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MEAN GEOMETRY FOR 2D RANDOM FIELDS:

LEVEL PERIMETER AND LEVEL TOTAL CURVATURE INTEGRALS

HERMINE BIERMÉ AND AGNÈS DESOLNEUX

Abstract. We introduce the level perimeter integral and the total curvature integral associated with a real

valued function f defined on the plane R2 as integrals allowing to compute the perimeter of the excursion set
of f above level t and the total (signed) curvature of its boundary for almost every level t. Thanks to the

Gauss-Bonnet theorem, the total curvature is directly related to the Euler Characteristic of the excursion set.

We show that the level perimeter and the total curvature integrals can be explicitly computed in two different
frameworks: piecewise constant functions (also called here elementary functions) and smooth (at least C2)

functions. Considering 2D random fields (in particular considering shot noise random fields), we compute

their mean perimeter and total curvature integrals, and this provides new explicit computations of the mean
perimeter and Euler Characteristic densities of excursion sets, beyond the Gaussian framework.
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1. Introduction

Considering a stationary 2-dimensional random field X = (X(x))x∈R2 we are interested in statistically
describing the geometry of its excursions sets

EX(t) := {X ≥ t} ⊂ R2,

according to a level t ∈ R, in a given bounded open subset of R2. In the following U will denote an open
bounded set or simply R2 when not bounded. We will focus on EX(t) ∩ U = {x ∈ U ;X(x) ≥ t} as well as

∂EX(t) ∩ U its boundary trace on U , where as usual ∂EX(t) = EX(t) r
o

EX(t).
In view of the measurability of X, its excursion sets EX(t) are random Borel sets for all level t ∈ R. When

moreover X is a.s. upper semi-continuous, these random sets are a.s. closed (see [28]) and therefore EX(t)∩U
is a compact random set. In dimension 2, the geometry of a compact “nice” set K ⊂ R2 with piecewise C2

boundary ∂K may be described by three functionals: its area L(K), perimeter Per(K) = H1(∂K), where
H1 is the one-dimensional Hausdorff measure of the length of plane curves, and Euler Characteristic χ(K)
that counts the number of connected components minus the number of holes. According to the Gauss-Bonnet
Theorem, when ∂K is a disjoint finite union of closed curves, χ(K) is also equal to 1

2πTC(∂K), with TC(∂K)
the total curvature of the positively oriented curve ∂K (see precise definitions in Definition 1 and Theorem
1). Let us quote that these geometrical features are also used with different conventions according to the

2010 Mathematics Subject Classification. Primary: 60G60, 60G17, 60D05, 60E10, 26B15; Secondary: 60G10, 60E07, 62M40.
Key words and phrases. Perimeter, Total curvature, Gauss-Bonnet Theorem, Euler Characteristic, excursion sets, stationary

random field, shot noise random field, Gaussian random field, persistent homology.

1



2 HERMINE BIERMÉ AND AGNÈS DESOLNEUX

setting. For instance, in convex geometry, for K a convex body, intrinsic volumes, respectively Minkowski’s
functionals, are defined by V0(K) = χ(K) = 1, V1(K) = 1

2H
1(∂K) and V2(K) = L(K), respectively W2(K) =

1
2TC(∂K) = π, W1(K) = 1

2H
1(∂K) and W0(K) = L(K) (see [32]), while in differential geometry when K is a

compact 2-dimensional submanifold with C2 smooth boundary, Lipschitz Killing curvatures of K are defined
by C0(K) = 1

2πTC(∂K), C1(K) = 1
2H

1(∂K) and C2(K) = L(K) and may be extended to positive reach sets
(see [33]).

When considering stationary random sets, it is natural to define corresponding mean density functionals.
They are usually defined considering the limit behavior of a rescaled observation through a large window, let
say rU , for r large. Actually, this procedure allows to remove boundary effects. We adopt a similar point of
view in this paper, by removing boundary effect, using an open window U . Hence, for a bounded open set U
we will focus on the mean area E (L(EX(t) ∩ U)), the mean perimeter E (Per(EX(t), U)) , and on the mean
total curvature E (TC(∂EX(t), U)) of excursion sets. Densities will then clearly appear as

E (L(EX(t) ∩ U)) = L(EX(t))L(U), E (Per(EX(t), U)) = Per(EX(t))L(U)

and E (TC(∂EX(t), U)) = χ(EX(t))L(U).

As far as stationarity is involved, the mean area is not hard to find since

E (L(EX(t) ∩ U)) =

∫
U

E
(
1X(x)≥t

)
dx

= L(U)P(X(0) ≥ t).

It follows that an exact formula can be set up as soon as the distribution of X(0) (that is the same

as any X(x) by stationarity) is known and L(EX(t)) = P(X(0) ≥ t). Now establishing formulas for the
mean perimeter and the mean total curvature or Euler Characteristic is more difficult and requires additional
assumptions on the field. Computing the Euler Characteristic of excursion sets of random fields is a problem
that has received much attention. Indeed, in many applications, the Euler Characteristic is a very useful index
of the geometry of the field, as explained for instance in the review paper of R. Adler [2], or in the papers of
K. Worsley [35] or [36] where applications in astrophysics or in brain imaging are mentioned.

Despite its “global” definition (the number of connected components minus the number of holes), the Euler
Characteristic of an excursion set is in fact a purely local quantity related, by Morse theory, to the number
of critical points of X in U , or, by the Gauss-Bonnet theorem, to the total curvature of the boundary of the
excursion set. Here, we will extensively use this second equivalence to obtain explicit computations of the
mean Euler Characteristic density of the excursion sets of some random fields.

In the framework of Gaussian random field, the first equivalence is usually used. For stationary isotropic
Gaussian random fields, an explicit formula for any level t may be set for the expectation of the Euler Char-
acteristic density, only depending on the variance and the second spectral moment of the field. This is an
important result with many statistical applications. In particular, for large levels t, the Euler Characteristic
gives a good approximation of the probability that the suprema of the field is greater than t and can therefore
be used as a p-value: this is the Euler Characteristic heuristic (see [5] for instance). In a “tour de force”, a
Central Limit Theorem has recently been established in [17] that proves the accuracy of the estimation over
only one sample path as the size of the observation is growing. There are also some interesting results apart
from the Gaussian framework for χ2, F and t-fields [35] as well as stable [3] or infinitely divisible random
fields [4] for instance. A test of Gaussianity can therefore be set up using Euler Characteristic of level sets as
proposed in [15]. However, most of general results rely on strong smoothness regularity assumptions and on
conditional distribution densities that are often difficult to evaluate for non-Gaussian fields.

Now, in this paper, we will be particularly interested in another family of infinitely divisible random fields,
that are not Gaussian, namely the shot noise random fields. A shot noise random field is defined on R2 by

∀x ∈ R2, X(x) =
∑
i

gmi(x− xi),

where the xi are the points of an homogeneous Poisson point process of intensity λ in R2, and the mi are
“marks”, independent of the Poisson point process. Such fields allow explicit computations and may appear,
in view of asymptotic normality in high intensity [19], as a bridge between the Gaussian setting and the
discrete models of stochastic geometry such as the Boolean ones [32]. Several results for the computation of
the perimeter were obtained in our previous paper [11]. Since the study for all level t is often difficult we
extend here our point of view of working in a weak framework by considering these geometric quantities as
functions of the level t. Hence quantities of interest will be given, when it makes sense, by the mean level
perimeter integral E (LPX(h, U)) and the mean level total curvature integral E (LTCX(h, U)) of X, where the
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level perimeter integral and the level total curvature integral are defined, for h a continuous bounded function
on R, by

(1) LPX(h, U) :=

∫
R
h(t)Per(EX(t), U)dt

and

(2) LTCX(h, U) :=

∫
R
h(t)TC(∂EX(t), U)dt.

Let us quote that this allows to get informations on the mean geometry of excursion sets for almost all levels
t and hence to give insights on their evolution according to the level. This setting will allow us to recover and
generalize some important results established in the two different frameworks of Boolean models in stochastic
geometry and of smooth Gaussian random fields.

In Section 2 we propose a general definition of the level perimeter integral and of the level total curvature
integral of a function, that allows to compute the perimeter and total curvature (and therefore the Euler
Characteristic) of its excursion sets for almost every level. We introduce elementary functions as a particular
case of piecewise constant functions (with piecewise smooth discontinuity set) in Section 3 and compute their
level perimeter and total curvature integral. We give explicit expressions for elementary shot noise random
fields, where the functions gmi are elementary functions. This allows us to generalize results of the literature
(about the Boolean model [26], or about “random configurations” [14]). The last section is devoted to results
on smooth (random) functions. In particular our weak framework allows us to get explicit formulas for some
isotropic symmetric fields, recovering known Gaussian results.

Let us finally emphasize that we have made here the deliberate choice of not working in the weakest possible
functional framework. Our goal is to work with piecewise smooth functions (like the indicator function of a
set having a piecewise C2 boundary for instance). But we believe some of our results can be extended to
functions with a weakest regularity. Let us also mention the recent work of R. Lachièze-Rey in [21] and [22]
that relates the Euler Characteristic to the three-point joint distribution of the random field. And also the
even more recent paper [23] where R. Lachièze-Rey gives formulas for the Euler Characteristic of isotropic
shot noise random field that are a.s. Morse functions.

2. General framework

2.1. Sets of finite perimeter and finite total curvature. We consider a Borel set E of R2 and the open
set U ⊂ R2. We assume that the indicator function 1E is a function in SBV (U). Let us recall (see [7]) that a
function f belongs to SBV (U), the space of special functions of bounded variation in U if f ∈ L1(U) and has
its distributional derivative representable by a finite Radon measure in U that is∫

U

f(x)
∂φ

∂xl
(x) dx = −

∫
U

φ(x)Dlf(dx) ∀φ ∈ C1
c (U,R), ∀l = 1, 2

for some R2-valued measure Df = (D1f,D2f), is such that

Df = ∇fL+ (f+ − f−)νfH1∠Jf ,

where

• Daf := ∇fL is the absolutely continuous part of the Radon measure Df with respect to the Lebesgue
measure L and ∇f is the approximate differential of f (see [7] p.165 and Theorem 3.83 p.176).

• Djf := (f+ − f−)νfHn−1∠Jf is the jump part of Df , with Jf the set of approximate jump points of
f for which there exist two reals f−(x) < f+(x) and a direction νf (x) ∈ Sn−1 with

lim
ρ→0

ρ−2

∫
B+
ρ (x,νf (x))

|f(y)− f+(x)| dx = 0 and lim
ρ→0

ρ−2

∫
B−(x,νf (x))

|f(y)− f−(x)| dx = 0,

where B+
ρ (x, ν), resp. B−ρ (x, ν), denotes the half-ball determined by ν ∈ Sn−1 i.e. {y ∈ Bρ(x); 〈y −

x, ν〉 > 0}, resp. {y ∈ Bρ(x); 〈y − x, ν〉 < 0}. We denote here Bρ(x) the ball of radius ρ and center x.

The approximate discontinuity set (see [7] Proposition 3.64 p.160) Sf is the set of points where f is not
approximately continuous. It is a L-negligible Borel set, countably H1-rectifiable with H1(Sf r Jf ) = 0, by
Federer-Vol’pert Theorem ([7] Theorem 3.78 p.173).
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This framework, used in our previous paper [11], is convenient to define the perimeter of a set E in U such
that 1E ∈ SBV (U) as

Per(E,U) := ‖D1E‖(U) = sup{
∫
U

1Edivϕdx|ϕ ∈ C1
c (U,R2), ‖ϕ‖∞} < +∞.

It follows that denoting S1E the approximate discontinuity set of 1E , the set S1E∩U (its trace in U) is included
in ∂E ∩ U the boundary of E in U . In order to get information linked with length and Euler Characteristic
we make the stronger assumption that the boundary ∂E ∩U in U coincides with S1E ∩U (which is equivalent
to say that the discontinuity points are exactly the approximate discontinuity points in U), and is a piecewise
C2 plane curve.

Let us recall here some basic facts and definitions about plane curves, following [16]. We say that an oriented
curve Γ is piecewise regular if it is simple (with possibly several closed simple curves) and piecewise C2 such
that any point x ∈ Γ of the curve can be else

• regular: one can find an arc-length C2 parametrization γ : (0, ε) → Γ with x = γ(s) for some
s ∈ (0, ε), with ε > 0, and a normal vector νΓ(x) = γ′(s)⊥ ∈ S1 with γ′(s)⊥ the +π

2 rotation of
the tangent vector γ′(s). The normal cone (defined for positive reach set [33]) of Γ at x is given by
Nor(Γ, x) = {−νΓ(x)}. The signed curvature κΓ(x) of Γ at x = γ(s) is then defined as

κΓ(x) = 〈γ′′(s), νΓ(x)〉,

where 〈·, ·〉 is the usual Euclidean scalar product on R2. Note that since γ is an an arc-length
parametrization we have H1(γ(0, ε)) = ε.

• corner: one can find a simple continuous arc-length parametrization γ : (−ε, ε) → Γ such that
x = γ(0) with γ being C2 on (−ε, ε) r {0} and γ′ admits limits γ′(0−) ∈ S1 and γ′(0+) ∈ S1 at 0,
with ν−Γ (x) := γ′(0−)⊥ and ν+

Γ (x) := γ′(0+)⊥ linearly independent (no ”cusp”) in S1 such that the

normal cone of Γ at x is given by Nor(Γ, x) = {−pν−Γ (x) − qν+
Γ (x); p, q ≥ 0} ∩ S1. We then define

βΓ(x) ∈ (0, π) the angle of the cone Nor(Γ, x), corresponding to the size of the jump of νΓ at point
x and αΓ(x) = ±βΓ(x) ∈ (−π, π) the turning angle at x, where the sign is given according to the
orientation of the curve. Note that we also have H1(γ((−ε, ε))) = 2ε.

We note RΓ the set of regular points and CΓ the set of corner points of the curve Γ.

Definition 1 (Elementary set, Perimeter and Total curvature). We say that a Borel set E is an elementary
set of U if 1E is in SBV (U) and its boundary Γ := ∂E coincides with S1E in U with Γ∩U a piecewise regular
curve, positively oriented in such a way that the normals are oriented towards E, given by a finite union of
simple connected curves (possibly closed), with curvature κΓ integrable on RΓ∩U , that is κΓ ∈ L1(RΓ∩U,H1),
and with a finite number of corner points in U , that is H0(CΓ ∩ U) < +∞. It follows that the length of the
curve in U is given by

H1(RΓ ∩ U) = Per(E,U),

and its absolute curvature in U is

TaC(Γ, U) :=

∫
RΓ∩U

|κΓ(x)|H1(dx) +
∑

x∈CΓ∩U
|αΓ(x)| < +∞.

