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MEAN GEOMETRY FOR 2D RANDOM FIELDS:
LEVEL PERIMETER AND LEVEL TOTAL CURVATURE INTEGRALS

HERMINE BIERME AND AGNES DESOLNEUX

ABSTRACT. We introduce the level perimeter integral and the total curvature integral associated with a real
valued function f defined on the plane R? as integrals allowing to compute the perimeter of the excursion set
of f above level ¢ and the total (signed) curvature of its boundary for almost every level ¢. Thanks to the
Gauss-Bonnet theorem, the total curvature is directly related to the Euler Characteristic of the excursion set.
We show that the level perimeter and the total curvature integrals can be explicitly computed in two different
frameworks: piecewise constant functions (also called here elementary functions) and smooth (at least C2)
functions. Considering 2D random fields (in particular considering shot noise random fields), we compute
their mean perimeter and total curvature integrals, and this provides new explicit computations of the mean
perimeter and Euler Characteristic densities of excursion sets, beyond the Gaussian framework.
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1. INTRODUCTION

Considering a stationary 2-dimensional random field X = (X(z)),crz we are interested in statistically
describing the geometry of its excursions sets

Ex(t):={X >t} C R?

according to a level t € R, in a given bounded open subset of R2. In the following U will denote an open
bounded set or simply R? when not bounded. We will focus on Ex(t) N U = {z € U; X(z) > t} as well as

OFEx (t) N U its boundary trace on U, where as usual 0Ex (t) = Ex(t) \ Ex(t).

In view of the measurability of X, its excursion sets Ex (t) are random Borel sets for all level ¢ € R. When
moreover X is a.s. upper semi-continuous, these random sets are a.s. closed (see [28]) and therefore Ex (t)NU
is a compact random set. In dimension 2, the geometry of a compact “nice” set K C R? with piecewise C?
boundary K may be described by three functionals: its area L£(K), perimeter Per(K) = H!'(0K), where
H! is the one-dimensional Hausdorff measure of the length of plane curves, and Euler Characteristic x(K)
that counts the number of connected components minus the number of holes. According to the Gauss-Bonnet
Theorem, when 9K is a disjoint finite union of closed curves, x(K) is also equal to 5= TC(9K), with TC(OK)
the total curvature of the positively oriented curve OK (see precise definitions in Definition 1 and Theorem
1). Let us quote that these geometrical features are also used with different conventions according to the
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2 HERMINE BIERME AND AGNES DESOLNEUX

setting. For instance, in convex geometry, for K a convex body, intrinsic volumes, respectively Minkowski’s
functionals, are defined by Vy(K) = x(K) =1, Vi(K) = 3H'(0K) and Va(K) = L(K), respectively Wa(K) =
1TC(OK) = m, W1i(K) = L H'(K) and W (K) = L(K) (see [32]), while in differential geometry when K is a
compact 2-dimensional submanifold with C? smooth boundary, Lipschitz Killing curvatures of K are defined
by Co(K) = 5=TC(0K), C1(K) = 1H'(0K) and C2(K) = L(K) and may be extended to positive reach sets
(see [33]).

When considering stationary random sets, it is natural to define corresponding mean density functionals.
They are usually defined considering the limit behavior of a rescaled observation through a large window, let
say rU, for r large. Actually, this procedure allows to remove boundary effects. We adopt a similar point of
view in this paper, by removing boundary effect, using an open window U. Hence, for a bounded open set U
we will focus on the mean area E (L(Ex(t) NU)), the mean perimeter E (Per(Ex (t),U)), and on the mean

total curvature E (TC(0Ex(t),U)) of excursion sets. Densities will then clearly appear as
E (L(Ex(t)NU)) = L(Ex(t))L(U), E(Per(Ex(t),U)) = Per(Ex(t))L(U)
and E(TC(OEx(t),U)) = x(Ex (t))L(U).
As far as stationarity is involved, the mean area is not hard to find since
BELE®NU) = [ E(lxws)do
ﬁ[éU)IP(X(O) > t).

It follows that an exact formula can be set up as soon as the distribution of X(0) (that is the same
as any X (z) by stationarity) is known and L(Ex(t)) = P(X(0) > t¢). Now establishing formulas for the
mean perimeter and the mean total curvature or Euler Characteristic is more difficult and requires additional
assumptions on the field. Computing the Euler Characteristic of excursion sets of random fields is a problem
that has received much attention. Indeed, in many applications, the Euler Characteristic is a very useful index
of the geometry of the field, as explained for instance in the review paper of R. Adler [2], or in the papers of
K. Worsley [35] or [36] where applications in astrophysics or in brain imaging are mentioned.

Despite its “global” definition (the number of connected components minus the number of holes), the Euler
Characteristic of an excursion set is in fact a purely local quantity related, by Morse theory, to the number
of critical points of X in U, or, by the Gauss-Bonnet theorem, to the total curvature of the boundary of the
excursion set. Here, we will extensively use this second equivalence to obtain explicit computations of the
mean Euler Characteristic density of the excursion sets of some random fields.

In the framework of Gaussian random field, the first equivalence is usually used. For stationary isotropic
Gaussian random fields, an explicit formula for any level ¢ may be set for the expectation of the Euler Char-
acteristic density, only depending on the variance and the second spectral moment of the field. This is an
important result with many statistical applications. In particular, for large levels ¢, the Euler Characteristic
gives a good approximation of the probability that the suprema of the field is greater than ¢ and can therefore
be used as a p-value: this is the Euler Characteristic heuristic (see [5] for instance). In a “tour de force”, a
Central Limit Theorem has recently been established in [17] that proves the accuracy of the estimation over
only one sample path as the size of the observation is growing. There are also some interesting results apart
from the Gaussian framework for x?, F' and t-fields [35] as well as stable [3] or infinitely divisible random
fields [4] for instance. A test of Gaussianity can therefore be set up using Euler Characteristic of level sets as
proposed in [15]. However, most of general results rely on strong smoothness regularity assumptions and on
conditional distribution densities that are often difficult to evaluate for non-Gaussian fields.

Now, in this paper, we will be particularly interested in another family of infinitely divisible random fields,
that are not Gaussian, namely the shot noise random fields. A shot noise random field is defined on R? by

Vo eR?, X(2) = gm,(z— ),

where the z; are the points of an homogeneous Poisson point process of intensity A in R?, and the m; are
“marks”, independent of the Poisson point process. Such fields allow explicit computations and may appear,
in view of asymptotic normality in high intensity [19], as a bridge between the Gaussian setting and the
discrete models of stochastic geometry such as the Boolean ones [32]. Several results for the computation of
the perimeter were obtained in our previous paper [11]. Since the study for all level ¢ is often difficult we
extend here our point of view of working in a weak framework by considering these geometric quantities as
functions of the level t. Hence quantities of interest will be given, when it makes sense, by the mean level
perimeter integral E (LPx (h,U)) and the mean level total curvature integral E (LTCx (h,U)) of X, where the
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level perimeter integral and the level total curvature integral are defined, for h a continuous bounded function
on R, by

(1) LP (b, U) = /]R h(t)Per(Ex (), U)dt

and

@) LTCx (h, U) = / h(#)TC(OEx (£), U)dt.
R

Let us quote that this allows to get informations on the mean geometry of excursion sets for almost all levels
t and hence to give insights on their evolution according to the level. This setting will allow us to recover and
generalize some important results established in the two different frameworks of Boolean models in stochastic
geometry and of smooth Gaussian random fields.

In Section 2 we propose a general definition of the level perimeter integral and of the level total curvature
integral of a function, that allows to compute the perimeter and total curvature (and therefore the Euler
Characteristic) of its excursion sets for almost every level. We introduce elementary functions as a particular
case of piecewise constant functions (with piecewise smooth discontinuity set) in Section 3 and compute their
level perimeter and total curvature integral. We give explicit expressions for elementary shot noise random
fields, where the functions g,,, are elementary functions. This allows us to generalize results of the literature
(about the Boolean model [26], or about “random configurations” [14]). The last section is devoted to results
on smooth (random) functions. In particular our weak framework allows us to get explicit formulas for some
isotropic symmetric fields, recovering known Gaussian results.

Let us finally emphasize that we have made here the deliberate choice of not working in the weakest possible
functional framework. Our goal is to work with piecewise smooth functions (like the indicator function of a
set having a piecewise C? boundary for instance). But we believe some of our results can be extended to
functions with a weakest regularity. Let us also mention the recent work of R. Lachieéze-Rey in [21] and [22]
that relates the Euler Characteristic to the three-point joint distribution of the random field. And also the
even more recent paper [23] where R. Lachiéze-Rey gives formulas for the Euler Characteristic of isotropic
shot noise random field that are a.s. Morse functions.

2. GENERAL FRAMEWORK

2.1. Sets of finite perimeter and finite total curvature. We consider a Borel set F of R? and the open
set U C R2. We assume that the indicator function 15 is a function in SBV (U). Let us recall (see [7]) that a
function f belongs to SBV (U), the space of special functions of bounded variation in U if f € L1 (U) and has
its distributional derivative representable by a finite Radon measure in U that is

[ 102 @ e == [ 6@ Distdn) o€ CUUR), V=12
U Oy U
for some R%-valued measure Df = (D; f, Daf), is such that

Df =VfL+ (ft — f wH' 2Ty,
where

e D*f =V fL is the absolutely continuous part of the Radon measure D f with respect to the Lebesgue
measure £ and Vf is the approzimate differential of f (see [7] p.165 and Theorem 3.83 p.176).

o Dif:=(fT— f7)vsH "1 2£J; is the jump part of Df, with J; the set of approximate jump points of
f for which there exist two reals f~(z) < fT(z) and a direction vy(z) € S"~! with

tim | FW - @l =0 and i ()~ f~ (@) dz =0,
B;r(:c,uf(x)) B~ (z,vy(x))

p—0 p—0

where Bf (x,v), resp. B, (z,v), denotes the half-ball determined by v € S"~" i.e. {y € B,(x);(y —
x,v) > 0}, resp. {y € B,(x); (y — z,v) < 0}. We denote here B,(x) the ball of radius p and center z.
The approximate discontinuity set (see [7] Proposition 3.64 p.160) Sy is the set of points where f is not

approximately continuous. It is a L-negligible Borel set, countably H!-rectifiable with H!(S; \ J;) = 0, by
Federer-Vol'pert Theorem ([7] Theorem 3.78 p.173).
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This framework, used in our previous paper [11], is convenient to define the perimeter of a set E in U such
that 15 € SBV(U) as

Per(E,U) i= [ D1e|(U) = sup{ | 1pdivpdslp € CHUR), ) < 4o
U

It follows that denoting S7, the approximate discontinuity set of 1, the set Sy, NU (its trace in U) is included
in OE N U the boundary of E in U. In order to get information linked with length and Euler Characteristic
we make the stronger assumption that the boundary OENU in U coincides with S, NU (which is equivalent
to say that the discontinuity points are exactly the approximate discontinuity points in U), and is a piecewise
C? plane curve.

Let us recall here some basic facts and definitions about plane curves, following [16]. We say that an oriented
curve I is piecewise regular if it is simple (with possibly several closed simple curves) and piecewise C? such
that any point « € I' of the curve can be else

e regular: one can find an arc-length C? parametrization v : (0,6) — I' with = ~(s) for some
s € (0,¢), with € > 0, and a normal vector vp(z) = +/(s)* € S! with v/(s)* the +% rotation of
the tangent vector 4/(s). The normal cone (defined for positive reach set [33]) of I' at x is given by
Nor(T',z) = {—vr(z)}. The signed curvature sr(x) of T at = ~(s) is then defined as

kr(z) = (v"(s), vr(x)),

where (-,-) is the usual Euclidean scalar product on R?. Note that since v is an an arc-length
parametrization we have H!(y(0,¢)) = e.

e corner: one can find a simple continuous arc-length parametrization v : (—¢,e) — I' such that
x = v(0) with v being C? on (—¢,¢) \ {0} and 4/ admits limits 7/(07) € S! and 7/(0") € S at 0,
with v (z) = 4/(07)% and v () := 4/(07)* linearly independent (no ”cusp”) in S! such that the
normal cone of T' at x is given by Nor(I',z) = {—pvy (z) — qvif (2);p,q > 0} N S1. We then define
Br(xz) € (0,7) the angle of the cone Nor(T', z), corresponding to the size of the jump of vr at point
x and ar(xz) = £6r(z) € (—m,m) the turning angle at x, where the sign is given according to the
orientation of the curve. Note that we also have H!(v((—¢,¢))) = 2e.

We note Rr the set of regular points and Cr the set of corner points of the curve T.

