
HAL Id: hal-01370999
https://hal.science/hal-01370999

Preprint submitted on 23 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Critical behaviour of (2 + 1)-dimensional QED: 1/N f
-corrections in an arbitrary non-local gauge

a V Kotikov, S Teber

To cite this version:
a V Kotikov, S Teber. Critical behaviour of (2 + 1)-dimensional QED: 1/N f -corrections in an
arbitrary non-local gauge. 2016. �hal-01370999�

https://hal.science/hal-01370999
https://hal.archives-ouvertes.fr


Critical behaviour of (2 + 1)-dimensional QED:
1/Nf -corrections in an arbitrary non-local gauge

A. V. Kotikov1 and S. Teber2,3
1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
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Dynamical chiral symmetry breaking (DχSB) is studied within (2 + 1)-dimensional QED with
N four-component fermions. The leading and next-to-leading orders of the 1/N expansion are
computed exactly. The analysis is carried out in an arbitrary non-local gauge. Resumming the
wave-function renormalization constant at the level of the gap equation yields a strong suppression
of the gauge dependence of the critical fermion flavour number, Nc(ξ) where ξ is the gauge fixing
parameter, which is such that DχSB takes place for N < Nc(ξ). Neglecting the weak gauge-
dependent terms yields Nc = 2.8469 while, in the general case, it is found that: Nc(1) = 3.0084
in the Feynman gauge, Nc(0) = 3.0844 in the Landau gauge and Nc(2/3) = 3.0377 in the ξ = 2/3
gauge where the leading order fermion wave function is finite. These results suggest that DχSB
should take place for integer values N ≤ 3.

Introduction - We consider Quantum Electrodynamics
in 2 + 1 dimensions (QED3) which is described by the
Lagrangian:

L = Ψ(i∂̂ − eÂ)Ψ− 1

4
F 2
µν , (1)

where Ψ is taken to be a four component complex spinor.
In the presence of N fermion flavours, the model has
a U(2N) symmetry. A (parity-invariant) fermion mass
term, mΨΨ, breaks this symmetry to U(N)×U(N) (the
case of a parity non-invariant mass will not be considered
here). In the massless case, loop expansions are plagued
by infrared divergences. The latter soften upon analysing
the model in a 1/N expansion [1, 2]. Since the theory is
super-renormalizable, the mass scale is then given by the
dimensionful coupling constant: a = Ne2/8, which is
kept fixed as N → ∞. Early studies of this model [3, 4]
suggested that the physics is rapidly damped at momen-
tum scales p � a and that a (parity-invariant) fermion
mass term breaking the flavour symmetry is dynamically
generated at scales which are orders of magnitude smaller
than the intrinsic scale a. Since then, dynamical chi-
ral symmetry breaking (DχSB) in QED3 and the depen-
dence of the dynamical fermion mass on N have been the
subject of extensive studies, see, e.g., [3–20].

A central issue is related to the value of the critical
fermion number, Nc, which is such that DχSB takes
place only for N < Nc. An accurate determination of Nc
is of crucial importance to understand the phase struc-
ture of QED3 with far reaching implications from particle
physics to planar condensed matter physics systems hav-
ing relativistic-like low-energy excitations such as some
two-dimensional antiferromagnets [21] and graphene [22].
It turns out that the values that can be found in the lit-
erature vary from Nc → ∞ [3, 5–7] corresponding to
DχSB for all values of N , all the way to Nc → 0 in
the case where no sign of DχSB is found [8, 9]. Re-
cent works based on conformal field theory techniques

tend to narrow this range but the upper bound found
for Nc still varies: Nc < 3/2 [10] or Nc < 4.4 [11] or
Nc < 9/4 [12]. Of importance to us in the following,
is the approach of Appelquist et al. [4] who found that
Nc = 32/π2 ≈ 3.24 by solving the Schwinger-Dyson (SD)
gap equation using a leading order (LO) 1/N -expansion.
Lattice simulations in agreement with a finite non-zero
value of Nc can be found in [13]. Soon after the anal-
ysis of [4], Nash approximately included next-to-leading
order (NLO) corrections and performed a partial resum-
mation of the wave-function renormalization constant at
the level of the gap equation; he found [14]: Nc ≈ 3.28.
Recently, upon refining the work of [15], the NLO cor-
rections could be computed exactly in the Landau gauge
yielding (in the absence of resummation) [16]: Nc ≈ 3.29,
a value which is suprisingly close to the one of Nash [40].
More recently, using different methods, several new esti-
mates were given: Nc = 1 +