We then define the total curvature of Γ in U as

TC(Γ, U) :=

∫
RΓ∩U

κΓ(x)H1(dx) +
∑

x∈CΓ∩U
αΓ(x).

Let us quote that for E an elementary set of U , setting f = 1E ∈ SBV (U), the jump part Jf of Df is equal
to R∂E , with (f+(x), f−(x), νf (x)) = (1, 0, ν∂E(x)) for x ∈ Jf and Sf is the disjoint union of R∂E ∪ C∂E .

Notice that the definition of TaC is the same as the one introduced by Milnor in [27]. But here, in this
work, we will pay a particular attention to the signed total curvature, and not to its absolute value. Actually,
our definition of total curvature is the same as to the one of Santaló in [29], Chapter 7. The total curvature
is intrinsic, it doesn’t depend on the parametrization of the curve. But it depends on its orientation: if we
reverse the orientation of the curve then its total curvature is changed into its opposite.

In particular, when E is an elementary set of a bounded open set U , as soon as ∂E = ∂Ec, which is the
case when E is closed or open for instance, its complementary Ec = R2 r E is also an elementary set of U ,
with

Per(Ec, U) = Per(E,U), TaC(∂Ec, U) = TaC(∂E ∩ U,U), and TC(∂Ec, U) = −TC(∂E ∩ U,U).
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Not elementary Not elementary Elementary

Figure 1. Left: two sets that are not elementary sets according to Definition 1: the first set
has one multiple point; for the second set, its indicator function has a discontinuity set not
equal to its approximate discontinuity set. Right: an elementary set.

Note also that an elementary set in U is also an elementary set in any open subset U ′ ⊂ U and an elementary
set of R2 is of course elementary for any bounded open set U . Finally, let us quote that E is an elementary
set in U if and only if E ∩ U is an elementary set in U .

The link between the level total curvature and Euler Characteristic is given by the Gauss-Bonnet theorem.

Theorem 1 (Gauss-Bonnet Theorem). Let E ⊂ U be an elementary set and a regular region (meaning that

E =
o

E). Then, S1E = ∂E and

• the perimeter of E defined by

Per(E,U) := ‖D1E‖(U) = sup{
∫
U

1Edivϕdx |ϕ ∈ C1
c (U,R2), ‖ϕ‖∞} < +∞,

corresponds to
H1(R∂E) = H1(∂E).

• By Gauss-Bonnet Theorem, the Euler Characteristic of E is given by

χ(E) =
1

2π
TC(∂E,U),

where the total curvature of ∂E is equal to

TC(∂E,U) =

∫
R∂E

κ∂E(x)H1(dx) +
∑
x∈C∂E

α∂E(x).

Proof. The first point follows from Gauss-Green Theorem (see Section 3.3 of [7]). For the second point we
use that E being closed and elementary, its boundary must be composed by a finite disjoint union of closed
piecewise C2 curves so that we can apply Gauss-Bonnet Theorem stated in [16] p.274 for regular region. �

Remark 1: It is a well-known result of differential geometry of plane curves that the total curvature of any
regular simple closed curve is 2π or −2π (depending on the orientation of the curve). This result is sometimes
called Hopf’s Umlaufsatz, or also the theorem of turning tangents ([16] p.396).

Remark 2: Note that when E ⊂ U is a regular region one has ∂E = ∂Ec and TC(∂Ec, U) = −TC(∂E,U),
that allows to consider both E or its complementary. In contrast, for Euler Characteristic, we have to consider

the compact set U r
o

E, and that yields χ(U r
o

E) = 1− χ(E).

2.2. Level integrals for excursion sets.

Definition 2 (Level perimeter and total curvature integrals). Let f be a real-valued function defined on U
such that f ∈ SBV (U). For t ∈ R, we define the excursion set of f for the level t as

Ef (t) := {f ≥ t} ⊂ R2.

We assume that for almost every t ∈ R, the set Ef (t) is an elementary set of U in the sense of Definition 1
and that t 7→ TaC(∂Ef (t), U) is an integrable function on R. We then say that the function f is of special
bounded variation and of finite level total curvature integral (on U). Then, the level perimeter integral and the
level total curvature integral of f are defined for any bounded continuous function h on R by

(3) LPf (h, U) =

∫
R
h(t)Per(Ef (t), U) dt and LTCf (h, U) =

∫
R
h(t)TC(∂Ef (t), U) dt.
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We simply denote Vf (U) for LPf (1, U) (= ‖Df‖(U) by the co-area formula [7]) and LTCf (U) for LTCf (1, U).

Let us remark that when t > maxU f , then Ef (t)∩U = ∅ and therefore Per(Ef (t), U) = TC(∂Ef (t), U) = 0.
On the other hand, when t ≤ minU f , then Ef (t) ∩ U = U , and thus ∂Ef (t) ∩ U = ∅. Therefore we also have
Per(Ef (t), U) = TC(∂Ef (t), U) = 0. This shows that the perimeter and total curvature are 0 for levels t
outside the range of f .

Let us also notice that when H is a C1 diffeomorphism on R with bounded derivative h = H ′, by a simple
change of variable, the function H ◦ f is also of special variation and of finite level total curvature integral on
U with EH◦f (t) = Ef (H−1(t)) so that

VH◦f (U) = LPf (h, U) and LTCH◦f (U) = LTCf (h, U).

Link with Euler Integral. Due to the additivity property of the Euler Characteristic

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B),

it is natural to set up an integration theory with respect to Euler Characteristic [24, 34]. However, since χ
is only finitely additive, a careful choice of integrands must be done. This problem was tackled by defining
the class of constructible functions [30], then extended by the class of “tame” real-valued functions in [9].
Following this framework, Bobrowski and Borman obtained in [13] the first probabilistic statement about the
persistent homology generated by sublevel sets. We briefly recall the definitions used in [13] for comparison
with our setting. When f is a real continuous function defined on a compact topological set S, it is said to be
a tame function if the homotopy types of Ef (t) = {f ≥ t} and {f ≤ t} change only finitely many times as t
varies over R, and the Euler Characteristic of each set is always finite. For such a function, a lower and upper
Euler integrals are defined by ∫

S

fbdχc =

∫ +∞

0

(χ(f ≥ t)− χ(f < −t)) dt∫
S

fddχe =

∫ +∞

0

(χ(f > t)− χ(f ≤ t)) dt,

where χ(f ≥ t) = χ(Ef (t)), χ(f < t) = χ(S) − χ(f ≥ t), etc. Note that when S = U we always have
χ(f ≥ t) = χ(S) = 1 for any t ≤ minS f and thus t 7→ χ(f ≥ t) is not integrable on R, explaining the above
definition of Euler integrals.

In contrast, we can simply define LTCf (U) for f a function of special bounded variation and finite level
total curvature on U . Of course, 1

2πTC(∂Ef (t), U) will not coincide with χ(Ef (t)∩U) when the excursion set
is not included in the observation window in view of its boundary. But it can be seen as a “modified” Euler
Characteristic, in a sense very similar to the one used in the book of Adler and Taylor [6] or in the paper of
Estrade and León [17], where critical points in U are only taken into account, and not the ones on the boundary
of U . Moreover, when considering large domains (that is rU for r going to infinity) the total curvature (in
expectation) will grow like r2L(U) whereas the sum of the turning angles on ∂rU will (in expectation also)
grow like rH1(∂U), being negligible for large r.

We will show how the perimeter and the level total curvature integrals can be explicitly computed in different
situations and we will apply it for computing Perimeter and Euler Characteristic densities of stationary fields.
The first situation is the one of sums of piecewise constant functions (also called elementary functions), and
the second situation will be the case of smooth (at least C2) functions.

3. Elementary functions and shot noise random fields

3.1. Elementary functions. We introduce the class of elementary functions that are piecewise constant
functions of special bounded variation. In order to compute the total curvature of excursion sets we need to
be more precise on the discontinuity set, which is H1-rectifiable under the only assumption of special bounded
variation.

We first introduce some notations. For a point x ∈ U and a real positive number ρ, we recall that Bρ(x)
denotes the open ball of radius ρ and center x. For an oriented simple piecewise C2 curve γ with finite length,
and a point x on γ, then for ρ small enough, Bρ(x) \ γ is made of two connected components. These two
“half-balls” are respectively denoted by B+

ρ (x, γ) and B−ρ (x, γ). The half-ball B+
ρ (x, γ) is the component that

is on the side of the normal νγ to γ.
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Figure 2. By the Gauss-Bonnet theorem, the Euler Characteristic of the excursion set Ef (t)∩
U (in gray) is equal to the total curvature of its boundary in the open rectangular domain U
plus the turning angles at the points where Ef (t)∩U meets ∂U and also plus π/2 for each of
the corners of the rectangle U that are in Ef (t). All these special points are the ones marked
by the small dashed circles on the figure.

Definition 3 (Elementary function). We say that a function f defined on U is an elementary function on
U if f is a piecewise constant function in SBV (U) taking a finite number of values (meaning that f(U) is a
finite subset of R), and if Sf , the discontinuity set of f can be decomposed in U as

Sf ∩ U = (Rf ∪ Cf ∪ If ) ∩ U,

where (Sf r If ) ∩ U is a piecewise regular curve and (see also Figure 3):

• Rf ∩ U is the regular part of the discontinuity set of f in U : it is the finite and disjoint union of C2

simple connected curves having finite length and finite total curvature. More precisely, if x ∈ Rf ∩ U ,
then there exists ρ > 0 such that Sf ∩Bρ(x) is a simple C2 oriented curve γ separating the ball Bρ(x)
in two half-balls B+

ρ (x, γ) and B−ρ (x, γ). Moreover there exist two real numbers f+(x) > f−(x) such

that f(y) = f+(x) for all y ∈ B+
ρ (x, γ) and f(y) = f−(x) for all y ∈ B−ρ (x, γ). We also denote

νf (x) = νγ(x) and κf (x) = κγ(x) with κf ∈ L1(Rf ,H1).

• Cf ∩ U is the set of corner points of f in U : it is a finite set of points (meaning H0(Cf ) < +∞, with
H0 the counting measure) such that if x ∈ Cf ∩ U , then there exists ρ > 0 such that Sf ∩ Bρ(x) is
a simple piecewise C2 oriented curve γ having only one corner at x. We write αf (x) ∈ (−π, π) the
turning angle of γ at x. As for regular points, γ separates the ball Bρ(x) in two half-balls B+

ρ (x, γ)

and B−ρ (x, γ), and moreover there exist two real numbers f+(x) > f−(x) such that f(y) = f+(x) for

all y ∈ B+
ρ (x, γ) and f(y) = f−(x) for all y ∈ B−ρ (x, γ). The turning angle at such a corner point is

denoted

αf (x) = αγ(x).

• If ∩ U is the set of intersection points of f in U : it is a finite set of points (meaning H0(If ) < +∞)
such that for x ∈ If ∩ U , then there exists ρ > 0 such that Sf ∩ Bρ(x) is the union of two different
simple and oriented C2 curves γ1 and γ2 such that {x} = γ1 ∩ γ2 and such that the intersection is
non-degenerate (meaning that νγ1

(x) and νγ2
(x) are not colinear). Each curve separates the ball in

two half-balls, and there exist 4 real numbers f−(x) ≤ f+
− (x), f−+ (x) ≤ f+(x) with at least 3 different

values, such that f = f−(x) on B−ρ (x, γ1)∩B−ρ (x, γ2); f = f−+ (x) on B−ρ (x, γ1)∩B+
ρ (x, γ2); f = f+

− (x)
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on B+
ρ (x, γ1) ∩B−ρ (x, γ2) and f = f+(x) on B+

ρ (x, γ1) ∩B+
ρ (x, γ2). And we define

βf (x) = dS1(νγ1
(x), νγ2

(x))

= min(|Arg νγ1
(x)−Arg νγ2

(x)|, 2π − |Arg νγ1
(x)−Arg νγ2

(x)|) ∈ (0, π),

the geodesic distance between νγ1(x) and νγ2(x) on S1.

Figure 3. The three types of points of the discontinuity set of an elementary function. From
left to right: a regular point, a corner point and an intersection point.

Proposition 1. If f is an elementary function on U , then for all t ∈ R, Ef (t) is an elementary set of U in
the sense of Definition 1. Moreover, f is of special bounded variation and finite level total curvature integral
on U with

Vf (U) = ‖Df(U)‖ =

∫
Rf∩U

[f+(x)− f−(x)]H1(dx) and(4)

LTaCf (U) =

∫
Rf∩U

[f+(x)− f−(x)]|κf (x)|H1(dx) +
∑

x∈Cf∩U
[f+(x)− f−(x)]|αf (x)|(5)

+
∑

x∈If∩U
[f+(x)−max(f+

− (x), f−− (x)) + min(f+
− (x), f−− (x))− f−(x)]βf (x) < +∞.

If h is a bounded continuous function on R, and H is a primitive of h (for instance H(t) =
∫ t

0
h(u) du), then

the level perimeter integral and the total curvature integral of f are given by

LPf (h, U) =

∫
Rf∩U

[H(f+(x))−H(f−(x))]H1(dx)(6)

LTCf (h, U) =

∫
Rf∩U

[H(f+(x))−H(f−(x))]κf (x)H1(dx) +
∑

x∈Cf∩U
[H(f+(x))−H(f−(x))]αf (x)(7)

+
∑

x∈If∩U
[H(f+(x)) +H(f−(x))−H(f+

− (x))−H(f−+ (x))]βf (x).

In particular, when h = 1, we get LPf (1, U) = Vf (U) and

LTCf (U) =

∫
Rf∩U

[f+(x)− f−(x)]κf (x)H1(dx) +
∑

x∈Cf∩U
[f+(x)− f−(x)]αf (x)(8)

+
∑

x∈If∩U
[f+(x) + f−(x)− f+

− (x)− f−+ (x)]βf (x).

Proof. We assume that m = Card(f(U)) ≥ 2. Otherwise, if m = 1, then for all t ∈ R, Ef (t)∩U = ∅ or U and
therefore Per(Ef (t), U) = TaC(∂Ef (t), U) = TC(∂Ef (t), U) = 0. In the following we denote the values of f
in U by v1 < . . . < vm and set v0 = −∞. We first remark that Ef (t) ∩ U = ∅ for t > vm, Ef (t) ∩ U = U for
t ≤ v1 and Ef (t) ∩ U = Ef (vi) ∩ U for vi−1 < t ≤ vi and 2 ≤ i ≤ m. The set of discontinuity points is given
by Sf ∩ U = ∪mi=2∂Ef (vi) ∩ U .
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Let us prove that Ef (vi) is an elementary set in U for 2 ≤ i ≤ m. Since f ∈ SBV (U) is piecewise constant,
one can find ϕi a C1 real function such that 1Ef (vi)∩U = ϕi ◦ f . By chain rule (see Theorem 3.96 of [7]),
it follows that 1Ef (vi)∩U ∈ SBV (U) and therefore 1Ef (vi) ∈ SBV (U). Now let us prove that the boundary
Γi := ∂Ef (vi)∩U coincides with the approximate discontinuity points of 1Ef (vi)∩U and is a piecewise regular
curve. Since Γi ⊂ Sf , we can write

Γi = (Γi ∩Rf ) ∪ (Γi ∩ Cf ) ∪ (Γi ∩ If ) .