Definition 1 (Elementary set, Perimeter and Total curvature). We say that a Borel set E is an elementary
set of U if 15 is in SBV(U) and its boundary T := OF coincides with S1, in U with TNU a piecewise reqular
curve, positively oriented in such a way that the normals are oriented towards E, given by a finite union of
simple connected curves (possibly closed), with curvature kr integrable on RrNU, that is kr € LY(RprNU, HY),
and with a finite number of corner points in U, that is H°(Cr NU) < +oo. It follows that the length of the
curve in U is given by

HY(Rr NU) = Per(E,U),

and its absolute curvature in U 1is

TaC(T, ) ::/ (@) H )+ Y Jar(@)] < +o.

RrnU xzeCrnNU

We then define the total curvature of T in U as

TC(T, U) = / pr@H )+ Y ar(o).

RrNU zeCrNU

Let us quote that for E' an elementary set of U, setting f = 15 € SBV (U), the jump part J; of Df is equal
to Rop, with (f1(z), f~(z),vs(z)) = (1,0,v9r(z)) for z € J; and Sy is the disjoint union of Rog UCop.

Notice that the definition of TaC is the same as the one introduced by Milnor in [27]. But here, in this
work, we will pay a particular attention to the signed total curvature, and not to its absolute value. Actually,
our definition of total curvature is the same as to the one of Santalé in [29], Chapter 7. The total curvature
is intrinsic, it doesn’t depend on the parametrization of the curve. But it depends on its orientation: if we
reverse the orientation of the curve then its total curvature is changed into its opposite.

In particular, when FE is an elementary set of a bounded open set U, as soon as 0F = 0FE°, which is the
case when F is closed or open for instance, its complementary E¢ = R2 \ E is also an elementary set of U,
with

Per(E°,U) = Per(E,U), TaC(OE®,U) = TaC(OENU,U), and TC(OE,U)=-TC(OENU,U).
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O

Not elementary Not elementary Elementary

FIGURE 1. Left: two sets that are not elementary sets according to Definition 1: the first set
has one multiple point; for the second set, its indicator function has a discontinuity set not
equal to its approximate discontinuity set. Right: an elementary set.

Note also that an elementary set in U is also an elementary set in any open subset U’ C U and an elementary
set of R? is of course elementary for any bounded open set U. Finally, let us quote that E is an elementary
set in U if and only if F NU is an elementary set in U.

The link between the level total curvature and Euler Characteristic is given by the Gauss-Bonnet theorem.

Theorem 1 (Gauss-Bonnet Theorem). Let E C U be an elementary set and a reqular region (meaning that

E= lo?) Then, S1, = OF and
e the perimeter of E defined by

Per(E,U) := || D1g||(U) = Sup{/ 1pdivedz | € C;(U,R?), [[plloc} < +o0,
U
corresponds to

H' (Rog) = H'(OF).
e By Gauss-Bonnet Theorem, the Euler Characteristic of E is given by

1
X(E) = 5-TC(OB,U),

where the total curvature of OF is equal to

TCOB.U) = [ ros(i(de) + 3 o).

RoE z€CoHE

Proof. The first point follows from Gauss-Green Theorem (see Section 3.3 of [7]). For the second point we
use that F being closed and elementary, its boundary must be composed by a finite disjoint union of closed
piecewise C? curves so that we can apply Gauss-Bonnet Theorem stated in [16] p.274 for regular region. [

Remark 1: It is a well-known result of differential geometry of plane curves that the total curvature of any
regular simple closed curve is 27 or —27 (depending on the orientation of the curve). This result is sometimes
called Hopf’s Umlaufsatz, or also the theorem of turning tangents ([16] p.396).

Remark 2: Note that when E C U is a regular region one has 0F = 0E° and TC(0E°,U) = —TC(OE,U),
that allows to consider both F or its complementary. In contrast, for Euler Characteristic, we have to consider
the compact set U \. E, and that yields (U \ E) = 1 — x(E).

2.2. Level integrals for excursion sets.

Definition 2 (Level perimeter and total curvature integrals). Let f be a real-valued function defined on U
such that f € SBV(U). Fort € R, we define the excursion set of f for the level t as

Es(t) = {f >t} C R

We assume that for almost every t € R, the set Ef(t) is an elementary set of U in the sense of Definition 1
and that t — TaC(0FE(t),U) is an integrable function on R. We then say that the function f is of special
bounded variation and of finite level total curvature integral (on U). Then, the level perimeter integral and the
level total curvature integral of f are defined for any bounded continuous function h on R by

3) LP(h,U) = /R h(t)Per(Ey (1), U) dt and LTC;(h, U) — /R h(t)TC(OE, (), U) dt.
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We simply denote Vi (U) for LPs(1,U) (= ||Df||(U) by the co-area formula [7]) and LTC(U) for LTC;(1,U).

Let us remark that when ¢ > maxy f, then E¢(t)NU = () and therefore Per(E(t),U) = TC(0E¢(t),U) = 0.
On the other hand, when ¢ < ming f, then E¢(¢t) NU = U, and thus 0E(t) N U = (). Therefore we also have
Per(Ef(t),U) = TC(0E;(t),U) = 0. This shows that the perimeter and total curvature are 0 for levels ¢
outside the range of f.

Let us also notice that when H is a C! diffeomorphism on R with bounded derivative h = H’, by a simple
change of variable, the function H o f is also of special variation and of finite level total curvature integral on
U with Egoyr(t) = Ef(H1(t)) so that

Viof(U) =LPs(h,U) and LTChos(U) = LTCy(h,U).
Link with Euler Integral. Due to the additivity property of the Euler Characteristic
x(AU B) = x(A4) + x(B) —x(AN B),

it is natural to set up an integration theory with respect to Euler Characteristic [24, 34]. However, since x
is only finitely additive, a careful choice of integrands must be done. This problem was tackled by defining
the class of constructible functions [30], then extended by the class of “tame” real-valued functions in [9].
Following this framework, Bobrowski and Borman obtained in [13] the first probabilistic statement about the
persistent homology generated by sublevel sets. We briefly recall the definitions used in [13] for comparison
with our setting. When f is a real continuous function defined on a compact topological set S, it is said to be
a tame function if the homotopy types of E¢(t) = {f >t} and {f < t} change only finitely many times as ¢
varies over R, and the Euler Characteristic of each set is always finite. For such a function, a lower and upper
Euler integrals are defined by
| f1ax)
s

+oo
/fwﬂ / (X(f > 1) — x(f < 1) dt,
S 0

+oo
A (W(F = 1) = x(f < —1) dt

where x(f > t) = x(Ef(t)), x(f < t) = x(S) — x(f > t), etc. Note that when S = U we always have
x(f > t) =x(S) =1 for any t < ming f and thus ¢t — x(f > t) is not integrable on R, explaining the above
definition of Euler integrals.

In contrast, we can simply define LTC¢(U) for f a function of special bounded variation and finite level
total curvature on U. Of course, 5=TC(dE(t),U) will not coincide with x(Ef(t) NU) when the excursion set
is not included in the observation window in view of its boundary. But it can be seen as a “modified” Euler
Characteristic, in a sense very similar to the one used in the book of Adler and Taylor [6] or in the paper of
Estrade and Leén [17], where critical points in U are only taken into account, and not the ones on the boundary
of U. Moreover, when considering large domains (that is U for r going to infinity) the total curvature (in
expectation) will grow like 72£(U) whereas the sum of the turning angles on 9rU will (in expectation also)
grow like 7H!(dU), being negligible for large 7.

We will show how the perimeter and the level total curvature integrals can be explicitly computed in different
situations and we will apply it for computing Perimeter and Euler Characteristic densities of stationary fields.
The first situation is the one of sums of piecewise constant functions (also called elementary functions), and
the second situation will be the case of smooth (at least C2) functions.

3. ELEMENTARY FUNCTIONS AND SHOT NOISE RANDOM FIELDS

3.1. Elementary functions. We introduce the class of elementary functions that are piecewise constant
functions of special bounded variation. In order to compute the total curvature of excursion sets we need to
be more precise on the discontinuity set, which is #!-rectifiable under the only assumption of special bounded
variation.

We first introduce some notations. For a point € U and a real positive number p, we recall that B,(x)
denotes the open ball of radius p and center x. For an oriented simple piecewise C? curve vy with finite length,
and a point x on v, then for p small enough, B,(z) \ v is made of two connected components. These two
“half-balls” are respectively denoted by B; (z,7) and B, (x,7). The half-ball B;f (z,7) is the component that
is on the side of the normal v, to 7.
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ou

FIGURE 2. By the Gauss-Bonnet theorem, the Euler Characteristic of the excursion set Ey(¢)N
U (in gray) is equal to the total curvature of its boundary in the open rectangular domain U
plus the turning angles at the points where E;(t) NU meets OU and also plus /2 for each of
the corners of the rectangle U that are in E(t). All these special points are the ones marked
by the small dashed circles on the figure.

Definition 3 (Elementary function). We say that a function f defined on U is an elementary function on
U if f is a piecewise constant function in SBV (U) taking a finite number of values (meaning that f(U) is a
finite subset of R), and if Sy, the discontinuity set of f can be decomposed in U as

SnU=(RyUCUZy)NU,

where (S¢ NZy) NU is a piecewise reqular curve and (see also Figure 3):

o Ry NU is the regular part of the discontinuity set of f in U: it is the finite and disjoint union of C?
simple connected curves having finite length and finite total curvature. More precisely, if x € Ry NU,
then there exists p > 0 such that Sy N B,(x) is a simple C? oriented curve v separating the ball B,(x)
in two half-balls Bf (z,7) and B, (x,7). Moreover there exist two real numbers f*(x) > f~(x) such
that f(y) = f*(z) for ally € Bf (x,7) and f(y) = f~ () for all y € B, (x,7). We also denote

vi(x) =vy(x)  and ky(x) = Ky (7) with ky € LY(Ry, HY).

e C; NU is the set of corner points of f in U: it is a finite set of points (meaning H°(Cy) < 400, with
HO the counting measure) such that if x € Cy NU, then there exists p > 0 such that Sy N B,(x) is
a simple piecewise C? oriented curve v having only one corner at x. We write ay(x) € (—m, ) the
turning angle of v at x. As for reqular points, v separates the ball B,(z) in two half-balls B;r(x,’y)
and B, (x,7), and moreover there exist two real numbers f*(x) > f~(x) such that f(y) = f*(x) for
ally € Bf (x,7) and f(y) = f~(x) for ally € B, (x,7). The turning angle at such a corner point is
denoted

as(2) = ay (@).

e Z; NU is the set of intersection points of f in U: it is a finite set of points (meaning H°(Zy) < +00)
such that for x € Zy NU, then there exists p > 0 such that Sy N B,(x) is the union of two different
simple and oriented C* curves v1 and vo such that {x} = 1 N ya and such that the intersection is
non-degenerate (meaning that v., (z) and v.,(z) are not colinear). FEach curve separates the ball in
two half-balls, and there exist 4 real numbers f~(x) < fi'(x),f_: (z) < fT(x) with at least 3 different
values, such that f = f~(x) on B, (x,v1)NB, (x,72); f = [ (z) on B;(x,ﬂyl)ﬂB;‘(x,'yg); f=f(z)
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on Bf (z,m) N B, (2,72) and f = f*(z) on Bf (x,71) N B} (x,72). And we define
Br(x) = dsi(vy,(2),14,(2))
— min(|Arg v, (2) - Argr, (@), 27— [Argvn, (2) — Argva, (@) € (0,7),

the geodesic distance between v., (x) and v.,(x) on ST.

FI1GURE 3. The three types of points of the discontinuity set of an elementary function. From
left to right: a regular point, a corner point and an intersection point.

Proposition 1. If f is an elementary function on U, then for allt € R, E;(t) is an elementary set of U in
the sense of Definition 1. Moreover, f is of special bounded variation and finite level total curvature integral
on U with

(4) ViU) = IIDf(U)IIZ/ [f* (@) = f~ ()4 (dw) and

RyNU

(5)  LTaCs(U) = /RmU[f*(x)—f‘(96)}If@f(ﬂff)|Hl(d$)ﬂL Do @) = f@)lay ()]

zeCyNU

+ Y (@) - max(f2 (), 2 (2)) + min(f2 (@), fZ (2) — 7 (2)]Bs () < +oo.

z€ZyNU

If h is a bounded continuous function on R, and H is a primitive of h (for instance H(t) = fot h(u)du), then
the level perimeter integral and the total curvature integral of f are given by

(6) LPs(h,U) = /RmU[H(J”(x))—H(f’(x))}’Hl(dw)

(M) LIC ) = [ @) = B @)@k )+ Y @) = B @)@

zeCrNU

+ Y [H( (@) + H( (@) = H(fZ (2)) = H(f5 ())8s ().

z€LyNU
In particular, when h =1, we get LP;(1,U) = V§(U) and
(8) LTCy(U) = / [T @) = f-@)kp@)H (dz) + > [ (@) = [ (@)]as(2)
R ;AU 2eC;NU

+ Y @+ @) - @) - f3(@)]By ().
z€LyNU
Proof. We assume that m = Card(f(U)) > 2. Otherwise, if m = 1, then for all t € R, E¢(t)NU =@ or U and
therefore Per(E;(t),U) = TaC(OE(t),U) = TC(0E;(t),U) = 0. In the following we denote the values of f
in U by v1 < ... < vy, and set vg = —oo. We first remark that E¢(t) NU = 0 for t > v,,, Ef(t)NU = U for
t <wpand Ef(t)NU = E¢(v;) NU for v;_1 <t < w; and 2 < ¢ < m. The set of discontinuity points is given
by Sy NU = UL,0E¢(v;) NU.
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Let us prove that Ey(v;) is an elementary set in U for 2 < ¢ < m. Since f € SBV(U) is piecewise constant,
one can find ¢; a C' real function such that 1g,w)nu = @i o f. By chain rule (see Theorem 3.96 of [7]),
it follows that 1, (,,)no € SBV(U) and therefore 1g,(,,) € SBV(U). Now let us prove that the boundary
T, := 0F;(v;) NU coincides with the approximate discontinuity points of 1p +(viynu and is a piecewise regular
curve. Since I'; C Sy, we can write

I, = (FZ‘ n Rf) U (FZ‘ ﬁCf) U (Fi ﬂIf) .