√
2 ≈ 2.41 in [17], Nc ≈ 2.89

in [18] and Nc ≈ 2.85 in [19].

The purpose of the present work is to extend the exact
results of [16] to an arbitrary non-local gauge [23]. Such
an achievement represents an essential improvement with
respect to Nash’s approximate NLO results which were
carried out in the Feynman gauge 27 years ago. In this
respect, there is presently a strong ongoing interest in
the study of the gauge dependence of DχSB in several
models, see [20, 24]. The choice of the Landau gauge in
[16] was motivated by recent results on QED3 [20] show-
ing the gauge invariance of Nc in this gauge when using
the Ball-Chiu vertex [25]. Actually, after resumming the
wave-function renormalization constant, we find that the
LO term in the gap equation becomes gauge-invariant,
in agreement with Nash, but also that NLO terms be-
come only weakly gauge-variant. As will be shown in the
following, this leads to a very stable value of Nc upon
varying the gauge-fixing parameter. Moreover, the large-
N limit of the photon propagator in QED3 has precisely
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FIG. 1: LO diagram to the dynamically generated mass
Σ(p). The crossed line denotes mass insertion.

the same momentum dependence as the one in the so-
called reduced QED, see [26] and also [27]. One differ-
ence is that the gauge fixing parameter in reduced QED
is twice less than the one in QED3. Such a difference can
be taken into account with the help of our present results
for QED3 together with the multi-loop results obtained
in [28, 29]. The case of reduced QED, and its relation
with dynamical gap generation in graphene which is the
subject of active ongoing research, see, e.g., the reviews
[30, 31], will be considered in a separate paper [32]. In
the following, we shall focus exclusively on QED3.
Schwinger-Dyson equations - With the conventions of

Ref. [16], the inverse fermion propagator is defined as:
S−1(p) = [1+A(p)] (ip̂+ Σ(p)) where A(p) is the fermion
wave function and Σ(p) is the dynamically generated
parity-conserving mass which is taken to be the same
for all the fermions. The SD equation for the fermion
propagator may be decomposed into scalar and vector
components as follows:

Σ̃(p) =
2a

N
Tr

∫
d3k

(2π)3
γµDµν(p− k)Σ(k)Γν(p, k)

[1 +A(k)] (k2 + Σ2(k))
,(2a)

A(p)p2 = −2a

N
Tr

∫
d3k

(2π)3
Dµν(p− k)p̂γµk̂Γν(p, k)

[1 +A(k)] (k2 + Σ2(k))
,(2b)

where Σ̃(p) = Σ(p)[1+A(p)], Dµν(p) is the photon prop-
agator in the non-local ξ-gauge:

Dµν(p) =
P ξµν(p)

p2 [1 + Π(p)]
, P ξµν(p) = gµν − (1− ξ)pµpν

p2
,

(3)
Π(p) is the polarization operator and Γν(p, k) is the ver-
tex function. In the following, Eqs. (2) will be studied
for an arbitrary value of the gauge-fixing parameter ξ.
All calculations will be performed with the help of the
standard rules of perturbation theory for massless Feyn-
man diagrams as in [33], see also the recent short review
[34]. For the most complicated diagrams, the Gegenbauer
polynomial technique will be used following [35].

Gap equation at leading order - The LO approxima-
tions in the 1/N expansion are given by: A(p) = 0,
Π(p) = a/|p| and Γν(p, k) = γν , where the fermion mass
has been neglected [41] in the calculation of Π(p). A sin-
gle diagram contributes to the gap equation (2a) at LO,
see Fig. 1, and the latter reads:

Σ(p) =
8(2 + ξ)a

N

∫
d3k

(2π)3
Σ(k)

(k2 + Σ2(k))
[
(p− k)2 + a |p− k|

] .