Note that for x ∈ Γi, one has f+(x) ≥ vi and f−(x) < vi and x is also an approximate discontinuity
point of 1Ef (vi)∩U . Moreover Γi ∩ (Rf ∪ Cf ) is a piecewise regular curve with length H1 (Γi ∩ (Rf ∪ Cf )) =

H1(Γi ∩Rf ) = Per(Ef (vi), U) < +∞ and for x ∈ Γi ∩Rf we get κΓi(x) = κf (x), while for x ∈ Γi ∩ Cf ⊂ CΓi
we get αΓi(x) = αf (x).
When x ∈ Γi ∩If , we have an intersection point of f , and it may become a corner point or a regular point for
Γi. Indeed, using the same notations for intersection points as in Definition 3, we may write x ∈ γ1 ∩ γ2 with
the two simple C2 curves γ1 and γ2 being such that (γ1∪γ2)∩Bρ(x) = Sf ∩Bρ(x). If vi ≤ min(f+

− (x), f−+ (x)),
then Γi ∩ Bρ(x) = (γ1 ∩ B−ρ (x, γ2)) ∪ (γ2 ∩ B−ρ (x, γ1)) and x ∈ CΓi with αΓi(x) = −βf (x). Without loss of

generality we may assume that f+
− (x) ≤ f−+ (x). If f+

− (x) < vi ≤ f−+ (x) then Γi ∩ Bρ(x) = γ2 and therefore x

is not a corner point of Γi but a regular point H1-negligible with κΓi(x) = κγ1
(x). If vi > max(f+

− (x), f−− (x)),
then Γi ∩Bρ(x) = (γ1 ∩B+

ρ (x, γ2))∪ (γ2 ∩B+
ρ (x, γ1)) and x is again a corner point of Γi with αΓi(x) = βf (x).

Finally, Γi is a piecewise regular curve and Ef (vi) is an elementary set in U with Per(Ef (vi)) = H1(Rf ∩ Γi)
and

TaC(Γi, U) =

∫
Rf∩Γi

|κf (x)|H1(dx) +
∑

x∈Γi∩Cf

|αf (x)|

+
∑

x∈Γi∩If

βf (x)
(

1Ivi>max(f+
− (x),f−− (x)) + 1Ivi≤min(f+

− (x),f−− (x))

)
< +∞,

while

TC(Γi, U) =

∫
Rf∩Γi

κf (x)H1(dx) +
∑

x∈Γi∩Cf

αf (x)

+
∑

x∈Γi∩If

βf (x)
(

1Ivi>max(f+
− (x),f−− (x)) − 1Ivi≤min(f+

− (x),f−− (x))

)
.

It follows that for all t ∈ R, the set Ef (t) is an elementary set in U and that t 7→ TaC(∂Ef (t), U) is an
integrable function on R, as a step function with compact support. Hence f is of special bounded variation
and finite level curvature integral on U .

Now, let h be a continuous bounded function on R and H a primitive of h. Since f ∈ SBV (U) we already
know by Theorem 1 of [11] that (6) holds. Moreover,∫

R
h(t)TaC(∂Ef (t), U) dt =

m∑
i=2

∫ vi

vi−1

h(t)TaC(Γi, U) dt =

m∑
i=2

[H(vi)−H(vi−1)]TaC(Γi, U).

Then, using the above formula for TaC(Γi, U), we get the sum of three terms. The first one is given by

m∑
i=2

[H(vi)−H(vi−1)]

∫
Rf∩Γi

|κf (x)|H1(dx) =

∫
Rf
|κf (x)|

m∑
i=2

[H(vi)−H(vi−1)]1IΓi(x)H1(dx).

When x ∈ Sf ∩ U = ∪mi=2Γi, we denote i(x), (resp. j(x) ≥ i(x)), the minimal (resp. maximal) index
i = 2, . . . ,m such that x ∈ Γi and f−(x) := vi(x)−1, (resp. f+(x) := vj(x)). It follows that

m∑
i=2

[H(vi)−H(vi−1)]1IΓi(x) =

j(x)∑
i=i(x)

[H(vi)−H(vi−1)]

= H(vj(x))−H(vi(x)−1)

= H(f+(x))−H(f−(x)).

Therefore the first term is ∫
Rf∩U

[H(f+(x))−H(f−(x))] |κf (x)|H1(dx).
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Similarly, the second term is equal to
m∑
i=2

[H(vi)−H(vi−1)]
∑

x∈Γi∩Cf

|αf (x)| =
∑

x∈Cf∩U
[H(f+(x))−H(f−(x))] |αf (x)|.

Finally, the third one is equal to

m∑
i=2

[H(vi)−H(vi−1)]
∑

x∈Γi∩If

|βf (x)|
(

1Ivi>max(f+
− (x),f−− (x)) + 1Ivi≤min(f+

− (x),f−− (x))

)

=
∑

x∈If∩U
βf (x)

 j(x)∑
i=l(x)+1

[H(vi)−H(vi−1)] +

k(x)∑
i=i(x)

[H(vi)−H(vi−1)]

 ,

where we have introduced k(x) and l(x) with i(x)−1 ≤ k(x) ≤ l(x) ≤ j(x) such that min(f+
− (x), f−− (x)) = vk(x)

and max(f+
− (x), f−− (x)) = vl(x), with the convention that

∑j(x)
i=l(x)+1 = 0 if l(x) = j(x) and

∑k(x)
i=i(x) = 0 if

k(x) = i(x)− 1. It follows that this third term is equal to∑
x∈If∩U

βf (x)
(
H(vj(x))−H(vl(x)) + (H(vk(x))−H(vi(x)−1))

)
=
∑
x∈If

βf (x)
(
H(f+(x))−H(max(f+

− (x), f−− (x))) +H(min(f+
− (x), f−− (x)))−H(f−(x)))

)
.

In particular, for h = 1, we obtain Formula (5). The same computations as above give the result (7) for
LTCf (h, U).

Indeed now, the third term is equal to

m∑
i=2

[H(vi)−H(vi−1)]
∑

x∈Γi∩If

βf (x)
(

1Ivi>max(f+
− (x),f−− (x)) − 1Ivi≤min(f+

− (x),f−− (x))

)

=
∑
x∈If

βf (x)

 j(x)∑
i=l(x)+1

[H(vi)−H(vi−1)]−
k(x)∑
i=i(x)

[H(vi)−H(vi−1)]


=
∑
x∈If

βf (x)
(
H(f+(x)) +H(f−(x))−H(f+

− (x))−H(f−+ (x))
)

Taking again h = 1 we obtain (8). �

The above proposition gives the formula for the level total curvature of an elementary function on U . Now,
since we will be interested in shot-noise random fields that are obtained by summing elementary functions, we
need to have also a formula for the level total curvature of a sum of elementary functions on U . This is the
aim of the following proposition.

Proposition 2. Let f, g be elementary functions on U such that their respective discontinuity sets Sf and Sg
intersect only at a finite number of regular points in U , that is Sf∩Sg∩U = Rf∩Rg∩U with H0(Sf∩Sg∩U) <
+∞. We moreover assume that the intersections are non-degenerate in U , meaning that if x ∈ Rf ∩Rg ∩ U ,
then νf (x) and νg(x) are not colinear. Then f + g is also an elementary function on U with

• Rf+g ∩ U = (Rf∆Rg) ∩ U = (Rf ∪Rg r (Rf ∩Rg)) ∩ U and
– if x ∈ Rf+g ∩Rf ∩U , then κf+g(x) = κf (x) with (f + g)+(x) = f+(x) + g(x) and (f + g)−(x) =
f−(x) + g(x);

– if x ∈ Rf+g ∩Rg ∩U , then κf+g(x) = κg(x) with (f + g)+(x) = f(x) + g+(x) and (f + g)−(x) =
f(x) + g−(x);

• Cf+g ∩ U = (Cf ∪ Cg) ∩ U is a disjoint union and
– if x ∈ Cf ∩ U , then αf+g(x) = αf (x) with (f + g)+(x) = f+(x) + g(x) and (f + g)−(x) =
f−(x) + g(x),

– if x ∈ Cg ∩ U , then αf+g(x) = αg(x) with (f + g)+(x) = f(x) + g+(x) and (f + g)−(x) =
f(x) + g−(x);

• If+g ∩ U = (If ∪ Ig ∪ (Rf ∩Rg)) ∩ U is a disjoint union and
– if x ∈ If ∩U , then βf+g(x) = βf (x) with (f+g)+(x) = f+(x)+g(x), (f+g)−(x) = f−(x)+g(x),

(f + g)−+(x) = f−+ (x) + g(x) and (f + g)+
−(x) = f+

− (x) + g(x)
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– if x ∈ Ig∩U , then βf+g(x) = βg(x) with (f+g)+(x) = f(x)+g+(x), (f+g)−(x) = f(x)+g−(x),
(f + g)−+(x) = f(x) + g−+(x) and (f + g)+

−(x) = f(x) + g+
−(x)

– if x ∈ Rf ∩Rg ∩U then βf+g(x) = dS1(νf (x), νg(x)) ∈ (0, π) with (f + g)+(x) = f+(x) + g+(x),
(f + g)−(x) = f−(x) + g−(x) and {(f + g)+

−(x), (f + g)−+(x)} = {f+(x) + g−(x), f−(x) + g+(x)}.
Moreover, we have that

(9) Vf+g(U) = Vf (U) + Vg(U) and LTCf+g(U) = LTCf (U) + LTCg(U),

while

LTaCf+g(U) = LTaCf (U) + LTaCg(U)(10)

+
∑

x∈Rf∩Rg∩U

(
(f + g)+(x)−max((f + g)+

−(x), (f + g)−+(x))

+ min((f + g)+
−(x), (f + g)−+(x)− (f + g)−(x))

)
βf+g(x)

≤ LTaCf (U) + LTaCg(U) + 2π
∑

x∈Rf∩Rg∩U
[(f+(x)− f−(x)) + (g+(x)− g−(x))].

Proof. Since f and g are both piecewise constant functions in SBV (U), then f +g is also a piecewise constant
function in SBV (U), and its discontinuity set Sf+g satisfies Sf+g ∩U ⊂ (Sf ∪ Sg)∩U . We now need to show
that a point in Sf+g ∩ U is else a regular point, a corner or an intersection point in the sense of Definition 3.
If x ∈ (Sf \ Sg) ∩ U , then we have three cases:
- if x ∈ (Rf \ Sg) ∩ U , then x ∈ Rf+g ∩ U with κf+g(x) = κf (x) and (f + g)+(x) = f+(x) + g(x) and
(f + g)−(x) = f−(x) + g(x).
- if x ∈ (Cf \ Sg) ∩ U , then x ∈ Cf+g ∩ U with αf+g(x) = αf (x) and (f + g)+(x) = f+(x) + g(x) and
(f + g)−(x) = f−(x) + g(x).
- if x ∈ (If \ Sg)∩U , then x ∈ If+g ∩U with βf+g(x) = βf (x) and (f + g)+(x) = f+(x) + g(x), (f + g)−(x) =
f−(x) + g(x), (f + g)−+(x) = f−+ (x) + g(x) and (f + g)+

−(x) = f+
− (x) + g(x) .

The same symmetric formulas hold when x ∈ (Sg \ Sf ) ∩ U . Now, when x ∈ Sf ∩ Sg ∩ U = Rf ∩ Rg ∩ U ,
since we made the hypothesis that the intersection points are non-degenerate, then x becomes an intersection
point of f + g, that is x ∈ If+g and moreover βf+g(x) = dS1(νf (x), νg(x)), (f + g)+(x) = f+(x) + g+(x),
(f + g)−(x) = f−(x) + g−(x), and {(f + g)+

−(x), (f + g)−+(x)} = {f+(x) + g−(x), f−(x) + g+(x)}.
Finally, having identified the discontinuity set of f + g, since we assume that H0(Rf ∩ Rg ∩ U) < +∞ we

deduce that (Rf+g ∪ Cf+g) ∩ U is a piecewise regular curve and∫
Rf+g∩U

|κf+g(x)|H1(dx) =

∫
Rf∩U

|κf (x)|H1(dx) +

∫
Rg∩U

|κg(x)|H1(dx) < +∞ ,

H0(Cf+g ∩ U) = H0(Cf ∩ U) +H0(Cg ∩ U) < +∞
and H0(If+g ∩ U) = H0(If ∩ U) +H0(Ig ∩ U) +H0(Rf ∩Rg ∩ U) < +∞.

This finishes to prove that f + g is an elementary function. We also notice in particular that when x ∈
Rf ∩Rg ∩U , one has (f +g)+(x)+(f +g)−(x) = (f +g)+

−(x)+(f +g)−+(x) = f+(x)+g+(x)+f−(x)+g−(x),
such that applying the result of the previous proposition (Equation (8)) we can obtain the formula (9) for the
level total curvature of f+g, while the result for the variation comes from the fact thatH1(Rf∩Rg∩U) = 0. �

Remark: Formula (9) says that the total variation and the total curvature of a sum of two elementary functions
with prescribed intersection of discontinuity sets are the sum of their total variation and their total curvature.
This result is quite striking, but we have to underline that it does not hold in general. This will appear clearly
in the next section where we will consider smooth functions f and where the formula for the level perimeter
and the total curvature integral is obviously non linear in f .

3.2. Level perimeter and total curvature of an elementary shot noise random field. We consider
here a shot-noise random field defined on R2 by

∀x ∈ R2, XΦ(x) =
∑
i∈I

gmi(x− xi),

where Φ = {(xi,mi)}i∈I is a Poisson point process on R2 × Rd, defined on a probability space (Ω,A,P),
of intensity λL × F , with λ > 0 real, L the Lebesgue measure on R2 and F a probability measure on Rd.
Note that equivalently, we may define Φ as an independently marked Poisson point process where {xi}i is an
homogeneous Poisson point process of intensity λ and the mi are “marks”, following a law F (dm) on Rd (with
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d ≥ 1) and independent of the Poisson point process {xi}i. Let g : R2 × Rd → R be a measurable function
such that the functions gm := g(·,m) satisfy

(11)

∫
R2×Rd

|gm(x)| dxF (dm) < +∞.