Note that for x € T;, one has f*(z) > v; and f~(z) < v; and z is also an approximate discontinuity
point of 1, (,,)ny- Moreover I'; N (Ry UCy) is a piecewise regular curve with length HY (TN (RpUCY)) =
HYT; NRy) = Per(Ef(v;),U) < 400 and for x € T'; N Ry we get kr, (z) = rs(z), while for z € I; NCy C Cr,
we get ar, (z) = af(x).

When z € I'; N Zy, we have an intersection point of f, and it may become a corner point or a regular point for
I';. Indeed, using the same notations for intersection points as in Definition 3, we may write x € v N2 with
the two simple C? curves v; and 7 being such that (y1 Uv2) N B,(z) = Sy N B,(x). If v; < min(fF(z), f1 (2)),
then I'; N B,(x) = (y1 N B, (%,72)) U (v2 N B, (7,71)) and = € Cr, with ar,(z) = —B(z). Without loss of
generality we may assume that f*(z) < fi(z). If f*(2) < v; < f; (z) then I'; N B,(2) = 2 and therefore z
is not a corner point of T'; but a regular point H!-negligible with r, () = k., (z). If v; > max(f*(z), f= (z)),
then T'; N B, (x) = (1 N B (#,72)) U (2N B (x,71)) and x is again a corner point of I'; with ar, (z) = 8y (z).
Finally, T'; is a piecewise regular curve and E(v;) is an elementary set in U with Per(Ef(v;)) = H} (R N1T})
and

T ) = [ @)+ 3 s

z€l;NCy

+ Y Bl ( vi>max(fF (2),f~ () T Iwﬁmin(ffm,f:(ac))) < +oo,
xel; ﬁIf

while

er) = [ @@+ Y e

:CEFiﬂCf

+ Y B (Ivi>maX(ff(x)7f:(ﬂf)) - Imﬁmin(fim,f:(x))) :
zel;NZy
It follows that for all ¢ € R, the set E(t) is an elementary set in U and that ¢ — TaC(0Ef(t),U) is an
integrable function on R, as a step function with compact support. Hence f is of special bounded variation
and finite level curvature integral on U.

Now, let h be a continuous bounded function on R and H a primitive of h. Since f € SBV(U) we already
know by Theorem 1 of [11] that (6) holds. Moreover,

/ W TaCOES (1), Uy dt = 3 / M TaO, U) dt = 3 [H(w) — H{vp)|TaO(T,, V).

Then, using the above formula for TaC(I';, U), we get the sum of three terms. The first one is given by

S )~ HO) [ s = [ el Yl — H O, (0 1),

=2 Rf nr;

When z € S NU = UZ,T;, we denote i(z), (resp. j(xz) > i(z)), the minimal (resp. maximal) index
i=2,...,msuch that z € I'; and f~(z) := v;(4)_1, (vesp. fT(x ) i= Vj(z))- It follows that

m J(x)
S [H(vi) = H(vi—)[Ip,(x) = Y [H(v;) = H(vio1)]

i=2 i=i(x)
H(vj(z)) — H(Vi(z)-1)
= H(f"(x)) - H(f (2)).
Therefore the first term is

/ [H(f(2)) = H(f™ (2))] | (2)| 7' (dz).
RyNU
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Similarly, the second term is equal to

YH@) = Hwi)] Y ag(@)| = Y [H(fH(2) = H(f ()] Jag(@)].
i=2 z€l;NCy zeC;NU

Finally, the third one is equal to

m

Z[H(Ui) — H(vi—1)] Z 8 ()] (I'ui>max(ff(z),f:(az)) + Ivigmin(ff(x),f:(:v)))

i=2 zel;NTs

J(x) k()
> B ( > [Hw) = Hwi)]+ Y [H(w) —H(vil)]) ;

reLyNU i=l(x)+1 i=i(x)
where we have introduced k() and {(z) with i(z)—1 < k(z) < I(z) < j(=) such that min(f* (z), fZ(z)) = vk
and max(f*(z), f~(z)) = vy, with the convention that Y7 ﬁ%x)ﬂ = 0 if I(z) = j(z) and Zf(f(x) = 0 if

k(x) =i(x) — 1. It follows that this third term is equal to

Y Bi(@) (Hvjw) — Hvig) + (H(vkg) = H(vi) 1))
z€ZyNU

= D Brle) (H (S (@) = H(max(f* (2), £~ () + H(min(f* (), £~ (2))) = H(f~(2))) -
€Ly

In particular, for h = 1, we obtain Formula (5). The same computations as above give the result (7) for
LTCs(h,U).
Indeed now, the third term is equal to

Y [H(v) = H(viea)] Y Byle ( vi>max(f* (2),/ () ~ Ivﬁmin(frm,f:(z)))
i=2 xeF NZ;
J(z) k(z)
=Y @ | D [H@)—H(wi1)]— Y [Hv)—Hvi1)]
€Ly i=l(x)+1 i=i(x)
= Brlx () + H(f™ (x)) = H(f* (z)) — H(f7 (x)))
€Ly
Taking again h = 1 we obtain (8). O

The above proposition gives the formula for the level total curvature of an elementary function on U. Now,
since we will be interested in shot-noise random fields that are obtained by summing elementary functions, we
need to have also a formula for the level total curvature of a sum of elementary functions on U. This is the
aim of the following proposition.

Proposition 2. Let f,g be elementary functions on U such that their respective discontinuity sets Sy and S,
intersect only at a finite number of reqular points in U, that is SNS,NU = R NR,NU with HY(SyNS,NU) <
+oo. We moreover assume that the intersections are non-degenerate in U, meaning that if v € Ry N Ry NU,
then v¢(x) and vy(x) are not colinear. Then f + g is also an elementary function on U with
e RipgNU = (R ARy)NU = (R URy N (R NRy))NU and
—ifx € Rppg NRyNU, then kyyg(x) = ky(z) with (f +g)*(x) = f(z) +g(zx) and (f+9) (x) =
(@) +g(z);
— if 2 € RpygNRyNU, then kpyg(x) = kg(z) with (f+g)*(x) = f(z) + g1 () and (f+9) (z) =
f(@) + 9 (x);
o CryigNU = (C;UCy) NU is a disjoint union and
i e € ConU, then agig(s) = ay(e) with (f + ) (@) = () + g(x) and (f + g)(x) =
1 (@) + 9(a),
—if x € CgNU, then ayig(x) = ag(x) with (f + g)T(z) = f(z) + gt (x) and (f + 9) (z) =
F@) +g(2);
o Iy o NU = (Zy UZ,U (R NRy)) NU is a disjoint union and
— ifw € IyNU, then Bpig(x) = By(x) with (f+9)* (x) = fT(2)+g(x), (f+9)" () = f~(2) +g(2),
(f +9)5(2) = f1 () + g(x) and (f + 9)"(2) = [T (z) + g(x)
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— ifx € Z,NU, then Byiq4(x) = By(x) with (f+g)*(z) = f(x)+g" (2), (f+9)” () = f(z)+g (2),
(f+9)5(x) = f(@) + 95 (z) and (f + 9)(2) = f(z) + g7 (2)

—ifx € Ry NRyNU then Brig(x) = dgi(vy(x),vy(x)) € (0,7) with (f +g)"(x) = fH(x) + g (x),
(f+9)~ (@) =f(2)+9 () and {(f + 9) T (x), (f +9)5 (@)} = {fT (@) + g~ (x), f~ (2) + g7 ()}

Moreover, we have that

©) Vieg(U) = Vi(U) 4 Vy(U) and LTCy44(U) = LTC; (U) + LTC, (U),
while
(10) LTaCyyy(U) = LTaCs(U)+ LTaCy(U)
Y (U9t @ - max((f+9) (@), (F +9)7 (@)
T€RsNRyNU

+min((f +9)5(2), (f + 9)5 (@) = (f + 9)_(37))) Bftg(2)

< LTaCy(U) + LTaCy(U) + 20 Y [(fT(2) = f~(2)) + (¢" () — g~ (2))].
TERfNRGNU

Proof. Since f and g are both piecewise constant functions in SBV (U), then f + g is also a piecewise constant
function in SBV(U), and its discontinuity set Syy4 satisfies Sy NU C (SpUSy) NU. We now need to show
that a point in Syy4, N U is else a regular point, a corner or an intersection point in the sense of Definition 3.
If € (§¢\ Sy) NU, then we have three cases:
-ifx € (Rp\Sy) NU, then z € Ry NU with kfyy(z) = k¢(z) and (f + g)"(x) = fT(z) 4+ g(x) and
(f +9)" (=) = [~ (2) + g(x).
-ifz € (Cp\Sy) NU, then & € Cppg NU with apig(xz) = ap(z) and (f + g)T(z) = fH(x) + g(z) and
(f+9) (@) = f (2) + g(a).
Sif € (T;\ 8,)NU, then o € Ty, MU with By y(z) = Ar(z) and (f +9)* (z) = F+(2)+g(x), (f +9)"(2) =
f= (@) +g(x), (f +9)(x) = f(2) + g(z) and (f +g)L(z) = fI(z) + g(=) .
The same symmetric formulas hold when z € (S, \ Sy) NU. Now, when z € Sy NS, NU =Ry NRyNU,
since we made the hypothesis that the intersection points are non-degenerate, then = becomes an intersection
point of f + g, that is # € Ty, and moreover 1 4(z) = dgi(vi(x),ve(x)), (f +9)" () = fH(z) + gt (2),
(f+9)~ () = f~(2) + g~ (), and {(f + 9)L(2), (f + 9); ()} = {fF(x) + g7 (2), [~ (2) + g7 (2)}.

Finally, having identified the discontinuity set of f + g, since we assume that (R "R, NU) < o0 we
deduce that (Ry+q UCypyy) NU is a piecewise regular curve and

/Rf+gmU|/ff+g(a:)|H1(da:) = /RfmUlmf(:r)H-h(dx)+/RgmU|,.$g(x)|H1(d$) < 400,

H(CrigNU) = HUC; NU)+H(CyNU) < +o0
and  H°(Z;,NU) HUZ;nU)+HY(Z,NU) +HOY(RyNRyNU) < +o0.
This finishes to prove that f 4 g is an elementary function. We also notice in particular that when z €
Ry NRyNU, one has (f +9)* () +(f +9)~(x) = (f+9) (@) + (f+9)5(2) = [T (@) + g7 (2) + f(2) +9™ (2),
such that applying the result of the previous proposition (Equation (8)) we can obtain the formula (9) for the
level total curvature of f+g, while the result for the variation comes from the fact that H'(RyNR,NU) =0. O

Remark: Formula (9) says that the total variation and the total curvature of a sum of two elementary functions
with prescribed intersection of discontinuity sets are the sum of their total variation and their total curvature.
This result is quite striking, but we have to underline that it does not hold in general. This will appear clearly
in the next section where we will consider smooth functions f and where the formula for the level perimeter
and the total curvature integral is obviously non linear in f.

3.2. Level perimeter and total curvature of an elementary shot noise random field. We consider
here a shot-noise random field defined on R? by

Vr € R?, Xo(z) = ngi(:v —x),
il
where ® = {(z;,m;)}iesr is a Poisson point process on R? x R¢  defined on a probability space (2, A,P),
of intensity AL x F, with A > 0 real, £ the Lebesgue measure on R? and F a probability measure on RY.
Note that equivalently, we may define ® as an independently marked Poisson point process where {x;}; is an
homogeneous Poisson point process of intensity A and the m; are “marks”, following a law F'(dm) on R? (with
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d > 1) and independent of the Poisson point process {x;};. Let g : R? x R? — R be a measurable function
such that the functions g,, := g(-, m) satisfy

(11) /]R? y |gm (x)| dx F(dm) < 4o0.