(4)

Following [4], we consider the limit of large a and linearize
Eq. (4) which yields:

Σ(p) =
8(2 + ξ)

N

∫
d3k

(2π)3
Σ(k)

k2 |p− k| . (5)

The mass function may then be parametrized as [4]:

Σ(k) = B (k2)−α , (6)

where B is arbitrary and the index α has to be self-
consistently determined. Using this ansatz, Eq. (5) reads:

Σ(LO)(p) =
4(2 + ξ)B

N

(p2)−α

(4π)3/2
2β

π1/2
, (7)

from which the LO gap equation is obtained:

1 =
(2 + ξ)β

L
, where β =

1

α (1/2− α)
and L ≡ π2N .(8)

Solving this gap equation, yields:

α± =
1

4

(
1±

√
1− 16(2 + ξ)

L

)
, (9)

which reproduces the solution given by Appelquist et al.
[4]. The gauge-dependent critical number of fermions:
Nc ≡ Nc(ξ) = 16(2 + ξ)/π2, is such that Σ(p) = 0 for
N > Nc and Σ(0) ' exp

[
−2π/(Nc/N − 1)1/2

]
, for N <

Nc. Thus, DχSB occurs when α becomes complex, that
is for N < Nc.

The gauge-dependent fermion wave function may be
computed in a similar way. At LO, Eq. (2b) simplifies
as:

A(p)p2 = −2a

N
Tr

∫
dDk

(2π)D
P ξµν(p− k)p̂γµk̂γν

k2|p− k| , (10)

where the integral has been dimensionally regularized
with D = 3 − 2ε. Taking the trace and computing the
integral on the r.h.s. yields:

A(p) =
Γ(1 + ε)(4π)εµ2ε

p2ε
C1(ξ) =

µ2ε

p2ε
C1(ξ) + O(ε) ,

(11)
where the MS parameter µ has the standard form µ2 =
4πe−γEµ2 with the Euler constant γE and

C1(ξ) = +
2

3π2N

(
(2− 3ξ)

[
1

ε
− 2 ln 2

]
+

14

3
− 6ξ

)
.

(12)
We note that in the ξ = 2/3-gauge, the value of A(p) is
finite and C1(ξ = 2/3) = +4/(9π2N). From Eqs. (11)
and (12), the LO wave-function renormalization con-
stant may be extracted: λA = µ(d/dµ)A(p) = 4(2 −
3ξ)/(3π2N) a result which coincides with the one of [37].
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FIG. 2: NLO diagrams to the dynamically generated mass Σ(p). The shaded blob is defined in Eq. (18).

Next-to-leading order - We now consider the NLO con-
tributions and parametrize them as:

Σ(NLO)(p) =

(
8

N

)2

B
(p2)−α

(4π)3
(ΣA + Σ1 + 2 Σ2 + Σ3) ,

(13)
where each contribution to the linearized gap equation is
represented graphically in Fig. 2. Adding these contribu-
tions to the LO result, Eq. (7), the gap equation has the
following general form:

1 =
(2 + ξ)β

L
+

ΣA(ξ) + Σ1(ξ) + 2 Σ2(ξ) + Σ3(ξ)

L2
, (14)

where Σi = πΣi, (i = 1, 2, 3.A). In [16], these contri-
butions were computed in the Landau gauge, ξ = 0. Af-
ter very tedious and lengthy calculations, these computa-
tions could be extended to an arbitrary non-local gauge.
We now summarize our results (details of the calculations
will be published elsewhere).