Then, the random field XΦ is well defined as an almost surely locally integrable function on R2 (see [11]). Note
that moreover, the random field XΦ is stationary. We will first give formulas for the level perimeter and total
curvature integrals of XΦ on an open bounded set U in the case where the gm are elementary functions on R2,
then we will compute their expectation. Finally we will give explicit results in the case of weighted indicator
functions of random sets, obtained from a deterministic compact elementary set and regular region D, by
random rotation and dilation. Specific computations for disks with D = D(0, 1) and squares with D = [0, 1]2

are linked with some recent results on Boolean models.

Throughout the rest of this section we also assume that for F -almost every m ∈ Rd, the gm are elementary
functions on R2, with compact support and such that

(12)

∫
Rd
Vgm(R2)F (dm) < +∞ and

∫
Rd

LTaCgm(R2)F (dm) < +∞,

where Vgm(R2) and LTaCgm(R2) are defined by (4) and (5) choosing U = R2 and write LPgm(·,R2) and
LTCgm(·,R2), the level total curvature integral of gm in the whole space R2. For F -almost every m, gm is
assumed to have a compact support, that can be included in a square [−Tm, Tm]2 with Tm ∈ R+, and its
maximal value ‖gm‖∞ = max

[−Tm,Tm]2
|gm| is finite. We will assume moreover that

(13)

∫
Rd
T 2
m F (dm) < +∞ and

∫
Rd
‖gm‖∞ F (dm) < +∞.

Note that the first assumption of (13) implies that there is only a finite random number of gm, denoted by
N(U), contributing to the values of XΦ on the bounded open set U ⊂ (−T, T )2, for some T > 0. Actually, it
is clear that

N(U) ≤ #{i;U ∩
(
xi + [−Tmi , Tmi ]2

)
6= ∅} ≤ #{i; ‖xi‖∞ ≤ (Tmi + T )},

with ‖x‖∞ = max(|x1|, |x2|), for x ∈ R2. It follows that E(N(U)) ≤ λ
∫
Rd 4(Tm + T )2F (dm). Since F is a

finite measure, under (13), we get

(14) E(N(U)) < +∞.

In the following we will use the notation τx to denote the translation of x in R2 (i.e. τxy = y + x for all
y ∈ R2). We will also denote Φi = Φ \ {(xi,mi)} for i ∈ I, Φij = Φ \ {(xi,mi), (xj ,mj)} for i 6= j in I, and
their associated shot noise random fields

∀i, XΦi(x) =
∑
k;k 6=i

gmk(x− xk) and ∀j 6= i, XΦij (x) =
∑

k;k 6=i,k 6=j

gmk(x− xk).

Theorem 2. Assume that for F -almost every m ∈ Rd, the function gm is an elementary function on R2 (in
the sense of Definition 3) satisfying (11), (12) and (13), and such that∫

Rd
H0 (Sgm \ Rgm)F (dm) < +∞(15) ∫

Rd×Rd

∫
R2

H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞(16) ∫

Rd×Rd

∫
R2

H0
({
y ∈ Rgm′ ∩ τxRgm ; νgm′ (y) = ±νgm(y − x)

})
dxF (dm)F (dm′) = 0.(17)

Then, almost surely, for all bounded open set U ⊂ R2, XΦ is an elementary function on U and its discontinuity
set on U is given by SXΦ ∩ U where SXΦ = RXΦ ∪ CXΦ ∪ IXΦ , with

• RXΦ =

(⋃
i

τxiRgmi

)
\

( ⋃
i,j 6=

τxiRgmi ∩ τxjRgmj

)
, and if x ∈ RXΦ ∩ U , there exists a unique i such

that x ∈ τxiRgmi with κXΦ
(x) = κgmi (x− xi) and

XΦ
+(x) = g+

mi(x− xi) +XΦi(x) and XΦ
−(x) = g−mi(x− xi) +XΦi(x);
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• CXΦ
=
⋃
i

τxiCgmi , and if x ∈ CXΦ
∩ U , there exists a unique i such that x ∈ τxiCgmi with αXΦ

(x) =

αgmi (x− xi) and

XΦ
+(x) = g+

mi(x− xi) +XΦi(x) and XΦ
−(x) = g−mi(x− xi) +XΦi(x);

• IXΦ =

(⋃
i

τxiIgmi

)
∪

( ⋃
i,j 6=

τxiRgmi ∩ τxjRgmj

)
and if x ∈ IXΦ ∩ U , only two situations occur

– there exists a unique i such that x ∈ τxiIgmi , with βXΦ
(x) = βgmi (x− xi) and

XΦ
+(x) = g+

mi(x− xi) +XΦi(x), XΦ
−(x) = g−mi(x− xi) +XΦi(x),

XΦ
−
+(x) = gmi

−
+(x− xi) +XΦi(x), XΦ

+
−(x) = gmi

+
−(x− xi) +XΦi(x);

– or there exists a unique pair {i, j} with i 6= j such that x ∈ τxiRgmi ∩ τxjRgmj with

βXΦ(x) = dS1(νgmi (x− xi), νgmj (x− xj)) ∈ (0, π)

XΦ
+(x) = g+

mi(x− xi) + g+
mj (x− xj) +XΦij (x), XΦ

−(x) = g−mi(x− xi) + g−mj (x− xj) +XΦij (x),

{XΦ
+
−(x), XΦ

−
+(x)} = {g+

mi(x− xi) + g−mj (x− xj) +XΦij (x), g−mi(x− xi) + g+
mj (x− xj) +XΦij (x)}.

In particular, a.s.

VXΦ
(U) =

∑
i

Vgmi (τ−xiU) and LTCXΦ
(U) =

∑
i

LTCgmi (τ−xiU),

with

Vgmi (τ−xiU) =

∫
U∩τxiRgmi

[g+
mi(x− xi)− g

−
mi(x− xi)]H

1(dx),

and

LTCgmi (τ−xiU) =
∑
i

∫
U∩τxiRgmi

[g+
mi(x− xi)− g

−
mi(x− xi)]κgmi (x− xi)H

1(dx)

+
∑
i

∑
x∈U∩τxiCgmi

[g+
mi(x− xi)− g

−
mi(x− xi)]αgmi (x− xi)

+
∑
i

∑
x∈U∩τxiIgmi

[g+
mi(x− xi) + g−mi(x− xi)− gmi

+
−(x− xi)− gmi−+(x− xi)]βgmi (x− xi).

Proof. Since it is sufficient to prove the result for all rectangles U = (a1, b1) × (a2, b2) with a1, a2, b1, b2 ∈ Q,
we only have to prove it holds almost surely on some fixed rectangle U = (a1, b1)× (a2, b2), with a1 < b1 and
a2 < b2. Let us quote that we already have proven that XΦ ∈ SBV (U) in Theorem 2 of [11] in a more general
framework. However we need here to be more precise on its discontinuity set SXΦ

⊂ ∪iτxiSgmi .
Let us first remark that when AΦ is a finite set of points of R2 depending on the marked Poisson point

process Φ = {(xi,mi)}, as soon as E(H0(AΦ)) < +∞, one has,⋃
j

AΦj ∩ τxjSgmj = ∅ a.s..

This follows from the fact that, by Slivnyak-Mecke formula (see [8] Theorem 1.4.5),

E

H0

⋃
j

AΦj ∩ τxjSgmj

 ≤ λ

∫
R2×Rd

E
(
H0(AΦ ∩ τxSgm)

)
dxF (dm)

≤ λE
(
H0(AΦ)

) ∫
Rd
L (Sgm)F (dm) = 0,

since L (Sgm) = 0, using Fubini Theorem and translation invariance of both H0 and L.

Our first assumption (15) implies that

(18)
⋃
i,j 6=

τxi
(
Sgmi \ Rgmi

)
∩ τxjSgmj ∩ U = ∅ a.s..
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Actually, taking AΦ =
⋃
i

τxi
(
Sgmi \ Rgmi

)
∩ U , Campbell formula (see [8] Theorem 1.4.3) ensures that

E
(
H0 (AΦ)

)
≤ λ

∫
R2×Rd

H0 (τx (Sgm \ Rgm) ∩ U) dxF (dm)

≤ λL(U)

∫
Rd
H0 (Sgm \ Rgm)F (dm) < +∞.

Then, (18) follows from the preceding remark since
⋃
i,j 6=

τxi
(
Sgmi \ Rgmi

)
∩ τxjSgmj ∩ U =

⋃
j

AΦj ∩ τxjSgmj .

The second assumption (16) will ensure both that

(19) H0

⋃
i,j 6=

τxiRgmi ∩ τxjRgmj ∩ U

 <∞ a.s.,

and

(20)
⋃

i,j,k 6=

τxiRgmi ∩ τxjRgmj ∩ τxkSgmk ∩ U = ∅ a.s..

Here we set AΦ =
⋃
i,j 6=

τxiRgmi ∩ τxjRgmj ∩U . Using again Slivnyak-Mecke formula and Campbell formula we

obtain that

E(H0(AΦ)) ≤ λ2

∫
R2×Rd

∫
R2×Rd

H0
(
τxRgm ∩ τx′Rgm′ ∩ U

)
dxF (dm)dx′F (dm′)

≤ λ2L(U)

∫
Rd×Rd

∫
R2

H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞.

It follows that H0(AΦ) < +∞ a.s. and
⋃
k

AΦk ∩ τxkSgmk = ∅ a.s. .

Finally and similarly, the last assumption ensures that

(21) {y ∈
⋃
i,j 6=

τxiRgmi ∩ τxjRgmj ∩ U ; νgmi (y − xi) = ±νgmj (y − xj)} = ∅ a.s..

This follows from the fact that the expected H0 measure of this set is zero, according to Slivnyak-Mecke
formula and Campbell formula, Fubini Theorem and translation invariance.

Now let us consider the random variable N(U) counting the number of functions gmi contributing to the
values of XΦ on U and recall that under the assumption that

∫
Rd T

2
mF (dm) < +∞, N(U) is a.s. finite, as a

consequence of (14).
We now will prove the result of Theorem 2 by induction on the value of N(U) once we have fixed an almost

sure realization ensuring the previous configuration.
For N(U) = 0 there is nothing to prove since XΦ = 0 on U in this case. Let us assume the result holds
when N(U) = n ≥ 0 and let us prove it for N(U) = n + 1. We can assume that there exists (xi,mi) such
that τ−xigmi contributes to the values of X on U and write XΦ = XΦi + τ−xigmi . The number of functions
contributing to XΦi is given by N(U) − 1 so we can use our induction to state that XΦi is an elementary
function on U with discontinuity set SXΦi

∩ U where

SXΦi
=
⋃
j;j 6=i

τxjSgmj , with RXΦi
=

 ⋃
j;j 6=i

τxjRgmj

 \
 ⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩ τxkRgmk

 ,

CXΦi
=
⋃
j;j 6=i

τxjCgmj and IXΦi
=

 ⋃
j;j 6=i

τxjIgmj

⋃ ⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩ τxkRgmk

 .

Then the discontinuity points are given by SXΦ ∩ U with SXΦ ⊂ SXΦi
∪ τxiSgmi =

⋃
j

τxjSgmj with

SXΦi
∩ τxi

(
Sgmi \ Rgmi

)
∩ U ⊂

⋃
j;j 6=i

τxjSgmj ∩ τxi
(
Sgmi \ Rgmi

)
∩ U = ∅

by (18). Moreover,

SXΦi
\ RXΦi

⊂
⋃
j;j 6=i

τxj

(
Sgmj \ Rgmj

)
∪

⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩ τxkRgmk ,
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with again
⋃
j;j 6=i

τxj

(
Sgmj \ Rgmj

)
∩τxiSgmi∩U = ∅ by (18) and

⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩τxkRgmk∩τxiSgmi∩U = ∅

by (20). Therefore, we may conclude that

SXΦi
∩ τxiSgmi ∩ U ⊂ RXΦi

∩ τxiRgmi ∩ U,

with H0
(
RXΦi

∩ τxiRgmi ∩ U
)
< +∞ by (19). Finally let us quote that the intersections are non-degenerate

in view of (21). Hence, according to Proposition 2, XΦ is an elementary function on U . Moreover, let fix a
point x ∈ U . If x ∈ RXΦi

\τxiSgmi we get X±Φ (x) = X±Φi(x)+gmi(x−xi) and by induction there exists a unique

j 6= i such that x ∈ τxjRgmj so that X±Φ (x) = XΦij (x) + g±mj (x − xj) + gmi(x − xi) = XΦj (x) + g±mj (x − xj)
and κXΦ

(x) = κgmj (x − xj). Similarly, if x ∈ τxiRgmi \ SXΦi
we get XΦ

±(x) = XΦi(x) + g±mi(x − xi) and

κXΦ
(x) = κgmi (x − xi). In the same way, by induction and using the fact that CXΦ

is the disjoint union of

τxjCgmj we obtain that if x ∈ CXΦ
, there exists a unique i such that x ∈ τxiCgmi and αXΦ

(x) = αgmi (x−xi) with

XΦ
±(x) = g±mi(x− xi) +XΦi(x). Finally IXΦ is the disjoint union of IXΦi

, τxiIgmi and RXΦi
∩ τxiRgmi . By

induction, IXΦi
=
⋃
j;j 6=i

τxjIgmj ∪
⋃

j,k 6=;j 6=i,k 6=i
τxjRgmj ∩ τxkRgmk and RXi ∩ τxiRgmi =

⋃
j;j 6=i

τxjRgmj ∩ τxiRgmi
where unions are all disjoint. Hence, grouping the terms we get the result. �

Theorem 3. Under the hypothesis of Theorem 2, assuming moreover that

(22)

∫
Rd×Rd

∫
R2

(‖gm‖∞ + ‖gm′‖∞)H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞,

then the random variables VXΦ
(U), LTaCXΦ

(U) and LTCXΦ
(U) have finite expectation for any bounded open

set U . Moreover one has

E(VXΦ
(U)) = λL(U)

∫
Rd
Vgm(R2)F (dm) and E(LTCXΦ

(U)) = λL(U)

∫
Rd

LTCgm(R2)F (dm),

with

Vgm(R2) =

∫
Rgm

[gm
+(z)− gm−(z)]H1(dz)

LTCgm(R2) =

∫
Rgm

[gm
+(z)− gm−(z)]κgm(z)H1(dz) +

∑
z∈Cgm

[gm
+(z)− gm−(z)]αgm(z)

+
∑
z∈Igm

[gm
+(z) + gm

−(z)− gm+
−(z)− gm−+(z)]βgm(z).