Then, the random field X is well defined as an almost surely locally integrable function on R? (see [11]). Note
that moreover, the random field X4 is stationary. We will first give formulas for the level perimeter and total
curvature integrals of Xg on an open bounded set U in the case where the g,, are elementary functions on R?,
then we will compute their expectation. Finally we will give explicit results in the case of weighted indicator
functions of random sets, obtained from a deterministic compact elementary set and regular region D, by
random rotation and dilation. Specific computations for disks with D = D(0,1) and squares with D = [0,1]2
are linked with some recent results on Boolean models.

Throughout the rest of this section we also assume that for F-almost every m € R?, the g, are elementary
functions on R?, with compact support and such that

m

(12) V,, (R*)F(dm) < 400 and / LTaC,,, (R*)F(dm) < +oo,
R4 Rd

where V, (R?) and LTaC,, (R?) are defined by (4) and (5) choosing U = R? and write LP,_(-,R?) and
LTC,, (-,R?), the level total curvature integral of g,, in the whole space R?. For F-almost every m, g, is
assumed to have a compact support, that can be included in a square [—~T},, T),]? with T}, € R, and its
maximal value [|gm||co = [ [max ]2\ gm | is finite. We will assume moreover that

(13) / T2 F(dm) < 400 and / llgm |0 F'(dm) < 4o0.
R4 Rd

Note that the first assumption of (13) implies that there is only a finite random number of g,,, denoted by
N(U), contributing to the values of Xg on the bounded open set U C (=T, T)?, for some T > 0. Actually, it
is clear that

NU) < #{;0 0 (2 + [Ty, T 1) # 0 < #{03 |zilloo < (T, + 1)},
with [|z]|oe = max(|z1], |z2]), for 2 € R2. It follows that E(N(U)) < A [pa 4(Tm + T)*F(dm). Since F is a
finite measure, under (13), we get

(14) E(N(U)) < +0.

In the following we will use the notation 7, to denote the translation of z in R? (i.e. 7,y = y + x for all
y € R?). We will also denote ®; = ® \ {(x;,m;)} for i € I, ®;; = &\ {(z;,m;), (x;,m;)} for i # j in I, and
their associated shot noise random fields
Vi, Xo,(x)= Z gm,(x —x) and  Vj#i, Xo,(x)= Z Im, (T — k).
kski sk k]

Theorem 2. Assume that for F-almost every m € RY, the function g,, is an elementary function on R? (in
the sense of Definition 3) satisfying (11), (12) and (13), and such that

(15) S0\ Ry ) Plam) < ¢

(16) / HY (Ry,, NTuRy,, ) dzF(dm)F(dm') < 400
RdxR4 JR2

(17) / HO ({y €ERy , NTeRy,. iV, (y) = vy, (y — x)}) dzF(dm)F(dm') = 0.
RdxRd JR?

Then, almost surely, for all bounded open set U C R?, Xg is an elementary function on U and its discontinuity
set on U is given by Sx, NU where Sx, = Rx, UCx, UZIx,, with

e Rx, = (UTxiRgmi> \ ( U 72:Rg,., N ijRgm) , and if x € Rx, NU, there exists a unique i such
i i, # '
that © € 73, Ry, with kx,(z) = kg, (x —x;) and

Xot () = gt (x — i) + Xo,(2) and Xo™ (z) = g, (x — 2;) + Xo,(2);
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e Cx, = Um,Cy,. , and if x € Cx, NU, there exists a unique i such that x € 7,,,Cy,,  with ax,(x) =
i
g, (x — x;) and

XoT(2) = gh (¢ — 25) + Xo,(x) and X~ (z) = g,,,(x — ;) + Xa,(1);

i\ #
— there exists a unique i such that x € 7,1, , with Bx,(z) = By,, (x — ;) and
Xq>+(l') = gr—ir_u (x - xl) + Xq:‘i ("T)v Xq;._(!L') = g;ti ({E - xl) + Xq)i (1’),
Xoy(x) = gm (@ —2i) + Xo,(2), XoT(x) = gm, " (z — 2i) + Xo, (2);

o Ix, = (UTMIQHL{’) U < U 72, Rg,., N ijRgmj> and if v € Ix, NU, only two situations occur
?

— or there exists a unique pair {i,j} with i # j such that x € 73, Ry, N7y, Rgmj with
Bxo (@) = dsa (v, (@ — @), vy, (2 — 27)) € (0,7)
XoT (@) = g, (v = 23) + g5, (2 — 7)) + Xo,, (2), Ko™ (1) = g, (2 — 21) + g, (x — 75) + Xo,, (2),

{XoT(2), Xo( ()} = {gm, (v — 20) + g, (& — 7)) + Xo,, (2), g, (2 — 23) + g, (& — 25) + Xo,, ()}

In particular, a.s.

Vi (U) =) Vy,,, (7-4,U) and LTCx, (U) = Y LTCy,, (7-4,U),

with
Vi (roeU) = [ g =) = gy (o )] W ),
Un"'ziRgmi

and

LTCgmi (T,in) = Z /Un » [g,fh (SL’ — .’Ez) — g;i (x — xi)]l‘{gmi (LC _ xz) 'Hl(dx)
+3 Y lgh e m) — g, @ — )y, (- )

7 zEUﬂ‘rl.iC

gm;

+Y Y g @)+ g, (@ =) = g (@ — ) = g, (@ — 20)]By,, (2 — ).

7 wEUﬂTxi ngi

Proof. Since it is sufficient to prove the result for all rectangles U = (a1,b1) X (az2,b2) with a1, as,b1,bs € Q,
we only have to prove it holds almost surely on some fixed rectangle U = (a1,b1) X (az, ba), with a; < by and
ag < by. Let us quote that we already have proven that X € SBV(U) in Theorem 2 of [11] in a more general
framework. However we need here to be more precise on its discontinuity set Sx, C UiTs,Sy,,. -

Let us first remark that when Ag is a finite set of points of R? depending on the marked Poisson point
process ® = {(z;,m;)}, as soon as E(H°(Ag)) < +00, one has,

UA‘PJ' N ijsgmj =0 as.
J

This follows from the fact that, by Slivnyak-Mecke formula (see [8] Theorem 1.4.5),

N

E(#H|Ae, N 7oy S, < A / dIE(’HO(Aq)ﬁTngm)) dxF(dm)
- R2xR

J

< AE(H°(Ae)) | L£(S,,.)F(dm) =0,
]Rd

since £ (S,,,) = 0, using Fubini Theorem and translation invariance of both H° and L.

Our first assumption (15) implies that

(18) U Ta; (ngi \Rgmi) ﬂszngj NU=0 as.
i #
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Actually, taking A = Urs, (Sy,., \ Ry,,.,) NU, Campbell formula (see [8] Theorem 1.4.3) ensures that

E(H" (As)) < A HO (12 (Sy,, \ Ry,,) NU) dzF (dm)
R2 xR4

AC(U) /]R H° (S, \ Ry,.) F(dm) < +o0.

IN

Then, (18) follows from the preceding remark since |J 7, (ngi \Rgmi) N7e;Sg,,. NU =JAs, N7, S,,, -
irj # ’ j ’

The second assumption (16) will ensure both that

0
(19) H U T2, Ry, N Ta;Ry,,, NU | <00 as.,
i,j #
and
(20) U 7R, N7, R, N7, S, NU =0 as..
1,5,k #
Here we set A = TziRgm N7z, Ry, NU. Using again Slivnyak-Mecke formula and Campbell formula we
i) # !

obtain that
E(H"(As))

IN

A2 /R . /R . H® (2 Ry,, NTw Ry, , NU) daF(dm)dz'F(dm')
XIR* X

IN

ML) / / HY (Ry,, NTuRy,,) deF (dm)F(dm') < +oc.
R4 xRd JRR2

gm, =0 as. .

It follows that H°(As) < 40 a.s. and JAs, N 72, S
K

Finally and similarly, the last assumption ensures that

(21) {y € U T2: Ry, N ijRgmj NU; vy, (y —xz;) = ngmj (y—z;)} =0 as.

0,J F#
This follows from the fact that the expected H° measure of this set is zero, according to Slivnyak-Mecke
formula and Campbell formula, Fubini Theorem and translation invariance.

Now let us consider the random variable N(U) counting the number of functions g,,, contributing to the
values of X¢ on U and recall that under the assumption that [o, T3 F(dm) < 400, N(U) is a.s. finite, as a
consequence of (14).

We now will prove the result of Theorem 2 by induction on the value of N(U) once we have fixed an almost

sure realization ensuring the previous configuration.
For N(U) = 0 there is nothing to prove since X3 = 0 on U in this case. Let us assume the result holds
when N(U) = n > 0 and let us prove it for N(U) = n + 1. We can assume that there exists (z;,m;) such
that 7_,, gm, contributes to the values of X on U and write X = Xo, + 7—z,g9m,. The number of functions
contributing to X, is given by N(U) — 1 so we can use our induction to state that Xg, is an elementary
function on U with discontinuity set S X, N U where

Sxq, = U Ta;Sgm, > With  Rx, = U Ta; R, \ U Ta; Rgm, N T2 Ry, | 5
Jsii Jii#i Jik #ij ik

Cxa, = U 7,Cp,, and Ix, = | | 7% | U U =R, N7Ry,.,
Jii Jiii dik #ij ik

Then the discontinuity points are given by Sx, NU with Sx, C Sx,, U 72,Sy,,. = Uz, ng]_ with
J

Sxa, N7 (Sgu, \ Ry ) U C | 72,80, N7, (Sgun, \ Ry, ) NU =10
JijFi

by (18). Moreover,

SX<1>i \,R’X@i - U Ta; (ngj \Rgmj) U U TIjRgmj ﬂkaRgka
Jij#i Jik #iFi ki
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with again |J 7, (ng, \ Ry, ) N7, Sy,,. NU = O by (18) and U Tu; Ry, N, Ry, N2, Sg,, MU =10
Jiii ! ! ' dik A5 kA ! '
by (20). Therefore, we may conclude that

SX‘i’i ﬁTIz‘ngi NnU C 'R,X@i ﬁTwiRgmi NnU,

with H° (qu,i N7, Ry, NU ) < 400 by (19). Finally let us quote that the intersections are non-degenerate
in view of (21). Hence, according to Proposition 2, X4 is an elementary function on U. Moreover, let fix a
point x € U. Ifz € Rx, \72,Sq,. Weget X&) = Xfl,ti ()4 gm, (x —2;) and by induction there exists a unique
Jj # i such that z € 72, Ry, so that XE(x) = Xo,,(v) + gf,ij (= 2;) 4+ gm, (v — ;) = Xo, (x) + gij (x —xj)
and rx, (z) = kg, (¢ — ;). Similarly, if z € 72,Rg,,. \ Sx,, we get XoE(2) = Xg,(zx) + g% (z — x;) and
Kxq(T) = kg, (r — ;). In the same way, by induction and using the fact that Cx,, is the disjoint union of
Tz,Cg,,, We obtain that if z € Cx, , there exists a unique 7 such that z € 75,Cg,, and ax, (z) = ay,,, (r—;) with
XoT(z) = g% (z — ;) + Xo,(z). Finally Ty, is the disjoint union of TIxy,s T, Ly, and Rx, N7, Ry, . By
induction, Iy, = U 72,2y, U U 7,Rg,. N7, Ry, and Rx, N7, Ry, = U 7,Ryg,. N7, Ry,
J3d 70 Jok #g#i kA Jig#i
where unions are all disjoint. Hence, grouping the terms we get the result. (|

Theorem 3. Under the hypothesis of Theorem 2, assuming moreover that

(22) / / (lgmlloe + g o) HO (Ry, A 7Ry, ) daF(dm)F(dm’) < +o0,
RdxRe JR2

then the random variables Vx,(U), LTaCx, (U) and LTCx, (U) have finite expectation for any bounded open
set U. Moreover one has

E(Vx, (U)) = AC(D) /R V(B2 F(dm) and B(LTCx, (U)) = AL(U) /R TG, (B)F(dm),

with
mw>=4awwwwwmw

9m

LTC, (R?) = /72 [0m ™t (2) = = (Mg (DHUAD) + 3 [t (2) — g™ (2 ag, (2)

am 2€Cy,,
+ D (9 (@) + 9m” (2) = 9 (2) = 93 (2)]Bg, (2)-
ZeIgm

It follows that for a.e. t € R, the random variables Per(Ex, (t),U) and TC(0Ex, (t),U) have also finite
expectation such that for any h continuous bounded function

E(LPx, (h,U)) = /R h(t)E (Pex(Ex, (1), U)) dt and E(LTCx, (h, U)) = /]R h(t)E (TC(9Ex, (t), U)) dt,

where
g (%)
E(LPx, (h,U) = AL(U) /R d /R ) /g BA(Xa(0) + 8)dsH (da)F(dm)
E(LTCx, (h,U)) = )\ﬁ(U)/ (R(h,m) + C(h,m) + I(h,m)) F(dm),
Rd
where

gt (z) g ()
MmaLl@@mmwmwmmmwmcmmmglwﬂW&@mm%@,

and I(h,m) = IV (h,m) 4+ I®(h,m), with

9gm

gj”(;v) gm;(cv)
ID (h,m) = Z </ E(h(Xs(0) + s))ds —/ E(h(Xs(0) + s))ds) Bg,. (),

r€T, gmt(l’) q;L(I)

9m

while I®) (h,m) is equal to

%/Rd /R2 Z dsi(vg,, (2 — ), vy ,(2))

2€72 Ry, MRy,
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gm(z—x)
X /( . E (h(Xe(0) + s+ g}/ (2)) = H(Xe(0) + s + g,,,(2))) dsdaF (dm').