The contribution ΣA, see Fig. 2 A), originates from
the LO value of A(p) and is singular. Using dimensional
regularization, and for an arbitrary parameter ξ, it reads:

ΣA(ξ) = 4
µ2ε

p2ε
β

[(
4

3
(1− ξ)− ξ2

)[
1

ε
+ Ψ1 −

β

4

]

+

(
16

9
− 4

9
ξ − 2ξ2

)]
, (15)

where

Ψ1 = Ψ(α)+Ψ(1/2−α)−2Ψ(1)+
3

1/2− α−2 ln 2 , (16)

and Ψ is the digamma function.
The contribution of diagram 1) in Fig. 2 is finite and

reads:

Σ1(ξ) = −2(2 + ξ)β Π̂, Π̂ =
92

9
− π2 , (17)

where the gauge dependence comes from the fact that
we work in a non-local gauge and Π̂ arises from the two-
loop polarization operator in dimensionD = 3 [28, 38, 39]
which may be graphically represented as:

� = 2×� + � . (18)

The contribution of diagram 2) in Fig. 2 is again sin-
gular. Dimensionally regularizing it yields:

Σ2(ξ) = −2
µ2ε

p2ε
β

[
(2 + ξ)(2− 3ξ)

3

(
1

ε
+ Ψ1 −

β

4

)
(19a)

+
β

4

(
14

3
(1− ξ) + ξ2

)
+

28

9
+

8

9
ξ − 4ξ2

]
+ (1− ξ) Σ̂2 ,

Σ̂2(α) = (4α− 1)β
[
Ψ′(α)−Ψ′(1/2− α)

]

+
π

2α
Ĩ1(α) +

π

2(1/2− α)
Ĩ1(α+ 1) , (19b)

where Ψ′ is the trigamma function and Ĩ1(α) is a dimen-
sionless integral that was defined in [16].

The singularities in ΣA(ξ) and Σ2(ξ) cancel each other
and their sum is therefore finite. Defining: Σ2A(ξ) =
ΣA(ξ) + 2Σ2(ξ), the latter reads:

Σ2A(ξ) = 2(1− ξ)Σ̂2(α)−
(

14

3
(1− ξ) + ξ2

)
β2

−8β

(
2

3
(1 + ξ)− ξ2

)
. (20)

Finally, the contribution of diagram 3) in Fig. 2 is finite
and reads:

Σ3(ξ) = Σ̂3(α, ξ) +
(

3 + 4ξ − 2ξ2)β2,

Σ̂3(α, ξ) =
1

4

(
1 + 8ξ + ξ2 + 2α(1− ξ2)

)
πĨ2(α)

+
1

2

(
1 + 4ξ − α(1− ξ2)

)
πĨ2(1 + α)

+
1

4

(
−7− 16ξ + 3ξ2

)
πĨ3(α) , (21)

where the dimensionless integrals Ĩ2(α) and Ĩ3(α) were
defined in [16].
Gap equation (1) - Combining all of the above results,

the gap equation (14) may be written in an explicit form
as:

1 =
(2 + ξ)β

L
+

1

L2

[
8S(α, ξ)− 2(2 + ξ)Π̂β

+

(
−5

3
+

26

3
ξ − 3ξ2

)
β2 − 8β

(
2

3
(1− ξ)− ξ2

)]
, (22)
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where S(α, ξ) =
(

Σ̂3(α, ξ) + 2(1− ξ)Σ̂2(α)
)
/8.

At this point, we consider Eq. (22) directly at the crit-
ical point α = 1/4, i.e., at β = 16. This yields:

L2
c − 16(2 + ξ)Lc − 8

[
S(ξ)− 4(2 + ξ)Π̂

−16
(
4− 50ξ/3 + 5ξ2

)]
= 0 , (23)

where S(ξ) = S(α = 1/4, ξ) = (Σ̂3(ξ) + 2(1 − ξ)Σ̂2)/8
with Σ̂2 = Σ̂2(α = 1/4) and Σ̂3(ξ) = Σ̂3(α = 1/4, ξ).
Solving Eq. (23), we have two standard solutions:

Lc,± = 8(2 + ξ)±
√
d1(ξ) , (24)

d1(ξ) = 8

[
S(ξ)− 8

(
4− 112

3
ξ + 9ξ2 +

2 + ξ

2
Π̂

)]
.