It follows that for a.e. t ∈ R, the random variables Per(EXΦ
(t), U) and TC(∂EXΦ

(t), U) have also finite
expectation such that for any h continuous bounded function

E(LPXΦ(h, U)) =

∫
R
h(t)E (Per(EXΦ(t), U)) dt and E(LTCXΦ(h, U)) =

∫
R
h(t)E (TC(∂EXΦ(t), U)) dt,

where

E(LPXΦ
(h, U)) = λL(U)

∫
Rd

∫
Rgm

∫ g+
m(x)

g−m(x)

E(h(XΦ(0) + s))dsH1(dx)F (dm)

E(LTCXΦ
(h, U)) = λL(U)

∫
Rd

(R(h,m) + C(h,m) + I(h,m))F (dm),

where

R(h,m) =

∫
Rgm

∫ g+
m(x)

g−m(x)

E(h(XΦ(0)+s))ds κgm(x)H1(dx) , C(h,m) =
∑
x∈Cgm

∫ g+
m(x)

g−m(x)

E(h(XΦ(0)+s))dsαgm(x),

and I(h,m) = I(1)(h,m) + I(2)(h,m), with

I(1)(h,m) =
∑

x∈Igm

(∫ g+
m(x)

gm
+
−(x)

E(h(XΦ(0) + s))ds−
∫ gm

−
+(x)

g−m(x)

E(h(XΦ(0) + s))ds

)
βgm(x),

while I(2)(h,m) is equal to

λ

2

∫
Rd

∫
R2

∑
z∈τxRgm∩Rgm′

dS1(νgm(z − x), νgm′ (z))
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×
∫ g+

m(z−x)

g−m(z−x)

E
(
h(XΦ(0) + s+ g+

m′(z))− h(XΦ(0) + s+ g−m′(z))
)
dsdxF (dm′).

Proof. First note that the results on the perimeter follow from Theorem 2 and Proposition 1 of [11] since in
view of (11) and (12) we have

∫
Rd ‖gm‖BV (Rd)F (dm) < +∞. Moreover, according to (10), one has a.s.

LTaCXΦ
(U) ≤

∑
i

LTaCgmi (τ−xiU) + 2π
∑
i,j 6=

H0
(
τxiRgmi ∩ τxjRgmj ∩ U

)
(‖gmi‖∞ + ‖gmj‖∞).

By Campbell formula,

E

(∑
i

LTaCgmi (τ−xiU)

)
=

∫
R2×Rd

LTaCgm(τ−xU)λdxF (dm).

Hence, by Fubini Theorem,

E

(∑
i

LTaCgmi (τ−xiU)

)
= λL(U)

∫
Rd

LTaCgm(R2)F (dm) < +∞.

Moreover, by Slivnyak-Mecke formula,

E

∑
i,j 6=

H0
(
τxiRgmi ∩ τxjRgmj ∩ U

)
(‖gmi‖∞ + ‖gmj‖∞)


=

∫
Rd×Rd

∫
R2×R2

H0
(
τxRgm ∩ τx′Rgm′ ∩ U

)
(‖gm‖∞ + ‖gm′‖∞)λ2dxdx′F (dm)F (dm′)

= λ2L(U)

∫
Rd×Rd

∫
R2

∫
R2

1Iz∈Rg
m′
∩τxRgm (‖gm‖∞ + ‖gm′‖∞)H0(dz)dxF (dm)F (dm′)

= λ2L(U)

∫
Rd×Rd

∫
R2

(‖gm‖∞ + ‖gm′‖∞)H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞,

by assumption (22). It follows that E(LTaCXΦ
(U)) < +∞ and therefore E

(∫
R |TC(∂EXΦ

(t), U)|dt
)
< +∞.

So for a.e. t ∈ R, the random variable TC(∂EXΦ
(t), U) has a finite expectation and t 7→ E (TC(∂EXΦ

(t), U)),
is a function in L1(R). Note that since LTCXΦ(U) =

∑
i LTCgmi (τ−xiU) we simply get by Campbell formula

and Fubini Theorem that

E(LTCXΦ
(U)) = λL(U)

∫
Rd

LTCgm(R2)F (dm).

Now, let h be a continuous bounded function with primitive denoted by H. We already know that a.s.
LTCXΦ

(h, U) =
∫
R h(t)TC(∂EXΦ

(t), U)dt may be written as the sum of three terms Rh + Ch + Ih with finite
expectation under our assumptions. By Fubini Theorem, it follows that

E(LTCXΦ
(h, U)) =

∫
R
h(t)E(TC(∂EXΦ

(t), U))dt = E(Rh) + E(Ch) + E(Ih).

For the first term we get

E(Rh) = E

(∫
RXΦ

∩U
[H(X+

Φ (z))−H(X−Φ (x))]κXΦ
(z)H1(dz)

)

= E

(∑
i

∫
τxiRgmi∩U

[H(Xi(z) + g+
mi(z − xi))−H(Xi(z) + g−mi(z − xi))]κgmi (z − xi)H

1(dz)

)

=

∫
R2×Rd

∫
τxRgm∩U

E
(
[H(XΦ(z) + g+

m(z − x))−H(XΦ(z) + g−m(z − x))]
)
κgm(z − x)H1(dz)λdxF (dm),

by Slivnyak-Mecke formula. Using translation invariance of both H1 and L and stationarity of XΦ we get that

(23) E(Rh) = λL(U)

∫
Rd

∫
Rgm

∫ g+
m(z)

g−m(z)

E(h(XΦ(0) + s))κgm(z)dsH1(dz)F (dm) = λL(U)

∫
Rd
R(h,m)F (dm).
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Similarly, for the second term we get

E(Ch) = E

 ∑
z∈CXΦ

∩U
[H(X+

Φ (z))−H(X−Φ (z))]αXΦ
(z)


= E

(∑
i

1Iz∈τxiCgmi∩U
[H(XΦi(z) + g+

mi(z − xi))−H(XΦi(z) + g−mi(z − xi))]αgmi (z − xi)H
1(dz)

)

= λL(U)

∫
Rd

∑
z∈Cgm

E
(
[H(XΦ(0) + g+

m(z))−H(XΦ(0) + g−m(z))]
)
αgm(z)F (dm)(24)

= λL(U)

∫
Rd
C(h,m)F (dm),(25)

with C(h,m) =
∑
z∈Cgm

∫ g+
m(z)

g−m(z)
E (h(XΦ(0) + s)) dsαgm(z). Finally, the last term may be itself decomposed

in two terms, say Ih = I
(1)
h + I

(2)
h . With similar computations we get E(I

(1)
h ) equals to

λL(U)

∫
Rd

∑
z∈Igm

(∫ g+
m(z)

gm
+
−(z)

E (h(XΦ(0) + s)) ds−
∫ gm

−
+(z)

g−m(z)

E (h(XΦ(0) + s)) ds

)
βgm(z)F (dm)

= λL(U)

∫
Rd
I(1)(h,m)F (dm).(26)

Since τxiRgmi ∩ τxjRgmj = τxjRgmj ∩ τxiRgmi , writing for z ∈ τxiRgmi ∩ τxjRgmj

∆mi,mjh(t, z − xi, z − xj) =

∫ g+
mj

(z−xj)

g−mj (z−xj)
[h(t+ g+

mi(z − xi) + s)− h(t+ g−mi(z − xi) + s)]ds,

the term E(I
(2)
h ) is equal to

E

1

2

∑
i6=j

∑
z∈τxiRgmi∩τxjRgmj ∩U

∆mi,mjh(XΦij (z), z − xi, z − xj)dS1(νgmi (z − xi), νgmj (z − xj))


=

1

2

∫∫ ∑
z∈τxRgm∩τx′Rgm′∩U

E (∆m,m′h(XΦ(z), z − x, z − x′)) dS1(νgm(z − x), νgm′ (z − x
′))λ2dxF (dm)dx′F (dm′),

by Slivnyak-Mecke formula. By change of variables, translation invariance of H0 and L, and stationarity of
XΦ, we get

E(I
(2)
h ) =

λ2

2
L(U)

∫
Rd×Rd

∫
R2

∑
z∈τxRgm∩Rgm′

E (∆m,m′h(XΦ(0), z − x, z)) dS1(νgm(z−x), νgm′ (z))dxF (dm)F (dm′).

Now, let us quote that choosing hu(s) = eius for u, s ∈ R we can remark that

(27) E(LPXΦ
(hu,R2)) = λL(U)E

(
eiuXΦ(0)

)∫
Rd

LPgm(hu,R2)F (dm),

while (23)+(25)+(26) is equal to

(28) λL(U)E
(
eiuXΦ(0)

)∫
Rd

LTCgm(hu,R2)F (dm).

Therefore

E(LTCXΦ(hu, U)) =

∫
R
eiutE(TC(∂EXΦ(t), U))dt = λL(U)E

(
eiuXΦ(0)

)∫
Rd

[
LTCgm(hu,R2)+(29)

λ

2

∫
Rd

∫
R2

∑
z∈τxRgm∩Rgm′

(eiug
+

m′ (z) − eiugm′
−(z))

∫ g+
m(z−x)

g−m(z−x)

eiusdS1(νgm(z − x), νgm′ (z)) dsdxF (dm′)]F (dm)

�
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3.3. Explicit computations. In this section, we will give some explicit computations of the mean level total
curvature function of elementary shot noise random fields. These results generalize the results of Decreusefond
et al. [14] obtained for indicator functions of a square, and also the known results on the Boolean model (that
correspond to the excursion set of level t = 1). We will also show some numerical simulations.

Let us first recall that for shot noise random fields, the characteristic function of XΦ(0) is explicit and given
by (see for instance [10])

E(eiuXΦ(0)) = exp

(
λ

∫
R2×Rd

(eiugm(x) − 1)dxF (dm)

)
.

In this section we considerD an elementary compact subset of R2 and regular region so that it has a piecewise
smooth boundary given by Γ = ∂D a finite union of positively oriented closed simple curves, piecewise C2 and
of finite total curvature, i.e. TaC(Γ,R2) < +∞. Note that by Gauss-Bonnet Theorem we have

TC(Γ,R2) = 2πχ(D).

We will focus on the case where the marks are of the form m = (b, r, θ) ∈ R × [0,+∞) × [0, 2π] ⊂ Rd with
d = 3, with distribution F (dm) = FB(db)FR(dr)FΘ(dθ) and functions gm given by

∀x ∈ R2, gm(x) = b1IRθrD(x),

where rD is the dilation of D by the factor r, and Rθ denotes the rotation of angle θ. We will denote
b+ = max(b, 0), b− = min(0, b) such that for x ∈ ∂RθrD, we have g+

m(x) = b+ and gm−(x) = b− with
g+
m(x)− gm−(x) = b+ − b− = |b| and b = (b+ − b−)sgn(b).

We denote by B (resp. B+ = max(B, 0) and B− = min(B, 0)), R and Θ independent random variables
with distributions FB , FR and FΘ. We will mainly focus on the case where Θ is uniform on [0, 2π], that is
FΘ(dθ) = 1

2π1I[0,2π]dθ for random shapes with uniform rotation; or on the case where Θ = 0 a.s., that is
FΘ = δ0 corresponding to simpler marks m = (b, r).

Theorem 4. We assume that

E(|B|) < +∞ and E(R2) < +∞.
We denote the mean perimeter and the mean area of RθrD by

p :=

∫
R2

Per(RθrD)FR(dr)FΘ(dθ) = Per(D)E(R) and a :=

∫
R2

L(RθrD)FR(dr)FΘ(dθ) = L(D)E(R2).

Then XΦ satisfies the assumptions of Theorem 2 and 3 and

E(LPXΦ
(U)) = λL(U)E(|B|)p and E(LTCXΦ

(U)) = 2πλL(U)E(B)χ(D).

Moreover, when FΘ is the uniform law on [0, 2π], then, for all u 6= 0,∫
R
eiutE(Per(EXΦ(t), U))dt = λL(U)E(eiuXΦ(0))

F̂B+(u)− F̂B−(u)

iu
p∫

R
eiutE(TC(∂EXΦ(t), U))dt = λL(U)E(eiuXΦ(0))

1

iu

(
2π(F̂B(u)− 1)χ(D) +

λ

2
(F̂B+(u)− F̂B−(u))2p2

)
,

where F̂B, respectively F̂B+ or F̂B− , denotes the characteristic function of B, respectively B+ or B−. In the
case where B = 1(= B+) a.s. we deduce that ∀k ∈ N, ∀t ∈ (k, k + 1],
(30)

E(Per(EXΦ
(t), U)) = λL(U)e−λa

(λa)k

k!
and E(TC(∂EXΦ

(t), U)) = 2πλL(U)e−λa
(λa)k

k!

(
χ(D)− λ

4π
p2 +

p2

4πa
k

)
.

Proof. Since H1(RθrΓ) = rH1(Γ) and TaC(RθrΓ,R2) = TaC(Γ,R2), the gm’s are elementary functions with
for F (dm) almost every m = (b, r, θ), writing L = H1(Γ) = Per(D), we have

Vgm(R2) = |b|rL and LTaC(gm,R2) = |b|TaC(Γ,R2).

Let us remark that Equation (11) becomes∫
Rd

∫
R2

|gm(x)|dxF (dm) = E(|B|) a < +∞.

Equation (12) is easily checked since∫
Rd
Vgm(R2)F (dm) = E(|B|)E(R)L < +∞ and

∫
Rd

LTaCgm(R2)F (dm) = E(|B|) TaC(Γ,R2) < +∞.
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Assumption (13) also follows from the fact that a < +∞ and E(|B|) < +∞. For (15), let us remark that
Igm = ∅ and Cgm = RθrCΓ such that H0 (Sgm \ Rgm) = H0 (CΓ), ensuring (15), by assumption on Γ.

Now, in order to check (16) and (17) we need a kind of kinematic formula. For f a measurable non-negative
function on [−π, π)2, periodically extended on R2, and Γ1, Γ2 two simple closed curves, we can compute the
integral

IΓ1,Γ2
(f) :=

∫
R2

∑
z∈Γ1∩τxΓ2

f(Arg νΓ1
(z),Arg νΓ2

(z − x)) dx .

Using computations analogous to the kinematic formula of Santaló [29], Chapter 7 (where he considers
random translations and rotations), we have that if Γ1 and Γ2 are two simple closed curves, then

(31) IΓ1,Γ2(f) =

∫ L1

0

∫ L2

0

f(θ1(s1) +
π

2
, θ2(s2) +

π

2
)| sin(θ1(s1)− θ2(s2))| ds1 ds2,

where the curve Γ1 (resp. Γ2) of length L1 = H1(Γ1) (resp. L2 = H1(Γ2)), is parametrized by s1 7→ γ1(s1)
(resp. by s2 7→ γ2(s2)) where s1 (resp. s2) is arc length, and θ1(s1) = Arg γ′1(s1) (resp. θ2(s2) = Arg γ′2(s2)).
Heuristically, this formula can be obtained using the change of variable x = F (s1, s2) = γ1(s1) − γ2(s2), for
which the Jacobian is

|det(dF )| = | sin(θ1(s1)− θ2(s2))|,
and noticing that the intersection point of Γ1 and τxΓ2 is then z = γ1(s1) = x+ γ2(s2).