Proof. First note that the results on the perimeter follow from Theorem 2 and Proposition 1 of [11] since in
view of (11) and (12) we have [p, |[|gm|l 5y ®ae)F(dm) < +o0. Moreover, according to (10), one has a.s.

LTaCx, (U) < Z LTaC,,, (7, U) + 21 S H° (TIiRgmi N 7a, Ry, 0 U) (llgom:
1,5 #

oo T ”gmj Hoo)

By Campbell formula,

E (Y LTaC,, (r-.,U) | = / LTaC,, (7_U)AdzF(dm).
p ‘ R2 x R4

Hence, by Fubini Theorem,

E (Z LTaCy,,. (T_mU)> = \L(U) / LTaC,, (R*)F(dm) < +oo0.
i Rd

Moreover, by Slivnyak-Mecke formula,

S Ho (TZiRgmi N 72;Rg,, N U) (Ilgm.

0, #

- / / HO (72 Ry, N 7Ry, OVU) (lgmlloe + g lloc) A2dzda’ F(dm) F (dm)
R4 xRe JR2xR2

oo T Hgmj HOO)

— L) / / / Ler, omry. (l9mlloo + [ gm lloo) HO(d2)dz F(dm) F(dm')
RdxRd JR2 JR2 m

= Azﬁ(U)/ /(\|gm||oo+|\gm/||oo)“rz0 (Ry,, N 7Ry,,) deF(dm)F(dm') < +o0,
R4 xRd JR2

by assumption (22). It follows that E(LTaCx, (U)) < +oc and therefore E ([, |[TC(0Ex, (t),U)|dt) < +oo.
So for a.e. t € R, the random variable TC(0Ex,, (t),U) has a finite expectation and ¢t — E (TC(0Ex, (t),U)),
is a function in L'(R). Note that since LTCx,, (U) = >, LTC,,, (7—z,U) we simply get by Campbell formula
and Fubini Theorem that

E(LTCx, (U)) = AL(U) / LTC,, (R?)F(dm).
R4
Now, let h be a continuous bounded function with primitive denoted by H. We already know that a.s.
LTCx, (h,U) = [ h(t)TC(dEx, (t), U)dt may be written as the sum of three terms Ry + C + I), with finite
expectation under our assumptions. By Fubini Theorem, it follows that

E(LTCyx, (h,U)) / hOE(TC(OEx, (t), U))dt = E(Rn) +E(Ch) + E(I).

For the first term we get

E(Rn) = E(/R ﬁU[H(X<i§(Z))Iif(Xq?(fﬂ))]/fxq)(Z)Hl(ch))

E (Z/T mU[lTﬂf(Xz'(Z) + g, (2 — @) — H(Xi(2) + g, (2 — 0))]Kig,,, (2 — xi)Hl(d«Z)>

Lo B + (e~ 0) = H X () + (= = 2)) ry, (2 = ) (@) Ao P ),

by Slivnyak-Mecke formula. Using translation invariance of both ! and £ and stationarity of X¢ we get that

g (%)
(23) E(Rn) = \L(U) /R d / / ' E((X8(0) + 5)) g, (JdH (d2) Fldm) = ML) [ R(bm) F(dm).
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Similarly, for the second term we get

E(C) = E| Y [HXJ() - H(Xg (2)]ax, ()

z€CX<I>ﬂU

(Z Ler,c,, nulH(Xe,(2) + g, (2 = 21)) = H(Xo,(2) + g5, (2 — )], (2 = mi)Hl(d2)>

(1) = M@ / S B ([H(Xs(0) + 655(2)) — H(Xa(0) + g (2))]) ag,. (=) F(dm)
z2€Cy,,
25) = )\E(U)/Rd C(h,m)F(dm),

with C(h,m) = Y fj,j”((zz)) E (h(X5(0) 4+ s)) ds g, (2). Finally, the last term may be itself decomposed

2€Cq,,

in two terms, say I, = I}(LI) + I}(f). With similar computations we get E(I,(Ll)) equals to
gt (2) am7(2)
AL(U) / 3 / E (h(X(0) + ) ds — / E (h(Xo(0) + 5)) ds | By, (2)F(dm)
d + —
R 2€Ly,, gm” (%) 9m (2)
(26) =A\L(U) / IO (h,m)F(dm).
Rd

Since 72, Rg,,, N Ta; Ry, = Te; Ry, N Te; Ry, , Writing for z € 73, Ry,,, N Ta; Ry,

gﬂl](z I])
Apymh(t,z — 34,2 —x5) = / ' [h(t—i—g;;i(z—xi) +5) = h(t + g,,, (2 — ;) + 5)]ds,
g

m; (2—xj)

the term E(I,(f)) is equal to

1

E 52 Z Ay WX, (2), 2 — 24,2 — x5)dsi (vg,,, (2 _mi)7yg7nj (z —z;))
£ 2E€Ty; Rgmi ﬂ'rzj Rymj nU
- % / / 3 E (A h(Xa(2), 2 — 2,2 — 2)) dgi (v, (2 — @), vy, (2 — 2'))N2daF (dm)da’ F(dm'),

2€T2 Ry, Tyt Ry, MU

by Slivnyak-Mecke formula. By change of variables, translation invariance of H® and £, and stationarity of
Xg, we get

(1(2 —E / / E (Apmh(X(0),z — x, 2)) ds1 (v, (2—2), vy, , (2))dzF (dm)F(dm').
RIXREJR? o0 R qu P

Now, let us quote that choosing h,(s) = e™“* for u, s € R we can remark that

(27) E(LPx, (h, R2)) = AL(U)E (X)) / (LP,, (hy, R?)F(dm),
R

while (23)+(25)+(26) is equal to

(28) AL(U)E (ei“X‘I’(O)) /R (LTC,,, (hy, B2)F (dm).

Therefore

(29)E(LTCx, (hy,U)) = /R " B(TC(OEx, (t),U))dt = AL(U)E (emx“’(o)> /R , [LTCy,, (hu, R?)+

a I (=)
/ / (6zu9m/(2) Zugm/ (Z)) / ezusdsl (ng (Z _ $)7 Vg, (Z)) dsdxF(dm')} F(dm)
R4 JR2 g

2ETLR g y m(z2—1)

O
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3.3. Explicit computations. In this section, we will give some explicit computations of the mean level total
curvature function of elementary shot noise random fields. These results generalize the results of Decreusefond
et al. [14] obtained for indicator functions of a square, and also the known results on the Boolean model (that
correspond to the excursion set of level ¢ = 1). We will also show some numerical simulations.

Let us first recall that for shot noise random fields, the characteristic function of X (0) is explicit and given
by (see for instance [10])

E(eiqu>(0)) = exp ()\/ (eiugm(x) _ 1)de(dm)> .
R2 xR4

In this section we consider D an elementary compact subset of R and regular region so that it has a piecewise
smooth boundary given by I' = D a finite union of positively oriented closed simple curves, piecewise C? and
of finite total curvature, i.e. TaC(T', R?) < +o0o. Note that by Gauss-Bonnet Theorem we have

TC(T,R?) = 27x(D).
We will focus on the case where the marks are of the form m = (b,r,0) € R x [0, +00) x [0,27] C R? with
d = 3, with distribution F(dm) = Fp(db)Fr(dr)Fe(df) and functions g, given by
Vo € R? gn(z) = blg,,p(z),

where rD is the dilation of D by the factor r, and Ry denotes the rotation of angle §. We will denote
b* = max(b,0), b~ = min(0,b) such that for € dRgrD, we have g/ (z) = b" and g,,-(x) = b~ with
G () — g (2) = b* — b~ = [b] and b= (b* — b-)sgn(b).

We denote by B (resp. Bt = max(B,0) and B~ = min(B,0)), R and © independent random variables
with distributions Fp, Fr and Fg. We will mainly focus on the case where © is uniform on [0, 27], that is

Fo(df) = il[o,gﬂ]dﬂ for random shapes with uniform rotation; or on the case where © = 0 a.s., that is
Fo = §p corresponding to simpler marks m = (b, r).

Theorem 4. We assume that
E(|B|) < 400 and E(R?) < +oo.
We denote the mean perimeter and the mean area of RgrD by
D= / Per(RgrD) Fr(dr)Fo(df) = Per(D)E(R) and a:= | L(RerD) Fgr(dr)Fe(df) = L(D)E(R?).
R2 R2
Then Xg satisfies the assumptions of Theorem 2 and 3 and
E(LPx, (U)) = AL(U)E(|B|)p and E(LTCx, (U)) = 2rAL(U)E(B)x(D).
Moreover, when Fg is the uniform law on [0,27], then, for all u # 0,
Fis(u) ~ Py (u)
0

/ R (Per(Ex, (t),U))dt = MC(U)E(e™X=()
R
1

/ eE(TC(0Ex, (t),U))dt = AL(U)E(eX(0)
R (A7)

— A _ B
(2r(Fat) ~ DXD) + 5 (Far () = Fo ()7 )
where 1:“73, respectively F/'é: or IF;;, denotes the characteristic function of B, respectively BT or B~. In the
case where B = 1(= B") a.s. we deduce that Vk € N, Vt € (k, k + 1],

(30)
_(\a)* _(\a)* A
B(Per(Bx, (1,0)) = M) ) 2B (o) - o+

Proof. Since H'(RgrT") = rH(T') and TaC(RgrD',R?) = TaC(T',R?), the g,,’s are elementary functions with
for F(dm) almost every m = (b, r,0), writing L = H!(T") = Per(D), we have

Vg (R*) = |blrL  and LTaC(gm, R?) = |b] TaC(T', R?).

and E(TC(0Ex,(t),U)) =27AL(U)e

Let us remark that Equation (11) becomes
/ |gm (z)|dzF(dm) = E(|B])a < +o0.
R JR?
Equation (12) is easily checked since

/ V,, (R*)F(dm) = E(|B|)E(R)L < 400 and / LTaC,,, (R*)F(dm) = E(|B|) TaC(T, R?) < +oc.
R4 Rd
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Assumption (13) also follows from the fact that @ < +o00 and E(|B|) < +oo. For (15), let us remark that
Z,, =0 and C,,, = RyrCr such that H° (S,,, \ Ry,.) = H° (Cr), ensuring (15), by assumption on T'.