In order to provide a numerical estimate for Nc, we have
used the series representations [16] to evaluate the in-
tegrals: πĨ1(α = 1/4) ≡ R1 and πĨ2(α = 1/4 + iδ) ≡
R2 − iP2δ + O(δ2) where δ → 0 regulates an artificial
singularity in πĨ3(α = 1/4) = R2 + P2/4. With 10000
iterations for each series, the following numerical esti-
mates are obtained [16]: R1 = 163.7428, R2 = 209.175,
P2 = 1260.720, from which the complicated part of the
self-energies can be evaluated:

Σ̂2 = 4R1, Σ̂3(ξ) = (ξ2− 1)R2− (7 + 16ξ− 3ξ2)P2/16 .
(25)

Combining these values with the one of Π̂, yields:

Nc(ξ = 0) = 3.29, Nc(ξ = 2/3) = 3.09 , (26)

where “−” solutions are unphysical and there is no so-
lution in the Feynman gauge. In the Landau gauge, we
recover the result of [16]. The range of ξ-values for which
there is a solution corresponds to ξ− ≤ ξ ≤ ξ+, where
ξ+ = 0.88 and ξ− = −2.36.

Gap equation (2) - Following Ref. [14], we would like
to resum the LO term together with part of the NLO
corrections containing terms ∼ β2. In order to do so, we
will now rewrite the gap equation (22) in a form which is
suitable for resummation. This amounts to extract the
terms ∼ β and ∼ β2 from the complicated parts of the
fermion self-energy, Eqs. (19b) and (21). All calculations
done this yields:

Σ̂2(α) = β
(
3β − 8

)
+ Σ̃2(α) , (27a)

Σ̃2 = Σ̃2(α = 1/4) = 4R̃1, R̃1 = 3.7428 , (27b)

where the rest, Σ̃2 = Σ̃2(α = 1/4), was determined by
imposing Eq. (25). Similarly:

Σ3(ξ) = −4ξ(4 + ξ)β + Σ̃3(α, ξ) , (28a)

Σ̃3(α, ξ) =
1

4

(
1 + 8ξ + ξ2 + 2α(1− ξ2)

)
πJ̃2(α)

+
1

2

(
1 + 4ξ − α(1− ξ2)

)
πJ̃2(1 + α)

−1

4

(
−7− 16ξ + 3ξ2

)
πJ̃3(α) , (28b)

Σ̃3(ξ) =
(
ξ2 − 1

)
R̃2 −

(
7 + 16ξ − 3ξ2

) P̃2

16
, (28c)

where the form of the rest, Σ̃3(ξ) = Σ̃3(α = 1/4, ξ), is
imposed by Eq. (25). Equating Eqs. (28c) with (28b) for
α = 1/4 together with using the values πJ̃2(α = 1/4) =
πJ̃2(α = 5/4) = R̃N2 = 17.175, πJ̃3(α = 1/4) = R̃N2 +
P̃N2 /4 and P̃N2 = −19.28, yields:

R̃2 = R̃N2 − 16 = 1.175, P̃2 = P̃N2 = −19.28 . (29)

With the help of the results (27) and (28), the gap equa-
tion (22) may be written as:

1 =
(2 + ξ)β

L
+

1

L2

[
8S̃(α, ξ)− 2(2 + ξ)Π̂β

+

(
2

3
− ξ
)(

2 + ξ
)
β2 + 4β

(
ξ2 − 4

3
ξ − 16

3

)]
, (30)

where S̃(α, ξ) =
(

Σ̃3(α, ξ) + 2(1 − ξ)Σ̃2(α)
)
/8. At this

point Eqs. (22) and (30) are strictly equivalent to each
other and yield the same values for Nc(ξ).
Resummation - Eq. (30) is the convenient starting

point to perform a resummation of the wave function
renormalization constant. Up to second order, the ex-
pansion of the latter reads:

λA =
λ(1)

L
+
λ(2)

L2
+ · · · , λ(1) = 4

(
2

3
− ξ
)
, (31)

where λ(1) is the LO part and λ(2) the NLO one. The
latter can be obtained from Gracey’s calculations [39]
and reads:

λ(2) = −8

(
8

27
+

(
2

3
− ξ
)

Π̂

)
. (32)

As can be seen from Eq. (30), the NLO term ∼ β2 is
proportional to the LO wave function renormalization
constant. This term, together with the LO term in the
gap equation, can be thought of the first and zeroth order
terms, respectively, of an expansion in λA. Following
Nash, it is possible to resum the full expansion of λA at
the level of the gap equation (see Supplemental Material
for details) leading to:

1 =
8β

3L
+

β

4L2

(
λ(2) − 4λ(1)

(
14

3
+ ξ

))
+

∆(α, ξ)

L2
, (33)

where ∆(α, ξ) = 8S̃(α, ξ)−4β (ξ2+4ξ+8/3)−2β (2+ξ) Π̂.
Interestingly, the LO term in Eq. (33) is now gauge inde-
pendent. With the help of Eqs. (31) and (32), Eq. (33)
can now be explicited as:

1 =
8β

3L
+

1

L2

[
8S̃(α, ξ)− 16

3
β

(
40

9
+ Π̂

)]
, (34)
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which displays a strong suppression of the gauge depen-
dence even at NLO as ξ-dependent terms do exist but
they enter the gap equation only through the rest, S̃,
which is very small numerically.

We now consider Eq. (34) at the critical point, α = 1/4
(β = 16), which yields:

L2
c −

128

3
Lc −

[
8S̃(ξ)− 256

3

(
40

9
+ Π̂

)]
= 0 . (35)

Solving Eq. (35), we have two standard solutions:

Lc,± =
64

3
±
√
d2(ξ) , (36a)

d2(ξ) =

(
64

3

)2

+
[
8S̃(ξ)− 256

3

(
40

9
+ Π̂

)]
.(36b)

In order to provide a numerical estimate for Nc, we have
used the values of R̃1, R̃2 and P̃2 of Eqs. (27) and (29).
Combining these values with: S̃(ξ = 0) = R̃1 − R̃2/8 −
7P̃2/128, S̃(ξ = 1) = −5P̃2/32 and S̃(ξ = 2/3) = R̃1/3−
5R̃2/72− 49P̃2/384, together with the value of Π̂, yields,
for Lc(ξ) and Nc(ξ) (“−” solutions being unphysical):

Lc(0) = 30.44, Lc(2/3) = 29.98, Lc(1) = 29.69 ,(37a)

Nc(0) = 3.08, Nc(2/3) = 3.04, Nc(1) = 3.01 . (37b)

Actually, solutions exist for a broad range of values of
ξ: ξ̃− ≤ ξ ≤ ξ̃+, where ξ̃+ = 4.042 and ξ̃− = −8.412;
this is consistent with the weak ξ-dependence of the gap
equation. Moreover, following [26], we think that the
“right(est)” gauge choice is one close to ξ = 2/3 where
the LO fermion wave function is finite. Indeed, as can
be seen by comparing Eqs. (26) and (37b), upon resum-
ming the theory, the value of Nc(ξ) increases (decreases)
for small (large) values of ξ. For ξ = 2/3, the value of
Nc is very stable, decreasing only by 1-2% during resum-
mation. Finally, if we neglect the rest, i.e., S̃(ξ) = 0 in
Eq. (35), the gap equation becomes ξ-independent and
we have: Lc = 28.0981 and therefore: N c = 2.85. This
value is in full agreement with the recent results of [19]
where the NLO corrections have been analysed in an ap-
proximation corresponding to S̃(ξ) = 0, i.e., taking into
account only the NLO terms ∼ β and ∼ β2 (see Supple-
mental Material).