In particular, taking f = 1, it follows that IΓ1,Γ2
(1) ≤ L1L2. Note also that we moreover have the exact

formula ∫ 2π

0

∫ 2π

0

IRθΓ1,R′θΓ2
(1)dθdθ′ = 2π ×

∫ 2π

0

| sin(θ)|dθL1L2 = 2π × 4L1L2,

according to a generalization of Poincaré’s Formula (see [29] for instance). Using the fact that Γ is a finite
disjoint union of closed curves we obtain that IRθrΓ,R′θr′Γ(1) ≤ L2rr′, since the length of RθrΓ, resp. R′θr

′Γ,

is rL, resp. r′L, with L = H1(Γ) the length of Γ and∫ 2π

0

∫ 2π

0

IRθrΓ,R′θr′Γ(1)dθdθ′ = 2π × 4L2rr′.

It follows that∫
Rd×Rd

∫
R2

H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) =

∫
R2

+

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(1)FΘ(dθ)FΘ(dθ′)FR(dr)FR(dr′)

≤ 4L2

(∫
R+

rFr(dr)

)2

= 4p2,

with p = LE(R) the mean perimeter, proving (16).
Moreover, for f(θ1, θ2) = 1Iθ1≡θ2 + 1Iθ1≡θ2+π, where ≡ stands for equality modulo 2π, we clearly have

IΓ1,Γ2
(f) = 0,

in view of (31). Since Γ is a finite disjoint union of closed curves, it follows that∫
Rd×Rd

∫
R2

H0
({
y ∈ Rgm′ ∩ τxRgm ; νgm′ (y) = ±νgm(y − x)

})
dxF (dm)F (dm′)

=

∫
R2

+

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(f)FΘ(dθ)FΘ(dθ′)FR(dr)FR(dr′) = 0,

so that (17) holds. Therefore we get the statement of Theorem 2. Moreover, we also get∫
Rd×Rd

∫
R2

(‖gm‖∞ + ‖gm′‖∞)H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′)

≤ 4p2

∫
R×R

(|b|+ |b′|)FB(db)FB(db′) = 8p2E(|B|) < +∞,

and (22) is also satisfied so that Theorem 3 holds.
Note that, we simply have

E(VXΦ(U)) = λL(U)

∫
Rd
Vgm(R2)F (dm) = λL(U)E(|B|)E(R)H1(Γ),
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and

E(LTCXΦ(U)) = λL(U)

∫
Rd

LTCgm(R2)F (dm) = λL(U)E(B)TC(Γ,R2),

using the fact that LTCgm(R2) = (b+ − b−)× sgn(b)× TC(Γ,R2). Since TC(Γ,R2) = 2πχ(D), we obtain the
first general statement. For u 6= 0, we can explicitly compute the characteristic function of XΦ(0), given by

E(eiuXΦ(0)) = exp

(
λ

∫
Rd×R2

(eiugm(x) − 1)F (dm)dx

)
= eλa(F̂B(u)−1),

where F̂B(u) = E(eiuB) =
∫
R e

iubFB(db) is the characteristic function of B. In particular for B = 1 a.s. XΦ(0)
is a Poisson random variable of parameter λa. We also have, writing hu as previoulsy,

LPgm(hu,R2) =

∫ b+

b−
eiutH1(RθrΓ)dt = rH1(Γ)

eiub
+ − eiub−

iu

LTCgm(hu,R2) =

∫ b+

b−
eiutsgn(b)TC(RθrΓ,R2)dt = TC(Γ,R2)

eiub
+ − eiub−

iu
sgn(b),

so that ∫
Rd

LPgm(hu,R2)F (dm) = E(R)H1(Γ)
F̂B+(u)− F̂B−(u)

iu

and ∫
Rd

LTCgm(hu,R2)F (dm) = TC(Γ,R2)
F̂B(u)− 1

iu
.

Therefore

E(LPXΦ
(hu, U)) =

∫
R
eiutE(H1(∂EXΦ

(t, U))dt = λL(U)E(eiuXΦ(0))E(R)H1(Γ)
F̂B+(u)− F̂B−(u)

iu
.

Finally, let us remark that for f(θ1, θ2) = min(|θ1 − θ2|, 2π − |θ1 − θ2|) (distance between two angles) and
fπ(θ1, θ2) = f(π + θ1, θ2), we get∫

Rd

∫
R2×Rd

(eiug
+

m′ (z) − eiug
−
m′ (z))

(∫ g+
m(z−x)

g−m(z−x)

eiusds

) ∑
z∈τxRgm∩Rgm′

dS1(νgm(z − x), νgm′ (z)) dxF (dm)F (dm′)

=
(
∫ +∞

0
(eiub − 1)FB(db))2 + (

∫ 0

−∞(1− eiub)FB(db))2

iu

∫
R2

+

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(f)FΘ(dθ)FΘ(dθ′)FR(dr)FR(dr′)

+ 2
(
∫ +∞

0
(eiub − 1)FB(db))(

∫ 0

−∞(1− eiub′)FB(db′))

iu

∫
R2

+

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(fπ)FΘ(dθ)FΘ(dθ′)FR(dr)FR(dr′)

This last expression may not be simple to compute. However, assuming from now on that FΘ(dθ) =
1

2π1I[0,2π]dθ, we obtain by (31), for two simple closed curves Γ1,Γ2,∫
[0,2π]2

IRθΓ1,Rθ′Γ2(f)FΘ(dθ)FΘ(dθ′)

=
1

2π

∫ 2π

0

∫ L1

0

∫ L2

0

min(|θ1(s1)− θ2(s2)− θ|, 2π − |θ1(s1)− θ2(s2)− θ|)| sin(θ1(s1)− θ2(s2)− θ)|ds1ds2dθ

= L1L2.

Similarly we have ∫
[0,2π]2

IRθΓ1,Rθ′Γ2(fπ)FΘ(dθ)FΘ(dθ′) = L1L2.

Since Γ is a finite disjoint union of such closed curves, we get∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(f)FΘ(dθ)FΘ(dθ′) =

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(fπ)FΘ(dθ)FΘ(dθ′) = L2rr′.

It follows that for uniform rotations, we have

E(LTCXΦ(hu, U)) = λL(U)E(eiuXΦ(0))
1

iu

(
(F̂B(u)− 1)TC(Γ,R2) +

λ

2
(F̂B+(u)− F̂B−(u))2p2

)
.

When moreover B = 1 a.s., B+ = 1 and B− = 0 a.s., we can deduce an exact formula for the mean
level total curvature function of XΦ. Actually, in this case XΦ(0) follows a Poisson law of parameter λa
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and
F̂B+ (u)−F̂B− (u)

iu = F̂B(u)−1
iu is the characteristic function of a uniform random variable Z on [0, 1], while

F̂B(u) F̂B(u)−1
iu is the characteristic function of Z+1. Then, considering Z independent from XΦ(0) we recognize

E(LPXΦ(hu, U)) = λL(U)E
(
eiu[XΦ(0)+Z]

)
E(R)H1(Γ), and

E(LTCXΦ
(hu, U)) = λL(U)

[
E
(
eiu[XΦ(0)+Z]

)(
TC(Γ,R2)− λ

2
p2

)
+ E

(
eiu[XΦ(0)+Z+1]

) λ
2
p2

]
.

Note also that since here the random field XΦ has integer values, then ∀k ∈ N,

∀t ∈ (k, k + 1], {x ∈ U ;XΦ(x) ≥ t} = {x ∈ U ;XΦ(x) ≥ k + 1},

and therefore E(Per(EXΦ
(t), U)) = E(Per(EXΦ

(k+1), U)) and E(TC(∂EXΦ
(t), U)) = E(TC(∂EXΦ

(k+1), U)).

Hence we may conclude that ∀k ∈ N, ∀t ∈ (k, k + 1]
(32)

E(Per(EXΦ
(t), U)) = λL(U)e−λa

(λa)k

k!
p and E(TC(∂EXΦ

(t, U)) = λL(U)e−λa
(λa)k

k!

(
TC(Γ,R2)− λ

2
p2 +

p2

2a
k

)
.

Note that, thanks to Gauss-Bonnet Theorem, we have TC(Γ,R2) = 2πχ(D), so that we may rewrite this as
in (30).

�

Let us remark that Formula (30) only involves the Euler Characteristic, the mean perimeter and the mean
area of the shapes. When k = 0, we find the formula of the mean Euler Characteristic density of a rotation
invariant Boolean model as obtained by Mecke and Wagner in [26] and by Mecke in [25] stating that

lim
r→+∞

E(χ({x ∈ rU ;X(x) ≥ 1}))
πL(rU)

= e−λm0(D)
(
λm2(D)− λ2m1(D)2

)
,

with m0(D) = a, m1(D) = p/2π and m2(D) = χ(D)/π. Actually, following the framework of [31] for Boolean
models, we can define some volume densities for excursion sets as, for all k ∈ N and t ∈ (k, k + 1],

L(EX(t)) := P(X(0) ≥ k + 1) = 1− e−(λa)
k∑
l=0

(λa)l

l!

Per(EX(t)) = e−(λa) (λa)k

k!
(λp)

χ(EX(t)) = e−(λa) (λa)k

k!

(
λχ(D)− 1

4π
(λp)

2
+

p2

4πa
k

)
,

recovering the results of Boolean model for k = 0 in dimension 2 (see p.389 of [31]). The typical behavior of

χ(EX(k)), as a function of k ∈ Nr {0}, is the following:

• It starts, when k is small, by being negative. This is explained by the fact that {XΦ ≥ k} is essentially
made of one big connected component with many small holes in it. In particular the minimum value
is achieved for an integer denoted k−. The explicit value of k− can be computed from Equation (32).
The formula is not very nice, but it has a simple asymptotic behavior when λ is large, since then we
have

k− = λa−
√
λa+O(1).

• Then, after k−, the mean level total curvature E(TC(∂EXΦ(k, U)) increases and it crosses 0 in the
interval that contains k0 where

k0 = λa− 2πa

p2 χ(D) = λa+O(1).

For this level, there are as many connected components as holes.
• After k0, the mean level total curvature is positive and it increases till a value k+ and afterwards it

decreases and goes to 0 as k goes to infinity. As for k− the value of k+ is explicit, and its asymptotic
behavior when λ is large is

k+ = λa+
√
λa+O(1).
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Example 1: Random disks
We assume here that D = D(0, 1) is a disk of radius 1, and that B = 1 a.s. In this case we have TC(∂D) =
2πχ(D) = 2π, p = 2πE(R) and a = πE(R2). Note also that since RθrD = rD for all θ, whatever FΘ is, the
shot noise field has the same law than one with marks given by m̃ = (b, r) ∈ [0,+∞)2 ⊂ R2, with distribution
G(dm̃) = FB(db)FR(dr). An example of such a random field with comparisons between the theoretical value
of E(TC(∂EXφ(t), U))/2π of Euler Characteristic and an empirical estimate on a large domain are shown on
Figure 4. The caption of the figure gives the practical and technical details of the simulation.
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Figure 4. Shot noise random field with indicator functions of random disks. This sample has
been obtained using Matlab, with a domain of size 2000×2000 pixels, a Poisson point process
of intensity λ = 0.001, and random disks of radius R = 50 or R = 100 (each with probability
0.5). Top middle and right figure: empirical Perimeter and Euler Characteristic as a function
of the level t (computed thanks to the Matlab functions bwperim and bweuler), compared
with the theoretical values (red stars) of Equation (30). Bottom line: Three excursion sets
corresponding respectively from left to right to the level t = 15, t = 19 (that is the “critical
level” where the Euler Characteristic turns from negative to positive) and t = 25.

Let us quote that we can also compute the mean level total curvature for a non isotropic shape. This is the
case of squares for instance, as developed in the following example.
Example 2: Random squares
We assume here that D is a square of side length 1 and Θ = 0 a.s. with F (dm) = FB(db)FR(dr)δ0(dθ) or
equivalently that marks are given by m̃ = (b, r) ∈ R×[0,+∞) ⊂ R2, with distribution G(dm̃) = FB(db)FR(dr).
In this case, Γ = ∂D is made of four line segments, with TC(Γ,R2) = 2πχ(D) = 2π, p = 4E(R) and
a = E(R2). On the boundary of a square, the curvature is 0, and it has four corner points with a turning
angle equal to π/2. Hence for all h continuous bounded function m we have R(h,m) = 0, I(1)(h,m) = 0,

and C(h,m) = 4 × sgn(b)π2
∫ b+
b−

E(h(XΦ(0) + s))ds. Now, according to the kinematic formula (31), the only
remaining terms are for θ1(s1) = θ2(s2)± π

2 for which

f(θ1(s1), θ2(s2)) = min(|θ1(s1)− θ2(s2)|, 2π − |θ1(s1)− θ2(s2)|) =
π

2
= fπ(θ1(s1), θ2(s2)).

It follows that

IΓ1,Γ2
(f) =

π

2
× 8r1 × r2.
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Therefore, for u 6= 0 and hu(t) = eiut

1

2

∫
Rd

∫
R2×Rd

∑
z∈τxRgm∩Rgm′

(eiug
+

m′ (z)−eiug
−
m′ (z))

(∫ g+
m(z−x)

g−m(z−x)

eiusds

)
dS1(νgm(z−x), νgm′ (z)) dxF (dm)F (dm′)

=
(F̂B+(u)− F̂B−(u))2

iu

∫
R2

+

IrΓ,r′Γ(k)FR(dr)FR(dr′) = 2π
(F̂B+(u)− F̂B−(u))2

iu

p2

16
.

It follows that we get in this case∫
R
eiutE(TC(∂EXΦ(t), U))dt = λL(U)E(eiuXΦ(0))

1

iu

(
(F̂B(u)− 1)TC(Γ,R2) + 2πλ(F̂B+(u)− F̂B−(u))2 p

2

16

)
.

For B = 1 a.s., inverting as previously, we obtain

(33) ∀k ∈ N,∀t ∈ (k, k + 1],
1

2π
E(TC(∂EXΦ(t), U)) = λL(U)e−λa

(λa)k

k!

(
1− λ

16
p2 +

p2

16a
k

)
.