Now, in order to check (16) and (17) we need a kind of kinematic formula. For f a measurable non-negative
function on [—m, )2, periodically extended on R?, and I'y, I'y two simple closed curves, we can compute the
integral

()= [ 3 fArgorn () A, — o) do.

zel1N7 2

Using computations analogous to the kinematic formula of Santalé [29], Chapter 7 (where he considers
random translations and rotations), we have that if I'; and I's are two simple closed curves, then

Ly ple s s
(31) Ir, r,(f) = /0 ; F(0u(s1) + 5, ba(s2) + 3)|sin(01(s1) — O2(s2))| ds1 dso,

where the curve I'; (resp. I'z) of length Ly = HY(T'1) (resp. Lo = H'(I')), is parametrized by s + ~1(s1)
(resp. by s + Y2(s2)) where s; (resp. sg) is arc length, and 61(s1) = Arg~i(s1) (resp. 02(s2) = Arg~5(s2)).
Heuristically, this formula can be obtained using the change of variable x = F(s1, s2) = 71(s1) — v2(s2), for
which the Jacobian is

| det(dF")| = |sin(01(s1) — 02(s2))],

and noticing that the intersection point of I'y and 7,5 is then z = 41 (s1) = = + Y2(s2).
In particular, taking f = 1, it follows that Ir, r,(1) < LiLs. Note also that we moreover have the exact
formula

2m 2m 2m
/ / IRgfl,RgFQ(l)dgde/ =27 X / |SlH(0)‘d9L1LQ =21 X 4L1L2,
0 0 0

according to a generalization of Poincaré’s Formula (see [29] for instance). Using the fact that I' is a finite
disjoint union of closed curves we obtain that Ir,,r gryrr(1) < L2rr', since the length of RerT’, resp. Ryr'T,
is rL, resp. r'L, with L = H(T') the length of I and
2T 2m
/ / IRQTF,R;WF(l)deQI =271 X 4L2’I"7’/.
o Jo
It follows that

/ / HO (R, N 7Ry, ) duF(dm)F(dm') = / / Loy vr (1) Fo (d0) Fo (d9') Fr (dr) Fr (dr”)
Ré xRd JR2 ]Ri [0,27]2

2
417 ( / rF,(dr)> = 47°,
R+
with p = LE(R) the mean perimeter, proving (16).
Moreover, for f(61,02) = Ip,=9, + 1o, =0,+, where = stands for equality modulo 27, we clearly have

IFl,Fz (f) =0,

in view of (31). Since I is a finite disjoint union of closed curves, it follows that

/ / HO ({y € Ry, N 7aRy, i vy, (y) = 1, (y — )}) deF(dm)F(dm')
R4 xRd JR2

IN

= / / IRGTP’Rg,TIF(f)F@(de)F@(dQI)FR(dT)FR(dTI) = O7
R% J[0,27]?
so that (17) holds. Therefore we get the statement of Theorem 2. Moreover, we also get
/ / (lgmlloe + llgm lloo)H® (Ry,,, N 7o Ry, ) daF (dm)F (dm’)
Rd xR JR2
< 4t [ (bl V) Fa(db)Fa(ab) = $7°B( B) < +oc,
RxR

and (22) is also satisfied so that Theorem 3 holds.
Note that, we simply have

E(Vx, (U)) = AL(U) /Rd Vg, (R?)F(dm) = AL(U)E(| B)E(R)H' (T),
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and
E(LTCx, (U)) = AL(U) / LTC,,, (R*)F(dm) = AL(U)E(B)TC(T, R?),
Rd

using the fact that LTC,, (R?) = (b" —b™) x sgn(b) x TC(I',R?). Since TC(I,R?) = 27x (D), we obtain the
first general statement. For u # 0, we can explicitly compute the characteristic function of X¢(0), given by

E(e™X*() = exp ()\/ (etugm(@) _ 1)F(dm)daﬁ) — Pa(Fa(w-1)
R4 xR?

where Fpp(u) = E(eP) = [, e?* Fp(db) is the characteristic function of B. In particular for B = 1 a.s. Xg(0)
is a Poisson random variable of parameter Aa. We also have, writing h,, as previoulsy,

b+ . eiub+ - eiub,
LPy,, (ha, R?) = / MU (RorT)dt = rH (1)
- o
bt i eiub+ _ eiub’
LTCgm (hu7R2) = / elutsgn(b)TC(Rerl",R2)dt _ TC(F7R2)7Sgn(b)7
B i
so that N B
F — F-
/ LPy,. (h, B2)F(dm) = B(R)#! (1) 220~ Fo- ()
ke u
and B
/ LTC,,, (hu, R?)F (dm) = TC(F,RQ)M.
Re w
Therefore

B(LPx, (b U) = [ ™ E(H (0, (1,U))dt = \ED)B( O By ()72 ) = P (u)

Finally, let us remark that for f(6,62) = min(|6; — 02],27 — |61 — 62|) (distance between two angles) and
fx(61,02) = f(m+ 01,602), we get

, o gh(z—z)
/ / (ezug;/(Z) _ ezugm/(z)) / e g Z dsl (ng (Z _ $), ng/ (Z)) dx F(dm)F(dm’)
Rd JR2xRd gm (z2—1x) 2675 Ry, "Ry,

+o0 jub 2 0 _ piu 2
_ (fo (6 b I)FB (db)) + (ffoo(l b)FB (db)) / / IRQT‘F,R(,/T/F(f>F@ (dG)F@ (d9’)FR(dr)FR(dr’)
R3 J[0,27]2

m

+00 dub 0 _eiu / /
+ 9 (f() (6 b 1)FB(db))(f_oo(1 b )FB(db )) /]Rz % . IR@TF7R9/T/F(fTI')F@(da)Fe(dol)FR(dlr)FR(drl)

m

This last expression may not be simple to compute. However, assuming from now on that Fg(df) =
%1[07%]&9, we obtain by (31), for two simple closed curves I'1, I'a,

/[ ]IR9F17R9/F2(f)Fe(dG)F@(del)
0,27]2

: % 02” /OLI OLZ min(|0y(s1) — O2(s2) — 0], 2m — |01(51) — O2(s2) — 0])|sin(01(s1) — 02(s2) — 0)|ds1ds2d
= LiL,.
Similarly we have
/[0 2n? IRory Ryms (f2) Fo (d0) Fo(df') = Ly L.

Since I is a finite disjoint union of such closed curves, we get
/[ Tt () Fo ) Fo(a) = /[ Tty ) o 00) Fo d0) = L’
0,21 0,2m
It follows that for uniform rotations, we have
L
i

E(LTCx, (hu,U)) = AL(U)E(eX=() ((fB(u) — 1)TC(I, R?) + %(f;(u) - fB\(u))QpQ) .

When moreover B = 1 a.s., Bt = 1 and B~ = 0 a.s., we can deduce an exact formula for the mean
level total curvature function of Xg. Actually, in this case Xg(0) follows a Poisson law of parameter \a
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Fpr(W=Fyp_(u) _ Fp(w-1

- is the characteristic function of a uniform random variable Z on [0, 1], while

and

@(u)%u)_l is the characteristic function of Z+1. Then, considering Z independent from X4 (0) we recognize

E(LPx, (hy,U)) = AL(U)E (ei"[X“OHZ]) E(R)YH(T), and

E(LTCx, (hu,U)) = \C(U) []E (eiu[Xq>(0)+Z]> (TC(F,RQ) B ;\p2> i E (eiu[Xq>(O)+Z+1]> ;\pz] _
Note also that since here the random field Xg has integer values, then Vk € N,
Vie (k,k+1], {reU;Xo(x)>t}={xecU;Xe(x)>k+1},
and therefore E(Per(Ex, (t),U)) = E(Per(Ex, (k+1),U)) and E(TC(0Ex,(t),U)) = E(TC(0Ex, (k+1),U)).
Hence we may conclude that Vk € N, Vt € (k, k + 1]
(32)
7 (\a)*

E(Per(Ex, (t),U)) = )\,C(U)e_’\a()\k;“‘)kf) and E(TC(0Ex, (t,U)) = AL(U)e™ i

=2
(TC(F,RQ) - 3152 + gak) .

Note that, thanks to Gauss-Bonnet Theorem, we have TC(T', R?) = 2rx(D), so that we may rewrite this as
in (30).
O

Let us remark that Formula (30) only involves the Euler Characteristic, the mean perimeter and the mean
area of the shapes. When k = 0, we find the formula of the mean Euler Characteristic density of a rotation
invariant Boolean model as obtained by Mecke and Wagner in [26] and by Mecke in [25] stating that

i EGiz € rU: X (@) > 1))
r——+00 7T£(7”U)

with mo(D) =@, m1(D) = p/2m and mz(D) = x(D)/m. Actually, following the framework of [31] for Boolean
models, we can define some volume densities for excursion sets as, for all k € N and ¢ € (k, k + 1],

= e D) (Amy(D) — Nmy(D)?),

R ) " (\a)
L(Ex(®#) = PXO0)>k+1)=1—¢ ; 0
Pax () = e g

NG , P2
E@) = 0 (W) - o+ k)

recovering the results of Boolean model for £ = 0 in dimension 2 (see p.389 of [31]). The typical behavior of
X(Ex(k)), as a function of k € N~ {0}, is the following:
e It starts, when k is small, by being negative. This is explained by the fact that {Xg > k} is essentially
made of one big connected component with many small holes in it. In particular the minimum value
is achieved for an integer denoted k_. The explicit value of k_ can be computed from Equation (32).
The formula is not very nice, but it has a simple asymptotic behavior when \ is large, since then we
have

k- =Xa—vVia+0().

e Then, after k_, the mean level total curvature E(TC(OEx, (k,U)) increases and it crosses 0 in the
interval that contains ko where
2ra
p
For this level, there are as many connected components as holes.
e After kg, the mean level total curvature is positive and it increases till a value k1 and afterwards it
decreases and goes to 0 as k goes to infinity. As for k_ the value of k; is explicit, and its asymptotic
behavior when A is large is

ky = X\a+VAa+ O(1).
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Example 1: Random disks

We assume here that D = D(0,1) is a disk of radius 1, and that B = 1 a.s. In this case we have TC(9D) =
2rx(D) = 27, p = 27E(R) and @ = 7E(R?). Note also that since RgrD = rD for all §, whatever Fg is, the
shot noise field has the same law than one with marks given by m = (b,r) € [0, +00)? C R?, with distribution
G(dm) = Fp(db)Fr(dr). An example of such a random field with comparisons between the theoretical value
of E(TC(0Ex,(t),U))/2m of Euler Characteristic and an empirical estimate on a large domain are shown on
Figure 4. The caption of the figure gives the practical and technical details of the simulation.

g 8 &8 8 o

18 20 % 30 eSS 40 45

FIGURE 4. Shot noise random field with indicator functions of random disks. This sample has
been obtained using Matlab, with a domain of size 2000 x 2000 pixels, a Poisson point process
of intensity A = 0.001, and random disks of radius R = 50 or R = 100 (each with probability
0.5). Top middle and right figure: empirical Perimeter and Euler Characteristic as a function
of the level t (computed thanks to the Matlab functions bwperim and bweuler), compared
with the theoretical values (red stars) of Equation (30). Bottom line: Three excursion sets
corresponding respectively from left to right to the level t = 15, t = 19 (that is the “critical
level” where the Euler Characteristic turns from negative to positive) and ¢ = 25.

Let us quote that we can also compute the mean level total curvature for a non isotropic shape. This is the
case of squares for instance, as developed in the following example.
Example 2: Random squares
We assume here that D is a square of side length 1 and © = 0 a.s. with F'(dm) = Fp(db)Fr(dr)dy(df) or
equivalently that marks are given by m = (b,7) € Rx [0, +00) C R?, with distribution G(dm) = Fg(db)Fg(dr).
In this case, I' = 9D is made of four line segments, with TC(I',R?) = 27x(D) = 27, p = 4E(R) and
@ = E(R?). On the boundary of a square, the curvature is 0, and it has four corner points with a turning
angle equal to 7/2. Hence for all h continuous bounded function m we have R(h,m) = 0, IV (h,m) = 0,
and C(h,m) = 4 x sgn(b)§ fbbj E(h(Xs(0) + s))ds. Now, according to the kinematic formula (31), the only
remaining terms are for 0 (s1) = 02(s2) £ 5 for which

f(01(s1),02(s2)) = min(|01(s1) — O2(s2)], 27 — |01(s1) — O2(s2)]) = g = fr(01(s1),02(s2))-
It follows that

iy
Ir, r,(f) = 5 X 8rixra.
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Therefore, for u # 0 and h,(t) = et

2 ).
2 R4 JR2 xR

_ o gh(z—z)
(€79ms () — ¢iu9,,(2)) ( / emds> dsi (vg,, (2 —2), vy, ,(2)) dz F(dm)F(dm')

2€7aRg,, Ry, gm(z—1)

gm

(P () = P ())?

/ Iorpr (k) Fr(dr) Fr(dr') = 27 (Fp+(u) - Fp-(u))? ]112
. iu

+

It follows that we get in this case

/ReiutE(Tc(aEXq) (1), U)dt = AE(U)E( o) - ((ﬁ;(u) — )TC(T, R?) + 27\ (Fp (u) — Fpp- (u))ﬂl’Z) .

For B =1 a.s., inverting as previously, we obtain

(33)  VkeNVie (bk+1, ——E(TCOEx,®),U) =cw)e s (1 Ape Py
’ T o XaelPH T C TR 167 " 16a )

It is illustrated on Figure 5. This formula generalizes one of the results of Decreusefond et al. [14]. Actually,
considering the Boolean model made of squares of constant size R = 2¢ a.s. for some € > 0, we get for £k = 0,
and a > 0,

vt € (0, 1], %]E(TC(&)EXq) (1),(0,a)%)) = Aa®e 2" (1 = A(2)?),

that corresponds to the mean Euler Characteristic of the Boolean model in dimension 2, considered in the
torus of size a > 0 in Theorem 11 of [14].

FIGURE 5. Shot noise random field with indicator functions of random squares. This sample
has been on a domain of size 2000 x 2000 pixels, a Poisson point process of intensity A =
0.005, and random squares of fixed side length R = 100. Top middle and right figures:
empirical Perimeter and Euler Characteristic as a function of the level ¢, compared with the
theoretical value (red stars) of Equation (33). Bottom line: Three excursion sets corresponding
respectively from left to right to the level ¢ = 3, ¢ = 5 (that is the “critical level” where the
Euler Characteristic turns from negative to positive) and ¢ = 8.
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4. LEVEL INTEGRALS OF SMOOTH FUNCTIONS AND RANDOM FIELDS

4.1. The case of smooth functions. In the previous section, we have computed the level total curvature
of elementary functions, that are piecewise constant functions (that are in particular not continuous). Here,
we now consider the case of smooth (at least C?) functions. The question of the link between these two cases
will be discussed in a future paper.

