and is not lower than the objective value of (3) at the optimal
integral solution x

⇤.
In the following, we prove inequality (4) for an agent ` 2

L. For each set S of Q, we define the critical item of S for
agent ` to be the one of maximum utility for agent `. If more
than one items in a set have maximum utility for agent `, we
arbitrarily select one to be her critical item of the set. Denote
by Q

i,`

the subset of Q consisting of sets that contain item
i as a critical item for agent `. Now, in order to bound from
below the utility of agent ` in the final integral solution, we
will only consider the sets selected during the rounding step
for which the critical item survived after the elimination step.
This is expressed by the inequality

E[u
`

(

ˆ

x)] �
X

i2X

X

S2Qi,`

u

`

(i) · Pr[E(i, S)] (5)

where E(i, S) denotes the event that set S (belonging to Q
i,`

)
was selected in some of the k rounding steps and item i was
not removed from it during the elimination process. Notice
that sets, in which the critical item for agent ` did not survive
after the elimination step, may still contribute to the utility of
`; we will simply ignore these sets in our analysis.

To conclude the proof, we observe that the event E(i, S) is
true when

• set S is selected in the j-th rounding step (with proba-
bility x(S)/k) for some j 2 [k],

• t sets (for some t 2 {0, 1, ..., k � 1}) containing item i

are selected in rounding steps different than j (the prob-
ability that some set of Q

i

is selected at a given step is
1
k

P
S2Qi

x(S)), and
• among the t + 1 appearances of item i in sets selected

during the rounding steps, the (copy of the) set S se-
lected at the j-th rounding step is the one selected uni-
formly at random (as the set in which item i will survive;
obviously, the corresponding probability is 1

t+1 ).

Using y =

P
S2Qi

x(S) (which means that y 2 (0, 1] by the
LP constraints), we can bound Pr[E(i, S)] as follows:

Pr[E(i, S)]

=

kX

j=1

x(S)

k

k�1X

t=0

✓
k � 1

t

◆⇣
y

k

⌘
t

⇣
1� y

k

⌘
k�1�t

1

t+ 1

=

x(S)

y

kX

t=1

✓
k

t

◆⇣
y

k

⌘
t

⇣
1� y

k

⌘
k�t

=

x(S)

y

✓
1�

⇣
1� y

k

⌘
k

◆

�
�
1� (1� 1/k)

k

�
· x(S)

� (1� 1/e) · x(S), (6)

where the first inequality follows since y 2 (0, 1] and the
function 1

y

�
1� (1� y/k)

k

�
is non-increasing in terms of y

in that range (the derivative with respect to y is non-positive)
and the second one follows since (1� 1/k)

k  1/e for every
(integer) k > 0.
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Using (5) and (6), and recalling that u
`

(i) = u

`

(S) for
each set S which contains item i as critical for agent `, we
have

E[u
`

(

ˆ

x)] � (1� 1/e)

X

i2X

X

S2Qi,`

x(S) · u
`

(i)

= (1� 1/e)

X

S2Q
x(S) · u

`

(S)

= (1� 1/e) · u
`

(x),

as desired.

6 Handling Instances with Superconstant q
We now present a different LP-based algorithm. The main
advantage is in the use of the new LP formulation (7) below.
Now, the variables are not associated with sets and, conse-
quently, the linear program (7) has polynomial size and can
be solved in polynomial time even when q is unbounded. This
will come at the cost of an additional multiplicative factor of
1/e in the approximation ratio compared to the algorithm of
the previous section.

maximize
X

`2L

X

j2[k]

X

i2X

x

`,i,j

· u
`

(i) (7)

subject to:
X

i2X

x

`,i,j

= 1, 8` 2 L, j 2 [k]

x

`,i,j

 y

ij

, 8` 2 L, j 2 [k], i 2 X

X

j2[k]

y

ij

 1, 8i 2 X

X

i2X

y

ij

= q, 8j 2 [k]

x,y � 0

Note that (7) is the relaxed version of an integer LP with bi-
nary variables that represents CPD. In our interpretation of
the LP, we will use the term level. The solution sought by the
LP is organized in k levels, numbered from 1 to k. Each level
hosts a set of q items. Intuitively, the variables witness the
membership of items to the (sets at the) different levels. In
particular, variable x

`,i,j

indicates whether item i 2 X gives
agent ` 2 L her maximum utility among all items in level
j 2 [k]. Variable y

ij

indicates whether item i 2 X is in level
j 2 [k]. The first set of constraints indicates that exactly one
item gives agent ` her highest utility at level j. The second
set of constraints indicates that item i should appear at level
j if it gives her maximum utility to some agent. The third set
of constraints guarantees that any item i appears in at most
one level. The fourth set of constraints indicates that exactly
q items should appear in any level.

Randomized rounding is now performed as follows. In or-
der to come up with an intermediate set of up to q items in
each of the levels j = 1, ..., k, it repeats the following selec-
tion q times. It casts a die with m faces, one face for each
item i 2 X with associated probability 1

qk

P
j2[k] yij

. At
the end of the process, the intermediate sets of items at each
level consist of up to q items since an item may have been

selected more than once at a given level. Also, the same item
may have been allocated in more than one levels. In order
to come up with a final integral solution in which each item
appears only once, the following elimination step is applied.
For every item i, among the several levels that contain item
i, one is selected uniformly at random (this will be the only
level in which item i will appear in the final integral solution)
and item i is removed from the other levels. Again, the final
solution is obtained by putting additional items into each set
so that each set has size exactly q and no item appears in two
different sets.

The proof of the next statement is omitted due to lack of
space; it uses more involved arguments than those in the proof
of Theorem 5 and is considerably longer.
Theorem 6. Given an instance of CPD, the LP-based al-
gorithm just described runs in polynomial time and com-
putes a solution with expected social utility that is at least
1/e� 1/e

2 ⇡ 0.2325 times the optimal social utility.

7 Discussion
We conclude with a discussion on possible extensions of our
work. First, we remark that even though our LP-based algo-
rithms show that constant approximation guarantees in poly-
nomial time are possible, they are randomized. Derandom-
ization techniques described in classical textbooks such as
[Williamson and Shmoys, 2011] might be useful in order to
perform the rounding step deterministically but it would be
highly desirable to achieve constant approximation bounds
by combinatorial (deterministic) algorithms. This is an im-
portant problem that we have left widely open together with
the following two challenging questions: Is a polynomial-
time approximation scheme possible for CPD instances with
constant q? For general instances, is there a combinatorial
deterministic (1� 1/e)–approximation algorithm?

Even though the conference-related terminology is used
throughout the paper, applications of our setting are not lim-
ited to scientific conferences and could also include big sport
events such as the Olympics or cultural events such as film or
music festivals. Of course, in the corresponding optimization
problems there are often additional subtle constraints such as
the requirement of scheduling talks by the same speaker in
different time slots. We believe that they can be easily incor-
porated into our setting; we have decided to neglect them here
in order to showcase the relation to multi-winner voting.

A more interesting extension would be to consider capac-
ity constraints in each session, essentially requiring that the
number of intended participants that can have a talk as their
most favourite one in a time slot is limited. This would lead
to two-dimensional extensions of the proportional represen-
tation scheme of Monroe [1995]. Also, considering different
definitions of social utility would be interesting. In this di-
rection, we have some preliminary results on an egalitarian
definition of social utility that indicate that CPD is, in gen-
eral, hard-to-approximate under this objective. Complement-
ing this statement with positive results for instances of par-
ticular structure would complete the picture nicely. Finally,
practical issues such as the elicitation of utilities by the in-
tended participants deserve much investigation.
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