It is illustrated on Figure 5. This formula generalizes one of the results of Decreusefond et al. [14]. Actually,
considering the Boolean model made of squares of constant size R = 2ε a.s. for some ε > 0, we get for k = 0,
and a > 0,

∀t ∈ (0, 1],
1

2π
E(TC(∂EXΦ

(t), (0, a)2)) = λa2e−λ(2ε)2 (
1− λ(2ε)2

)
,

that corresponds to the mean Euler Characteristic of the Boolean model in dimension 2, considered in the
torus of size a > 0 in Theorem 11 of [14].

Figure 5. Shot noise random field with indicator functions of random squares. This sample
has been on a domain of size 2000 × 2000 pixels, a Poisson point process of intensity λ =
0.005, and random squares of fixed side length R = 100. Top middle and right figures:
empirical Perimeter and Euler Characteristic as a function of the level t, compared with the
theoretical value (red stars) of Equation (33). Bottom line: Three excursion sets corresponding
respectively from left to right to the level t = 3, t = 5 (that is the “critical level” where the
Euler Characteristic turns from negative to positive) and t = 8.
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4. Level integrals of smooth functions and random fields

4.1. The case of smooth functions. In the previous section, we have computed the level total curvature
of elementary functions, that are piecewise constant functions (that are in particular not continuous). Here,
we now consider the case of smooth (at least C2) functions. The question of the link between these two cases
will be discussed in a future paper.

In the sequel, for f a C2 function we denote by ∇f its gradient vector and by D2f its Hessian matrix.

Proposition 3. Let f be a smooth (at least C2) function on an open set containing U . Then f is of special
bounded variation and of finite level total curvature integral on U with

Vf (U) =

∫
U

‖∇f(x)‖ dx and LTaCf (U) ≤
∫
U

‖D2f(x)‖2 dx,

where ‖ · ‖2 is the matrix norm subordinated to the Euclidean norm. Moreover, for h a bounded continuous
function on R, the level perimeter and total curvature integrals of f are given by

LPf (h, U) =

∫
U

h(f(x))‖∇f(x)‖ dx and

LTCf (h, U) = −
∫
U

h(f(x))
D2f(x).(∇f(x)⊥,∇f(x)⊥)

‖∇f(x)‖2
1‖∇f(x)‖>0 dx,

where if A = (aij)1≤i,j≤2 is a 2× 2 symmetric matrix and y = (y1, y2) ∈ R2, we use the notation

A.(y, y) = tyAy = a11y
2
1 + a22y

2
2 + 2a12y1y2.

Proof. Note that since f is C1 on an open set containing U we clearly have that f ∈ SBV (U) and thus
Ef (t) is of finite perimeter in U for a.e. t ∈ R by co-area formula (see Theorem 3.40 [7]). Moreover, since

f is actually C2 on an open set containing U , by Morse-Sard theorem (see [20] p.69 for instance), the set
of critical values of f has measure 0 in R. Hence for a.e t ∈ R, for all points x ∈ U such that f(x) = t
then ∇f(x) 6= 0. Let t be such a non-critical value. It follows that ∂Ef (t) ∩ U = {x ∈ U ; f(x) = t}, and
we clearly have S1Ef (t)

= ∂Ef (t) ∩ U is a regular curve with finite length such that for any x ∈ ∂Ef (t) ∩ U
one can find a parametrization γ given by an implicit form f(γ(s)) = t, with x = γ(s) and normal vector
γ′(s)⊥ = ∇f(x)/||∇f(x)|| and curvature given by

(34) κf (x) = −D
2f(x).(∇f⊥(x),∇f⊥(x))

||∇f(x)||3
.

Therefore

TaC(∂Ef (t), U) =

∫
∂Ef (t)∩U

|κf (x)|H1(dx) < +∞ and TC(∂Ef (t), U) =

∫
∂Ef (t)∩U

κf (x)H1(dx).

The fact that ∂Ef (t) ∩ U is given by a finite union of simple connected curves comes from compactness

of {x ∈ U ; f(x) = t} in which it is included. Hence we have already proven that for a.e. t ∈ R, the
set Ef (t) is an elementary set of U . Now let us prove that t 7→ TaC(∂Ef (t), U) is integrable on R. Let
us define |κf | as a measurable non-negative function on U by setting |κf (x)| = +∞ if ∇f(x) = 0 and

|κf (x)| =
∣∣∣D2f(x).(∇f⊥(x),∇f⊥(x))

||∇f(x)||3

∣∣∣, otherwise. Now, let us recall the co-area formula for Lipschitz mappings

(see [18] p.117 for instance): for any non-negative measurable or L-integrable function g, the function t 7→∫
∂Ef (t)∩U g(x)H1(dx) is measurable and∫

U

g(x)‖∇f‖(x) dx =

∫
R

∫
∂Ef (t)∩U

g(x)H1(dx) dt.

Taking g = 1, we recover the co-area formula:∫
U

‖∇f‖(x)dx =

∫
R
H1(∂Ef (t) ∩ U) dt = Vf (U),

while for g = |κf |,

LTaCf (U) =

∫
R

∫
∂Ef (t)∩U

|κf (x)|H1(dx) =

∫
U

|κf (x)|‖∇f(x)‖dx

≤
∫
U

‖D2f(x)‖2dx,
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in view of (34). This concludes the proof that f is of special bounded variation and finite level total curvature
integral on U and, for h a bounded continuous function on R, using again twice the co-area formula but now
with max(g, 0) and −min(g, 0) for g = h ◦ f or g = (h ◦ f)κf , and substracting we get

LPf (h) =

∫
R
h(x)‖∇f(x)‖dx

LTCf (h) =

∫
U

h(f(x))κf (x)||∇f(x)|| dx = −
∫
U

h(f(x))
D2f(x).(∇f(x)⊥,∇f(x)⊥)

‖∇f(x)‖2
1‖∇f(x)‖>0dx,

in view of (34).
�

4.2. A general result for smooth stationary random fields. In this section we consider a smooth sta-
tionary random field X defined on R2. Let us introduce some notations for the derivatives of X. A point
x ∈ R2 is defined by its two coordinates x = (x1, x2) and we denote for i, j = 1, 2

Xi :=
∂X

∂xi
and Xij :=

∂2X

∂xi∂xj
.

With these notations it follows that ∇X =

(
X1

X2

)
and D2X =

(
X11 X12

X12 X22

)
. Note that since X is

stationary, for any x ∈ R2,

(X(x),∇X(x), D2X(x))
d
= (X(0),∇X(0), D2X(0)).

When X, ∇X and D2X have also finite second order moment, X(x) and ∇X(x) are not correlated, as well
as ∇X(x) and D2X(x) (see [1] p.31 for instance). This is very useful for Gaussian fields since it implies that
∇X(x) is independent from (X(x), D2X(x)).

Using the result of Section 4.1 and the stationarity of X, we have the following formula.

Theorem 5. Let X be a stationary C2 random field on R2, such that X(0), Xi(0), Xii(0)and X12(0) have finite
expectations for i = 1, 2. Then, X ∈ SBV (U) with DX = ∇XL and for a.e. t ∈ R, the random variables
Per(EX(t), U) and TC(∂EX(t), U) have finite expectation such that for all h bounded continuous function on
R, one has

E(LPX(h, U)) =

∫
R
h(t)E(Per(EX(t), U)) dt and E(LTCX(h, U)) =

∫
R
h(t)E(TC(∂EX(t), U)) dt,

with

E(LPX(h, U)) = L(U)E (h(X(0))‖∇X(0)‖)

E(LTCX(h, U)) = −L(U)E
(
h(X(0))

D2X(0).(∇X(0)⊥,∇X(0)⊥)

‖∇X(0)‖2
1‖∇X(0)‖>0

)
It follows that when the field X is isotropic, i.e. X ◦ A fdd

= X for all orthogonal matrix A, then the above
formulas reduce to, ∀i = 1, 2,

E(LPX(h, U)) =
π

2
L(U)E (h(X(0))|Xi(0)|) and

E(LTCX(h, U)) = −L(U)

(
E
(
h(X(0))Xii(0)1‖∇X(0)‖>0

)
− 4E(h(X(0))

X1(0)X2(0)

‖∇X(0)‖2
X12(0)1‖∇X(0)‖>0)

)
.

Assuming moreover that the field X can be written as X = X(1) + X(2), with X(1), X(2) iid isotropic and

symmetric (X(i) fdd= −X(i)), the previous formula reduced to

E(LTCX(h, U)) = −L(U)E
(
h(X(0))Xii(0)1‖∇X(0)‖>0

)
.

In particular, taking h = 1 we have VX(U) = π
2L(U)E(|Xi(0)|) and

E(LTCX(U)) = −L(U)E
(
X11(0)1‖∇X(0)‖>0

)
= −L(U)E

(
X22(0)1‖∇X(0)‖>0

)
= 0.

It follows that when X(0) admits a density pX(0), we get for almost every t ∈ R, ∀i = 1, 2,

E(Per(EX(t), U)) =
π

2
L(U)E (|Xi(0)||X(0) = t) pX(0)(t)

E(TC(∂EX(t), U)) = −L(U)E
(
Xii(0)1‖∇X(0)‖>0|X(0) = t

)
pX(0)(t).
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Proof. According to Proposition 3, since X is a.s C2, it is a.s. of special bounded variation and of finite level
curvature integral on U with

VX(U) =

∫
U

‖∇X(x)‖dx and LTaCX(U) ≤
∫
U

‖D2X(x)‖
2
dx a.s..

Since X is stationary, the finite expectation assumption implies that VX(U) and LTaCX(U) are non-negative
random variables with finite expectation. By Fubini’s Theorem, this implies that (t, ω) 7→ Per(EX(t), U) ∈
L1(R×Ω) and (t, ω) 7→ TaC(∂EX(t), U) ∈ L1(R×Ω) so that we also have (t, ω) 7→ TC(∂EX(t), U) ∈ L1(R×Ω).
Moreover, a.s., for any h a bounded continuous function on R,

LPX(h, U) =

∫
R
h(t)Per(EX(t), U) dt and LTCX(h, U) =

∫
R
h(t)TC(∂EX(t), U) dt, and

LPX(h, U) =

∫
U

h(X(x))‖∇X(x)‖dx and LTCX(h, U) = −
∫
U

h(X(x))
D2X(x).(∇X(x)⊥,∇X(x)⊥)

‖∇X(x)‖2
1‖∇X(x)‖>0dx.

Hence, Fubini’s Theorem yields the first result for expectation, while the second one is a straightforward
consequence from the stationarity of X.

Under the assumption that the field is isotropic, we can exploit further on this formula. First let us recall
that by Taylor formula, since X is a.s. C2 we have a.s. for all x, z ∈ R2,

X(x+ z) = X(x) + 〈∇X(x), z〉+
1

2
D2X(x).(z, z) + o‖z‖→0(‖z‖2).

In particular we obtain that, for any orthogonal matrix A,

∇(X ◦A)(x) = tA∇X(Ax) and D2(X ◦A)(x) = tA(D2X)(Ax)A.

Writing (e1, e2) the canonical basis of R2, we also have for i = 1, 2,

Xii(x) = lim
ε→0

X(x+ εei) +X(x− εei)− 2X(x)

ε2
,

X12(x) = lim
ε→0

X(x+ ε(e1 + e2)) +X(x− ε(e1 + e2))−X(x+ ε(e1 − e2))−X(x− ε(e1 − e2))

2ε2

Since X ◦A fdd
= X, we deduce that

(X(x),∇X(x), D2X(x))
d
= (X(Ax), tA∇X(Ax), tA(D2X)(Ax)A),

and specifying to x = 0, it follows that

(35) (X(0),∇X(0), D2X(0))
d
= (X(0), tA∇X(0), tA(D2X)(0)A).

Hence (X(0),∇X(0))
d
= (X(0), tA∇X(0)) and for any θ ∈ [0, 2π), denoting u(θ) = (cos θ, sin θ) ∈ S1, one

has (X(0), Xi(0))
d
= (X(0), 〈u(θ),∇X(0)〉), according to orthogonal invariance (see Proposition 4.8 of [12]).

Moreover ‖∇X(0)‖ = 1
4

∫ 2π

0
|〈u(θ),∇X(0)〉|dθ so that we may deduce that

E (h(X(0))‖∇X(0)‖) =
1

4

∫ 2π

0

E (h(X(0))|〈u(θ),∇X(0)〉|) dθ =
π

2
E (h(X(0))|Xi(0)|) ,

and the result for E(LPX(h, U)) follows. Now, let us introduce the random variable Θ with values in 2πT
(identified with [0, 2π)), such that

∇X(0) =

(
X1(0)
X2(0)

)
= ‖∇X(0)‖

(
cos Θ
sin Θ

)
.

For any θ ∈ [0, 2π) let us consider a rotation matrix Rθ =

(
cos θ − sin θ
sin θ cos θ

)
and a reflexion matrix Sθ =(

cos θ sin θ
sin θ − cos θ

)
. Let us quote that R−θ∇X(0) = tRθ∇X(0) = ‖∇X(0)‖

(
cos(Θ− θ)
sin(Θ− θ)

)
, Sθ∇X(0) =

tSθ∇X(0) = ‖∇X(0)‖
(

cos(θ −Θ)
sin(θ −Θ)

)
. From (35) with A = Sθ for θ = π/2 we have that

(36) (X(0), ‖∇X(0)‖,Θ, X11(0), X22(0), X12(0))
d
= (X(0), ‖∇X(0)‖, π/2−Θ, X22(0), X11(0), X12(0))
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But

E
(
h(X(0))

D2X(0).(∇X(0)⊥,∇X(0)⊥)

‖∇X(0)‖2
1‖∇X(0)‖>0

)
= E

(
h(X(0))

(
X11(0) sin2 Θ +X22(0) cos2 Θ− 2X12(0) sin Θ cos Θ

)
1‖∇X(0)‖>0

)
Note that

E
(
h(X(0))X11(0) sin2 Θ1‖∇X(0)‖>0

)
= E

(
h(X(0))X11(0)1‖∇X(0)‖>0

)
−E

(
h(X(0))X11(0) cos2 Θ1‖∇X(0)‖>0

)
,

so that

E
(
h(X(0))[X11(0) sin2 Θ +X22(0) cos2 Θ]1‖∇X(0)‖>0

)
= E

(
h(X(0))X11(0)1‖∇X(0)‖>0)

)
+ E

(
h(X(0))[X22(0)−X11(0)] cos2 Θ1‖∇X(0)‖>0

)
.

From (36),

E
(
h(X(0))[X22(0)−X11(0)] cos2 Θ1‖∇X(0)‖>0

)
= −E

(
h(X(0))[X22(0)−X11(0)] sin2 Θ1‖∇X(0)‖>0

)
,

and hence

E
(
h(X(0))[X22(0)−X11(0)] cos2 Θ1‖∇X(0)‖>0

)
= E

(
h(X(0))

X22(0)−X11(0)

2
cos(2Θ)1‖∇X(0)‖>0

)
.