In the sequel, for f a C? function we denote by V£ its gradient vector and by D?f its Hessian matrix.

Proposition 3. Let f be a smooth (at least C?) function on an open set containing U. Then f is of special
bounded variation and of finite level total curvature integral on U with

Vi( /||Vf Mdz and LTaC;(U /||D2 ), de,

where || - ||, is the matriz norm subordinated to the Fuclidean norm. Moreover, for h a bounded continuous
function on R, the level perimeter and total curvature integrals of f are given by

LP; (h,U) = /U W(f(@)|Vf(@)|de  and

v JVF(z)*
LTC;(h,U) /h )(”vff(( ))”2 £z) )1\|Vf<z>\|>0dl‘a

where if A= (a;j)1<ij<2 is a 2 X 2 symmetric matriz and y = (y1,y2) € R%, we use the notation

A(y,y) = 'yAy = an1yi + azys + 2a12y19s.

Proof. Note that since f is C' on an open set containing U we clearly have that f € SBV(U) and thus
E;(t) is of finite perimeter in U for a.e. t € R by co-area formula (see Theorem 3.40 [7]). Moreover, since
f is actually C2? on an open set containing U, by Morse-Sard theorem (see [20] p.69 for instance), the set
of critical values of f has measure 0 in R. Hence for a.e t € R, for all points x € U such that f(z) = ¢
then Vf(z) # 0. Let t be such a non-critical value. It follows that 0Ef(t) N U = {z € U; f(z) = t}, and
we clearly have S]-Ef(t) = 0E¢(t) N U is a regular curve with finite length such that for any « € 0E(t) N U
one can find a parametrization v given by an implicit form f(vy(s)) = ¢, with & = ~(s) and normal vector
7' ()t = Vf(z)/||[Vf(2)|| and curvature given by

D*f(x).(Vf*(2), V. (2))
IV f(@)I]? '

(34) kf(x) = —
Therefore

TaC(IE; (1), U) = /

|k (z)|H  (dz) < +00 and TC(OE;(t),U) = / K p(x)H (dx).
OE;(t)NU

OE; (t)NU

The fact that 0Ef(t) N U is given by a finite union of simple connected curves comes from compactness
of {# € U;f(z) = t} in which it is included. Hence we have already proven that for a.e. t € R, the
set Ef(t) is an elementary set of U. Now let us prove that ¢t — TaC(0E;(t),U) is integrable on R. Let

us define |ks| as a measurable non-negative function on U by setting |ks(x)] = 400 if Vf(z) = 0 and
k()] = ‘D2f($)‘|(|vv-7;j(f)a|)‘gvﬁ(w)) ’7 otherwise. Now, let us recall the co-area formula for Lipschitz mappings

see |18 plll for instance): for any non-ne ative measurable or L-integrable function g, the function ¢ —
g g
faEf t)nU g(l’)Hl(de) is measurable and

/U s@Vfl@)do = | /8 g SR @)

Taking g = 1, we recover the co-area formula:

/ IV £l (2)dz = / HYOE () N T dt = V;(U),
U R

while for g = |ky/,

/ e @IV £ (@)l

/ | D? f(2)|,d,

LTaCf //E)E o |I€f |7‘l (dl‘)
f t

IN
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in view of (34). This concludes the proof that f is of special bounded variation and finite level total curvature
integral on U and, for h a bounded continuous function on R, using again twice the co-area formula but now
with max(g,0) and —min(g,0) for g =ho f or g = (ho f) Ky, and substracting we get

LPs(h) = / W)V f () de

_ D2f(@) (Vi ()", Vi ()")
[ rs@ns@es@iar == [ n) LI 11050 o

LTC (h)

in view of (34).
O

4.2. A general result for smooth stationary random fields. In this section we consider a smooth sta-
tionary random field X defined on R2. Let us introduce some notations for the derivatives of X. A point
x € R? is defined by its two coordinates = (71, x2) and we denote for i,j = 1,2

0X %X

and Xij =

X; = —_—
xX; axiaxj

X1 X

With these notations it follows that VX = ( X ) and D?X = (
Xia Xoo

Xy ) Note that since X is

stationary, for any = € R2,

(X(2), VX (2), D*X (x)) £ (X(0), VX(0), D*X(0)).
When X, VX and D?X have also finite second order moment, X (z) and VX () are not correlated, as well
as VX (z) and D2X () (see [1] p.31 for instance). This is very useful for Gaussian fields since it implies that
VX (z) is independent from (X (z), D*X ()).
Using the result of Section 4.1 and the stationarity of X, we have the following formula.

Theorem 5. Let X be a stationary C? random field on R?, such that X (0), X;(0), X;;(0)and X12(0) have finite
expectations for i = 1,2. Then, X € SBV(U) with DX = VXL and for a.e. t € R, the random variables
Per(Ex(t),U) and TC(OEx(t),U) have finite expectation such that for all h bounded continuous function on
R, one has

E(LPy (h,U)) = /

h(H)E(Per(Ex (t),U))dt and E(LTCx(h,U)) = / h(tE(TC(0Ex (), U)) dt,
R

R
with

E(LPx (h,U)) L(U)E (R(X(0)IVX(0)I)
D2X(0).(VX(0)*+, VX(0)*

E(LTCx (h,U)) —L(U)E (h(X(O)) VX (0)]? )1||VX<0>|>0>

It follows that when the field X is isotropic, i.e. X o A e for all orthogonal matriz A, then the above
formulas reduce to, Vi = 1,2,

E(LPx(h,U)) = SLOEMRXO)X:O)) and
X1(0)X5(0
E(LTCx(h,U)) = —L(U) (E ((X(0)) X (0)1vx(0)>0) — 4E(h(X(0))”lv()g(oiﬁg)X12(0)1|VX<o>|>o>> :
Assuming moreover that the field X can be written as X = XM 4+ X@ with XV, X@ 4id isotropic and

i) 4 —X®), the previous formula reduced to

E(LTCx (h,U)) = —L(U)E (h(X(0))Xii(0)1)vx(0)>0) -
In particular, taking h =1 we have Vx(U) = SL(U)E(]X;(0)|) and
E(LTCx (U)) = —L(U)E (X11(0)1jvx(0)>0) = —L(U)E (X22(0)1 v x(0)[>0) = 0.

It follows that when X (0) admits a density px ), we get for almost every t € R, Vi = 1,2,

symmetric (X

E(Per(Ex(1).U)) = ZLOE(X(O)IX(0) = 1) pxo(!)
E(TC(OEx(t),U)) = —L(U)E (Xi(0)1vx(0)>0/X(0) =1) px(0)(t).
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Proof. According to Proposition 3, since X is a.s C?, it is a.s. of special bounded variation and of finite level
curvature integral on U with

Vx (U /HVX z)|dz and LTaCx(U /HD2 z)|,dz as..

Since X is stationary, the finite expectation assumption implies that Vx (U) and LTaCx (U) are non-negative
random variables with finite expectation. By Fubini’s Theorem, this implies that (¢,w) — Per(Ex(t),U) €
LY (RxQ) and (t,w) — TaC(0Ex (t),U) € L*(Rx Q) so that we also have (t,w) — TC(OEx(t),U) € L*(Rx Q).
Moreover, a.s., for any h a bounded continuous function on R,

LPx (h, U) = / h(t)Per(Ex (t),U)dt and  LTCx(h,U) = / h(t)TC(OEx (£), U) dt, and

2 xZ). xr 1 xr 1
LPx(h0) = [ WX@)IVXG@)de and LECx(1,0) = - [ w(x(o) ZEOED T 30 )i

Hence, Fubini’s Theorem yields the first result for expectation, while the second one is a straightforward
consequence from the stationarity of X.

Under the assumption that the field is isotropic, we can exploit further on this formula. First let us recall
that by Taylor formula, since X is a.s. C? we have a.s. for all z, z € R?,

X(z +72) = X(2) + (VX (2), 2) + 3 D*X(@).(2,2) + opzpooll2I12)
In particular we obtain that, for any orthogonal matrix A,

V(X o A)(z) = '"AVX (Az) and D*(X o A)(x) = 'A(D*X)(Ax)A.
Writing (eq, e2) the canonical basis of R?, we also have for i = 1,2,

X(x+ee)+ X(x—ee;) —2X(x)

Xiu(z) = limg = :
Xle) =t XE+elatea) + Xlo - cley + en)) = Xlo+eler = ) = Xo = eley = )

Since X o A Jdd X, we deduce that

(X (2), VX (2), D*X () £ (X(Ax),'AVX (Az), "A(D*X)(Ax) A),
and specifying to x = 0, it follows that
(35) (X(0), VX(0), D*X(0)) £ (X(0),'AVX(0), 'A(D*X)(0) A).

Hence (X(0),VX(0 )) < (X(0),'AVX(0)) and for any 6 € [0,27), denoting u(f) = (cos@,sinf) € S, one
(

has (X (0),X¢(0)) (X(0 ) (
Moreover |[VX(0)| = 7 fo |

u(6),V ( ))), according to orthogonal invariance (see Proposition 4.8 of [12]).
(u(8), VX (0))|df so that we may deduce that

™

E (h(X(0)| VX (0)]) = 3 | EGX©)1u(®), TX0)]) d = FERX )X 0D,

and the result for E(LPx(h,U)) follows. Now, let us introduce the random variable © with values in 27T
(identified with [0,27)), such that

vxo) = () ) = 1vxoi( S )

cosf) —sinf

. and a reflexion matrix Sy =
sinf  cosf

For any 6 € [0,27) let us consider a rotation matrix Ry = (

cosf  sinf . oy _ cos(© — 0) _
( sinfd  —cosf ) Let us quote that R_yVX(0) = ‘RyVX(0) = |[VX(0)] ( sin(© — 6) ), SeVX(0) =
' cos(f — ©) .
SeVX(0) = ||VX(0)] sin(0— ©) ) From (35) with A = Sy for § = 7/2 we have that

(36)  (X(0), [VX(0)], 0, X11(0), X25(0), X12(0)) £ (X (0), [VX (0[], 7/2 = ©, X2(0), X11(0), X12(0))
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But
D2X(0).(VX(0)*, VX (0)*
E<h(X(O)) ( )(||VX((3)||2 © )1|VX(O)||>O>
= E (h(X(0)) (X11(0)sin® © + X2(0) cos? © — 2X12(0) 5in © cos ©) 1}y x (0)>0)
Note that

E (h(X(0))X11(0) sin® O1 v x(0)>0) = E (A(X(0))X11(0)1jvx(0)>0) —E (R(X(0))X11(0) cos® O1 v x(0)>0) -
so that
E (R(X(0))[X11(0) sin® © + X25(0) cos® ©]1 v x(0)|>0)
= E (h(X(0)X11(0)1)vx(0)1>0)) + E (h(X(0))[X22(0) — X11(0)] cos® O1 v x(0)>0) -
From (36),
E (h(X(0))[X22(0) — X11(0)] cos® ©1 v x(0)>0) = —E (h(X(0))[X22(0) — X11(0)] sin* O1 v x(0)|>0) »
and hence

E (h(X(O))[XQQ(O) — X11(0)] COS2 @1|\VX(O)||>O) =E (h(X(O))

Now, from (35) with A = Ry for § = /4,

X22(0) — X311(0)

5 c0s(20)1 v x( 0)|>0>

X22(0) — X141(0)

(X(0), [VX(0)], ©, X15(0)) £ (X (0), [|[VX (0)],© — 7/4, 5

and it follows that
(37) (X(0), [[VX(0)]l, 0,
Therefore,

);

X22(0) — X11(0)

. ) £ (X(0), [VX(0)]1,© + /4, X12(0)).

E (h(X(0))[X22(0) — X11(0)] cos® ©1 g x(0)>0) = —E (h(X(0))sin(20) X12(0)) .
The general result follows, by remarking that in view of (36)
E (h(X(0)X11(0)1jvx(0)|>0) = E (h(X(0))X22(0)1jjvx 0y >0) -
Now, let us assume that the field X can be written as X = X® + X@ | with X1, X @) iid isotropic and
symmetric (X ® 124

E (h(X(O))Sm(Q@)Xm(0)1\|VX(0)\|>0) =-E (h(—X(O))sin(Q@)X12(0)1|WX(0)||>0 ) .

Hence this term vanishes when h is an even function. So let us assume that h is odd. From (35) with A = Sy
for § = —m/2 we have that
(38)

2 2 2 2 d 2 2 2 2 2
(X (0), X12(0), X;7(0). X{7(0). X5 (0), X13)(0)) £ (X(0), = X3 (0), =17 (0), X1 (0). X33 (0), X7 (0))
Hence by independence between X1 and X ()

, d .