Conclusion We have studied DχSB in QED3 by in-
cluding 1/N2 corrections to the SD equation exactly and
taking into account the full ξ-dependence of the gap equa-
tion. Following Nash, the wave function renormalization
constant has been resummed at the level of the gap equa-
tion leading to a very weak gauge-variance of the critical
fermion number Nc. The value obtained for the latter,
Eq. (37b), suggests that DχSB takes place for integer
values N ≤ 3 in QED3.
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In this Supplemental Material, we give some details related to the resummation procedure of Nash [1] within our
working frame. As we shall explain below, the resummation procedure consists in resumming the LO term together
with part of the NLO corrections containing terms ∼ β2. In order to do so, we consider the gap equation corresponding
to Eq. (30) in the main text and that we reproduce here for clarity:

1 =
(2 + ξ)β

L
+

1

L2

[
8S̃(α, ξ)− 2(2 + ξ)Π̂β +

(
2

3
− ξ
)(

2 + ξ
)
β2 + 4β

(
ξ2 − 4

3
ξ − 16

3

)]
, (1)

where (as displayed in the main text)

S̃(α, ξ) =
(

Σ̃3(α, ξ) + 2(1− ξ)Σ̃2(α)
)
/8 , (2)

and (as found in the main text)

Σ̃2(α = 1/4) = 4R̃1, R̃1 = 3.7428 , (3a)

Σ̃3(α = 1/4, ξ) =
(
ξ2 − 1

)
R̃2 −

(
7 + 16ξ − 3ξ2

) P̃2

16
, R̃2 = 1.175, P̃2 = −19.28 . (3b)

Eq. (1) is the convenient starting point to perform a resummation à la Nash [1]. In order to implement this resum-
mation, let us first consider the integral:

∫ a

0

d|k| Σ(|k|)
Max(|k|, |p|)

[
Max(|k|, |p|)
Min(|k|, |p|)

]λ
, (4)

with some arbitrary λ. Using the fact that: Σ(p) = B(p2)−α, we have:

1 =
1

Σ(p)

∫ a

0

d|k| Σ(|k|)
Max(|k|, |p|)

[
Max(|k|, |p|)
Min(|k|, |p|)

]λ
=

(
1

2α− λ +
1

1− 2α− λ

)
=

1− 2λ

(2α− λ)(1− 2α− λ)
. (5)

Taking the derivative of λ and putting λ = 0, we have another important integral:

1 =
1

Σ(p)

∫ a

0

d|k| Σ(|k|)
Max(|k|, |p|) ln

[
Max(|k|, |p|)
Min(|k|, |p|)

]
=

(
1

(2α)2
+

1

(1− 2α)2

)
=

β

16

(
β − 8

)
. (6)

So, now, we can represent the gap equation (1) in the form:

1 =
4(2 + ξ)

LΣ(p)

∫ a

0

d|k| Σ(|k|)
Max(|k|, |p|)

{
1 +

4(2− 3ξ)

3L
ln

[
Max(|k|, |p|)
Min(|k|, |p|)

]}
+

∆(α, ξ)

L2
, (7)

where

∆(α, ξ) = 8S̃(α, ξ)− 4β

(
ξ2 + 4ξ +

8

3
+

2 + ξ

2
Π̂

)
. (8)

Following Nash [1], the integral (7) may be viewed as the first two orders of the expansion of the integral (4) with the
anomalous dimension λ corresponding to the wave function renormalization constant:

λA =
λ(1)

L
+
λ(2)

L2
+ ..., λ(1) = 4

(
2

3
− ξ
)
, (9)
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where λ(1) is the LO part and λ(2) the NLO one. In order to resum this contribution, we perform the following
replacement:

∫ a

0

d|k| Σ(|k|)
Max(|k|, |p|)

{
1 +

4(2− 3ξ)

3L
ln

[
Max(|k|, |p|)
Min(|k|, |p|)

]}
→
∫ a

0

d|k| Σ(|k|)
Max(|k|, |p|)

[
Max(|k|, |p|)
Min(|k|, |p|)

]λA

. (10)

After this replacement, the gap equation (7) takes the form:

1 =
4(2 + ξ)

L

1− 2λA
(2α− λA)(1− 2α− λA)

+
∆(α, ξ)

L2
. (11)

It is convenient to multiply Eq. (11) by the factor (2α− λA)(1− 2α− λA). This yields:

(2α− λA)(1− 2α− λA) =
4(2 + ξ)

L

(
1− 2λA

)
+ (2α− λA)(1− 2α− λA)

∆(α, ξ)

L2
. (12)

Note that the l.h.s. can be represented as 2α(1− 2α)− λA(1− λA) which leads to:

2α(1− 2α) = λA(1− λA) +
4(2 + ξ)

L

(
1− 2λA

)
+ (2α− λA)(1− 2α− λA)

∆(α, ξ)

L2
. (13)

From Eq. (13), we see that, after resummation, λA, Eq. (9), will contribute to the gap equation up to NLO. The
expression of λ(2) can be obtained from Gracey’s calculations [2] and reads:

λ(2) = −8

(
8

27
+

(
2

3
− ξ
)

Π̂

)
. (14)

Hence:

λA(1− λA) +
4(2 + ξ)

L

(
1− 2λA

)
=

4(2 + ξ) + λ(1)

3L
+

1

L2

(
λ(2) −

(
λ(1)

)2 − 8(2 + ξ)λ(1)
)

=
32

3L
+

1

L2

(
λ(2) − 4λ(1)

(
14

3
+ ξ

))
, (15)

which shows the complete cancellation of the ξ-dependence at LO. Now it is convenient to return to the standard
form for the gap equation by multiplying Eq. (13) by the factor 1/[2α(1− 2α)]. This yields:

1 =
8β

3L
+

β

4L2

(
λ(2) − 4λ(1)

(
14

3
+ ξ

))
+

∆(α, ξ)

L2
, (16)

or more explicitly (as shown in the main text):

1 =
8β

3L
+

1

L2

[
8S̃(α, ξ)− 16

3
β

(
40

9
+ Π̂

)]
, (17)

which displays a strong suppression of the ξ-dependence at NLO: the ξ-dependence exists but only through terms
which are very small numerically.

We may now consider Eq. (17) at the critical point, α = 1/4 (β = 16), which yields:

L2
c −

128

3
Lc −

[
8S̃(ξ)− 256

3

(
40

9
+ Π̂

)]
= 0 , (18)

where S̃(ξ) = S̃(α = 1/4, ξ). Solving Eq. (18), we have two standard solutions:

Lc,± =
64

3
±
√
d2(ξ), d2(ξ) =

(
64

3

)2

+
[
8S̃(ξ)− 256

3

(
40

9
+ Π̂

)]
. (19)

As explained in the main text, a numerical estimate of Nc can be obtained by using the values of R̃1, R̃2 and P̃2 in
Eqs. (3a) and (3b). Combining these values with (as displayed in the main text):

S̃(ξ = 0) = R̃1 −
R̃2

8
− 7P̃2

128
, S̃(ξ = 1) = −5P̃2

32
, S̃(ξ = 2/3) =

R̃1

3
− 5R̃2

72
− 49P̃2

384
,
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together with the value of Π̂ = 92/9− π2, yields, for Lc(ξ) and Nc(ξ):

L+
c (0) = 30.44, L−

c (0) = 12.22, L+
c (2/3) = 29.98, L−

c (2/3) = 12.69 L+
c (1) = 29.69, L−

c (1) = 12.98 , (20a)

N+
c (0) = 3.08, N−

c (0) = 1.24, N+
c (2/3) = 3.04, N−

c (2/3) = 1.29 N+
c (1) = 3.01, N−

c (1) = 1.31 , (20b)

where the “−” solutions are considered as unphysical. The “+” solutions are the ones presented in the main text.
Notice that if we neglect the rest in Eq. (18), i.e., we assume that S̃(ξ) = 0 in Eq. (18), the gap equation becomes
ξ-independent and we have (as given in the main text):

Lc = 28.0981 , N c = 2.85 . (21)

The result of Eq. (21) is in full agreement with the recent results of Ref. [3] where the NLO corrections have been

analysed in an approximation corresponding to S̃(ξ) = 0, i.e., taking into account only the NLO terms ∼ β and ∼ β2

in the rhs of Eq. (1).
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