(39)  (X(0), X:1(0), X2(0), X13(0)) £ (XV(0) + X (0), X7 (0) — X57(0), X5 (0) = X7 (0), X{5(0)).
By symmetry, we also have X = X1 — X with X® satisfying (36) so that

(40)  (X(0), X1(0), X2(0), X{5(0)) £ (XD (0) — X (0), X1 (0) — X357 (0), X5 (0) — X{*(0), X{2 (0)).
(

—X®). Let us quote that X is itself symmetric and therefore

Using the fact that (X)) X(2) = fad

(X(0), X1(0), X2(0), X12(0)) £ (X@(0) + XD (0), X1 (0) — X5V (0), X5 (0) — x{(0), X{J (0))
(41) L (X(0), ~X2(0), - X1(0), X{2(0))
where {i,j} = {1, 2}, while (40) becomes
(X(0), X1(0), X2(0), X{7(0)) £ (X@(0) — XD (0), x{(0) — X5 (0), X{7(0) — X{"(0), X{(0))
(42) (—X(0), —X2(0), —X1(0), X{2(0))
From (41) and (42) we can deduce that
(X(0), X1(0), X2(0), X33 (0)) £ (—X(0), X1(0), X2(0), X {2 (0)).

X x 1)) (39) becomes

IES(E
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therefore, since h is odd
E (h(X (0))sin(20) X1} (0)1jvx0)150) = 0.

Hence we conclude that
2 .
E (A(X (0))sin(20) X12(0) 1w x0)10) = D E (A(X (0))sin(20) X (2 (0) 1w x0)150) = 0.
i=1
Note also that we have E(LTCx (U)) = 0, by taking h = 1 and using symmetry in the above formula.

Moreover, when X (0) admits a density px (), we can further write

E(h(X(0))|X:(0)])

| HOEIXI1X0) = Dpxio) (01

E(h(X(0))Xii(0)1jvx(o)>0) = /Rh(t)E(Xii(O)1HVX(0)|\>O|X(O) = t)px (o) (t)dt,
such that for any continuous bounded function h,

| MOETCOE U = [ HOBIXOIIX0) = px©)it  and

/Rh(t)E(TC(aEX(t,U)))dt = /Rh(t) (—L(U)E(X4(0)1 v x (0)>0] X (0) = t)px(0)(t)) dt,

implying the stated equalities for almost every ¢t € R. O

Remark 1: Let us quote that our assumption on symmetry is always satisfied for symmetric isotropic in-
finitely divisible random fields, in particular centered isotropic Gaussian fields. Let us quote also that, for
Gaussian random field, the conditional law of © with respect to (X (0), ||[VX (0)||, D2X(0)) is actually uniform.
Moreover, invariance under all orthogonal matrices is a direct consequence from invariance under all rotation
matrices. This follows from the fact that its covariance function must be radial.

Remark 2: As we were finishing this paper, we found a similar recent result (see Corollary 2.3 of [23]) that
should rewrite in our stationary setting, under additional assumption on X, as

E </R h(t)X(EX(t))dt> =-E (h(X(O)) lz 1 x(0)eq, Xii(0) | + A (X(0)) [Z IVX(O)eQiXi(O)2]> ,

=1

for h : R — R a C! function with compact support, Q1 = {r = (z1,22);72 < 71 < 0} and Q2 = {x =
(x1,22); 21 < wg < 0}, and where x(Ex (t)) stands for an Euler Characteristic density. Under the assumption
that X is also isotropic, according to Remark 2.5 of [23],

™2

E (1 (X (0) w0y, Xi(0)%) = T=E (F(X(0)[TXO)]).

Note that by stationarity

1 1
E (R'(X(0))X;(0)?) /0 E (R (X (te;))Xi(te;)?) dt =E (/ h'(X(tei))Xi(tei)2dt>

0
1
= - ei)) Xii(te;)” = i )
= -E (/0 h(X (tei))Xi(te;) dt) E (h(X(0))X;:(0))
integrating by parts and using E (h(X (te;))X;(te;)) = E (h(X(0))X;(0)) for all ¢ € [0, 1].
Moreover, by (37) we clearly have
E (h(X(0) Ty x(oyeq.[X22(0) = X11(0)]) = 2E (A(X(0)1r__, v x(0ree. X12)

that vanishes for odd h, using our additionnal divisibility and symmetry assumptions. Hence we may deduce
that

E (h(X(O))IVX(O)EQZXQQ(O)) =K (h(X(O))IVX(O)eQiXH(O)) ,
and using rotations of angle 7/2, we get

E (h(X(0)Iyx(0)eq Xii(0)) =E (h(X(O))I@ewg(i—u)Xn(O)) = éE (h(X(0))X::(0)) .
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It follows that

- 21 r—2 1
E </R h(t)x(EX(t)))dt) =-3 (8 - )E(h(X(O))X“-(O)) = T /Rh(t)E(TC(aEX(t),U))du

i=1

by Theorem 5, since it is also assumed that |VX(0)|| > 0 a.s. .

Example. Let X be a stationary centered C? isotropic Gaussian random field. Then, X1 (0) being independent

from X (0), we get E (|X1(0)[|X(0)) = E(|X1(0)]) = /222, where \» = Var(X;(0)) > 0 denotes the second
spectral moment. Moreover,

Cov(X(0), X11(0)) 01px (0)
E(X11(0)|X(0)) = X(0) = —/—2X(0) = —=
where px (z) = Cov(X(z), X(0)) and 0? = px(0). Hence, since P(||VX(0)|| = 0) = 0, we get in this case that,
for almost every t € R,

(43) E(Per(Ex(t),U)) = LU/~ — e
(44) E(TC(0Ex(t),U)) = E(U)% - 1%@—%
(45)

Let us emphasize that this last expression is exactly the formula obtained for 27E (X (E x(t) HU))), stated
for all t € R, under additional assumptions on X (see (3.2.8) of [2] for instance), where x denotes the DT
(Differential Topology) Characteristic of the set.

Examples of such stationary isotropic random fields with comparisons between the theoretical values of
E(TC(0Ex(t),U))/(2nL(U)) (corresponding to the mean Euler Characteristic density of excursion sets) and
an empirical estimate of Euler Characteristic on the square of fixed size [0, 1] are shown on Figures 6 and
7 (with 02 = 1 and Ay = 2T2). The captions of the figures give the practical and technical details of the
simulations. Note that in view of the covariance functions, a scaling relation may be set between T' and the
size of the square, explaining the convergence without boundary effects as T increases.

4.3. Smooth shot noise random fields. As in Section 3.2, we consider here a shot noise random field
defined on R? by

Vo € R?, Xg(z) = ngi(:n —x;),
iel
where ® = {(x;,m;)}ics is a Poisson point process on R? x R? of intensity AL x F, with A > 0 real, £ the
Lebesgue measure on R? and F' a probability measure on R?. In order to get explicit formulas we have to make
an assumption of isotropy. Moreover, since smooth shot noise random fields do not always admit a probability
density (we have discussed this through several examples in our first paper [10]) we have to work with their
characteristic functions.

Theorem 6. Let assume that g : R? x R? — R is a measurable function such that for F-almost every m € R¢
the functions g, := g(-,m) are C3 on R? satisfying

(46) / |ngm(x)| dz F(dm) < 400,
R2 xRd4

allg,,
89:{1 8:1:;2 ’
field such that DX has finite expectation, ensuring the assumptions of Theorem 5.

We assume moreover that m = (1n,0) € R4~ x [0,27] C R? and F(dm) = G(dm)Fe(df), with Fg the uniform
law on [0,27], and

for all j = (j1,j2) € N2 with |j| = j1 + j2 < 3 and where Dig,, = Then Xg is a.s. a stationary C?

g( ) m) = 9(7 (’fh,@)) = Q(Re', ’I’h),
1 0 cosf —sinf
0 -1 and R = sinf cosf )’ Then

Xo is isotropic. When moreover Xg is symmetric, the Fourier transform of the mean perimeter and of the

for F-a.e. m, with g(So-, m) = g(-, m), recalling that Sy = (
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FIGURE 6. Gaussian random field with covariance p(x) = e=T*l2I” for T = 10. This sample
has been obtained using Matlab, with a discretized domain of size 2!° x 219 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level ¢ (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (44). Bottom line: Three excursion sets corresponding respectively
from left to right to the level ¢t = —1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and ¢t = 1.

mean total curvature are given for all u € R by, for all j = 1,2,

1/+°° 1 00x4(0),0, X (0) (U, V) o
0

E(LPx, (hy,U)) 5 ” 50

E(LTCxy (hu, U))

_ uXg(0) 2 iugm ()
AL(U)E (e ) ( /R . 05 gm()e dx F (dm)> ;
where hy(t) = e't,

©X(0),8; Xa (0) (u, v)=FE (eiuX¢(0)+iv8jXq>(0)) = exp ()\/ [ez‘[ugm(x)+uajgm(ac)] _ 1]F(dm)dm) ,
R

4 R2

and the notation 0;, respectively 63

d . 92
7, stands for Doy respectively a7

Remark: Note that when g(A-, m) = g(-, m), for all orthogonal matrix A, X¢ has the same law as the
shot noise random field given with marks /m € R4~1 of law G(dm).

Proof. Following similar arguments as in Proposition 3 of [10], (46) will ensure that Xg is a.s. a stationary
C? field such that X, VX and D2X have finite expectations, and we can differentiate under the sum. In
particular, for all j = 1,2,

0;Xa(z) = Zajgmi (x — ;) and ajzX@(x) = Zé‘f—gmi (x —x5).
iel i€l

Hence the general formula of Theorem 5 is valid for Xg.
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1000

FIGURE 7. Gaussian random field with covariance p(z) = e=T*I=I” for T = 100. This sample
has been obtained using Matlab, with a discretized domain of size 2'° x 219 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level ¢ (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (44). Bottom line: Three excursion sets corresponding respectively
from left to right to the level t = —1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and ¢ = 1.

Under the additional assumption on the kernel, we can prove isotropy. Actually, for any k > 1, uq, - ,ux €
R and y1,--- ,yr € R?, one has

E <ei pOLEN ujxqp(yj)) — exp <>\/ / (¢! =1 uigm(v5=2) _ 1) sz(dm)) _
R JR?
Hence, for any orthogonal matrix A, by the change of variables x = Ay,
E (ei >h quq>(ij)> = exp )\/ / (ei Sk uigm (Aly—y)) _ 1) dy F(dm)
Rd JR2

Note that there exists 6y € [0, 27) such that A = Sy, or A = Ry, but for m = (m, ),
Ggm © Sy = Jm © R9Se, = Gm © SoR9Se, = Gm © R_o—4,-

Since Fg is the uniform law, we may assume without loss of generality that

E <6i2§:1u]'X<p(ij)) = exp <)\/ / (et Zj=r w3 9m (Rog (v;=v)) _ 1)dyF(dm)>
R JR2

exp <)\/ / (e Xi=1usom(i=9) _ 1) gy F(dm)> -E (ei i UjX<1>(yj)>
R JR2

using the fact that RgRy, = Rg,+¢ and Fg uniform.

It follows that by Theorem 5, for any h bounded continuous function on R, one has for all j = 1,2,

E(LPx, (h,U)) = gﬁ(U)]E(h(Xé(O))Iancp(O)l)
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and assuming moreover that X¢g is symmetric,

E(LTCx, (h,U) = —L(U)E (h(X¢(0))07 Xs(0)) .

Taking h, = e for u € R we obtain

E(LPx, (h,U)) = ZLO)EE O]9, Xa(0)])
T L (1% 100x4(0),0,X0(0) (U V)
= §£(U) X 7;/0 ; 8@ d'U,

according to Proposition 2 of [11], using the fact that E(]0;Xs(0)]) < 400 and ¢x,(0),0,x4(0) (U v) =
©X4(0),0, X (0) (u, —v) by isotropy. Moreover,

890X¢,BJ?X¢

E(LTCx, (hu,U)) = —L(U)E (ei“X‘I’(O)@?—X@(O)) = iL(U) =5 (w,0),

where ¢y, 52, is the characteristic function of (X4 (0), 8]2Xq>(0)) given by, for (u,v) € R?

E (ez‘[uxaonvafx@(on)

exp (A / / (ei“gm@)“va?gm(@—1)de(dm)>.
R4 JRR2

BLTCx, (e 0)) = ~LO ([ [ Samla)etsm) o F(am) ) e, o)

PX0,02Xe (u,v) =

Then,

with px, = @x,.02x, (-, 0) the characteristic function of X4 (0). O
i

Let us also mention that in the recent paper [23] such a formula is also proposed in a similar isotropic

framework in Theorem 3.3.
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