Now, from (35) with A = Rθ for θ = π/4,

(X(0), ‖∇X(0)‖,Θ, X12(0))
d
= (X(0), ‖∇X(0)‖,Θ− π/4, X22(0)−X11(0)

2
),

and it follows that

(37) (X(0), ‖∇X(0)‖,Θ, X22(0)−X11(0)

2
)
d
= (X(0), ‖∇X(0)‖,Θ + π/4, X12(0)).

Therefore,

E
(
h(X(0))[X22(0)−X11(0)] cos2 Θ1‖∇X(0)‖>0

)
= −E (h(X(0))sin(2Θ)X12(0)) .

The general result follows, by remarking that in view of (36)

E
(
h(X(0))X11(0)1‖∇X(0)‖>0

)
= E

(
h(X(0))X22(0)1‖∇X(0)‖>0

)
.

Now, let us assume that the field X can be written as X = X(1) +X(2), with X(1), X(2) iid isotropic and

symmetric (X(i) fdd= −X(i)). Let us quote that X is itself symmetric and therefore

E
(
h(X(0))sin(2Θ)X12(0)1‖∇X(0)‖>0

)
= −E

(
h(−X(0))sin(2Θ)X12(0)1‖∇X(0)‖>0

)
.

Hence this term vanishes when h is an even function. So let us assume that h is odd. From (35) with A = Sθ
for θ = −π/2 we have that
(38)

(X(2)(0), X
(2)
1 (0), X

(2)
2 (0), X

(2)
11 (0), X

(2)
22 (0), X

(2)
12 (0))

d
= (X(2)(0),−X(2)

2 (0),−X(2)
1 (0), X

(2)
11 (0), X

(2)
22 (0), X

(2)
12 (0))

Hence by independence between X(1) and X(2)

(39) (X(0), X1(0), X2(0), X
(i)
12 (0))

d
= (X(1)(0) +X(2)(0), X

(1)
1 (0)−X(2)

2 (0), X
(1)
2 (0)−X(2)

1 (0), X
(i)
12 (0)).

By symmetry, we also have X = X(1) −X(2) with X(2) satisfying (36) so that

(40) (X(0), X1(0), X2(0), X
(i)
12 (0))

d
= (X(1)(0)−X(2)(0), X

(1)
1 (0)−X(2)

2 (0), X
(1)
2 (0)−X(2)

1 (0), X
(i)
12 (0)).

Using the fact that (X(1), X(2))
fdd
= (X(2), X(1)), (39) becomes

(X(0), X1(0), X2(0), X
(i)
12 (0))

d
= (X(2)(0) +X(1)(0), X

(2)
1 (0)−X(1)

2 (0), X
(2)
2 (0)−X(1)

1 (0), X
(j)
12 (0))

d
= (X(0),−X2(0),−X1(0), X

(j)
12 (0))(41)

where {i, j} = {1, 2}, while (40) becomes

(X(0), X1(0), X2(0), X
(i)
12 (0))

d
= (X(2)(0)−X(1)(0), X

(2)
1 (0)−X(1)

2 (0), X
(2)
2 (0)−X(1)

1 (0), X
(j)
12 (0))

d
= (−X(0),−X2(0),−X1(0), X

(j)
12 (0))(42)

From (41) and (42) we can deduce that

(X(0), X1(0), X2(0), X
(j)
12 (0))

d
= (−X(0), X1(0), X2(0), X

(j)
12 (0)).
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therefore, since h is odd

E
(
h(X(0))sin(2Θ)X

(i)
12 (0)1‖∇X(0)‖>0

)
= 0.

Hence we conclude that

E
(
h(X(0))sin(2Θ)X12(0)1‖∇X(0)‖>0

)
=

2∑
i=1

E
(
h(X(0))sin(2Θ)X

(i)
12 (0)1‖∇X(0)‖>0

)
= 0.

Note also that we have E(LTCX(U)) = 0, by taking h = 1 and using symmetry in the above formula.

Moreover, when X(0) admits a density pX(0), we can further write

E(h(X(0))|Xi(0)|) =

∫
R
h(t)E(|Xi(0)||X(0) = t)pX(0)(t)dt,

E(h(X(0))Xii(0)1‖∇X(0)‖>0) =

∫
R
h(t)E(Xii(0)1‖∇X(0)‖>0|X(0) = t)pX(0)(t)dt,

such that for any continuous bounded function h,∫
R
h(t)E(TC(∂EX(t, U))) dt =

∫
R
h(t)E(|Xi(0)||X(0) = t)pX(0)(t)dt and∫

R
h(t)E(TC(∂EX(t, U))) dt =

∫
R
h(t)

(
−L(U)E(Xii(0)1‖∇X(0)‖>0|X(0) = t)pX(0)(t)

)
dt,

implying the stated equalities for almost every t ∈ R. �

Remark 1: Let us quote that our assumption on symmetry is always satisfied for symmetric isotropic in-
finitely divisible random fields, in particular centered isotropic Gaussian fields. Let us quote also that, for
Gaussian random field, the conditional law of Θ with respect to (X(0), ‖∇X(0)‖, D2X(0)) is actually uniform.
Moreover, invariance under all orthogonal matrices is a direct consequence from invariance under all rotation
matrices. This follows from the fact that its covariance function must be radial.

Remark 2: As we were finishing this paper, we found a similar recent result (see Corollary 2.3 of [23]) that
should rewrite in our stationary setting, under additional assumption on X, as

E
(∫

R
h(t)χ(EX(t)) dt

)
= −E

(
h(X(0))

[
2∑
i=1

1I∇X(0)∈QiXii(0)

]
+ h′(X(0))

[
2∑
i=1

1I∇X(0)∈QiXi(0)2

])
,

for h : R → R a C1 function with compact support, Q1 = {x = (x1, x2);x2 < x1 < 0} and Q2 = {x =

(x1, x2);x1 < x2 < 0}, and where χ(EX(t)) stands for an Euler Characteristic density. Under the assumption
that X is also isotropic, according to Remark 2.5 of [23],

E
(
h′(X(0))1I∇X(0)∈QiXi(0)2

)
=
π − 2

16π
E
(
h′(X(0))‖∇X(0)‖2

)
.

Note that by stationarity

E
(
h′(X(0))Xi(0)2

)
=

∫ 1

0

E
(
h′(X(tei))Xi(tei)

2
)
dt = E

(∫ 1

0

h′(X(tei))Xi(tei)
2dt

)
= −E

(∫ 1

0

h(X(tei))Xii(tei)
2dt

)
= −E (h(X(0))Xii(0)) ,

integrating by parts and using E (h(X(tei))Xi(tei)) = E (h(X(0))Xi(0)) for all t ∈ [0, 1].
Moreover, by (37) we clearly have

E
(
h(X(0))1I∇X(0)∈Qi [X22(0)−X11(0)]

)
= 2E

(
h(X(0))1IR−π/4∇X(0)∈QiX12

)
,

that vanishes for odd h, using our additionnal divisibility and symmetry assumptions. Hence we may deduce
that

E
(
h(X(0))1I∇X(0)∈QiX22(0)

)
= E

(
h(X(0))1I∇X(0)∈QiX11(0)

)
,

and using rotations of angle π/2, we get

E
(
h(X(0))1I∇X(0)∈QiXii(0)

)
= E

(
h(X(0))1IΘ∈π+π

4 (i−1,i)Xii(0)
)

=
1

8
E (h(X(0))Xii(0)) .
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It follows that

E
(∫

R
h(t)χ(EX(t))) dt

)
= −

2∑
i=1

(
1

8
− π − 2

8π

)
E (h(X(0))Xii(0)) =

1

2πL(U)

∫
R
h(t)E(TC(∂EX(t), U)) dt,

by Theorem 5, since it is also assumed that ‖∇X(0)‖ > 0 a.s. .

Example. Let X be a stationary centered C2 isotropic Gaussian random field. Then, X1(0) being independent

from X(0), we get E (|X1(0)||X(0)) = E (|X1(0)|) =
√

2λ2

π , where λ2 = Var(X1(0)) > 0 denotes the second

spectral moment. Moreover,

E (X11(0)|X(0)) =
Cov(X(0), X11(0))

Var(X(0))
X(0) =

∂2
1ρX(0)

ρX(0)
X(0) =

−λ2

σ2
X(0),

where ρX(x) = Cov(X(x), X(0)) and σ2 = ρX(0). Hence, since P(‖∇X(0)‖ = 0) = 0, we get in this case that,
for almost every t ∈ R,

E(Per(EX(t), U)) = L(U)

√
πλ2

2

1

σ
√

2π
e−

t2

2σ2(43)

E(TC(∂EX(t), U)) = L(U)
λ2

σ2
t

1

σ
√

2π
e−

t2

2σ2(44)

(45)

Let us emphasize that this last expression is exactly the formula obtained for 2πE
(
χ
(
EX(t) ∩ U)

))
, stated

for all t ∈ R, under additional assumptions on X (see (3.2.8) of [2] for instance), where χ denotes the DT
(Differential Topology) Characteristic of the set.
Examples of such stationary isotropic random fields with comparisons between the theoretical values of
E(TC(∂EX(t), U))/(2πL(U)) (corresponding to the mean Euler Characteristic density of excursion sets) and
an empirical estimate of Euler Characteristic on the square of fixed size [0, 1] are shown on Figures 6 and
7 (with σ2 = 1 and λ2 = 2T 2). The captions of the figures give the practical and technical details of the
simulations. Note that in view of the covariance functions, a scaling relation may be set between T and the
size of the square, explaining the convergence without boundary effects as T increases.

4.3. Smooth shot noise random fields. As in Section 3.2, we consider here a shot noise random field
defined on R2 by

∀x ∈ R2, XΦ(x) =
∑
i∈I

gmi(x− xi),

where Φ = {(xi,mi)}i∈I is a Poisson point process on R2 × Rd of intensity λL × F , with λ > 0 real, L the
Lebesgue measure on R2 and F a probability measure on Rd. In order to get explicit formulas we have to make
an assumption of isotropy. Moreover, since smooth shot noise random fields do not always admit a probability
density (we have discussed this through several examples in our first paper [10]) we have to work with their
characteristic functions.

Theorem 6. Let assume that g : R2×Rd → R is a measurable function such that for F -almost every m ∈ Rd
the functions gm := g(·,m) are C3 on R2 satisfying

(46)

∫
R2×Rd

|Djgm(x)| dxF (dm) < +∞,

for all j = (j1, j2) ∈ N2 with |j| = j1 + j2 ≤ 3 and where Djgm = ∂|j|gm

∂x
j1
1 ∂x

j2
2

. Then XΦ is a.s. a stationary C2

field such that D2X has finite expectation, ensuring the assumptions of Theorem 5.
We assume moreover that m = (m̃, θ) ∈ Rd−1× [0, 2π] ⊂ Rd and F (dm) = G(dm̃)FΘ(dθ), with FΘ the uniform
law on [0, 2π], and

g(· , m) = g(· , (m̃, θ)) = g̃(Rθ· , m̃),

for F -a.e. m, with g̃(S0· , m̃) = g̃(· , m̃), recalling that S0 =

(
1 0
0 −1

)
and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. Then

XΦ is isotropic. When moreover XΦ is symmetric, the Fourier transform of the mean perimeter and of the
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-3 -2 -1 0 1 2 3
-40

-30

-20

-10

0

10

20

30

40

50

Figure 6. Gaussian random field with covariance ρ(x) = e−T
2‖x‖2 for T = 10. This sample

has been obtained using Matlab, with a discretized domain of size 210 × 210 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level t (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (44). Bottom line: Three excursion sets corresponding respectively
from left to right to the level t = −1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and t = 1.

mean total curvature are given for all u ∈ R by, for all j = 1, 2,

E(LPXΦ
(hu, U)) = −1

2

∫ +∞

0

1

v

∂ϕXΦ(0),∂jXΦ(0)(u, v)

∂v
dv

E(LTCXΦ(hu, U)) = −λL(U)E
(
eiuXΦ(0)

)(∫
Rd

∫
R2

∂2
j gm(x)eiugm(x) dxF (dm)

)
,

where hu(t) = eiut,

ϕXΦ(0),∂jXΦ(0)(u, v) = E
(
eiuXΦ(0)+iv∂jXΦ(0)

)
= exp

(
λ

∫
Rd×R2

[ei[ugm(x)+v∂jgm(x)] − 1]F (dm)dx

)
,

and the notation ∂j, respectively ∂2
j , stands for ∂

∂xj
, respectively ∂2

∂x2
j
.

Remark: Note that when g(A· , m) = g(· , m), for all orthogonal matrix A, XΦ has the same law as the
shot noise random field given with marks m̃ ∈ Rd−1 of law G(dm̃).

Proof. Following similar arguments as in Proposition 3 of [10], (46) will ensure that XΦ is a.s. a stationary
C2 field such that X, ∇X and D2X have finite expectations, and we can differentiate under the sum. In
particular, for all j = 1, 2,

∂jXΦ(x) =
∑
i∈I

∂jgmi(x− xi) and ∂2
jXΦ(x) =

∑
i∈I

∂2
j gmi(x− xi).

Hence the general formula of Theorem 5 is valid for XΦ.
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Figure 7. Gaussian random field with covariance ρ(x) = e−T
2‖x‖2 for T = 100. This sample

has been obtained using Matlab, with a discretized domain of size 210 × 210 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level t (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (44). Bottom line: Three excursion sets corresponding respectively
from left to right to the level t = −1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and t = 1.

Under the additional assumption on the kernel, we can prove isotropy. Actually, for any k ≥ 1, u1, · · · , uk ∈
R and y1, · · · , yk ∈ R2, one has

E
(
ei

∑k
j=1 ujXΦ(yj)

)
= exp

(
λ

∫
Rd

∫
R2

(ei
∑k
j=1 ujgm(yj−x) − 1) dxF (dm)

)
.

Hence, for any orthogonal matrix A, by the change of variables x = Ay,

E
(
ei

∑k
j=1 ujXΦ(Ayj)

)
= exp

(
λ

∫
Rd

∫
R2

(ei
∑k
j=1 ujgm(A(yj−y)) − 1) dy F (dm)

)
Note that there exists θ0 ∈ [0, 2π) such that A = Sθ0 or A = Rθ0 but for m = (m̃, θ),

gm ◦ Sθ0 = g̃m̃ ◦RθSθ0 = g̃m̃ ◦ S0RθSθ0 = g̃m̃ ◦R−θ−θ0 .

Since FΘ is the uniform law, we may assume without loss of generality that

E
(
ei

∑k
j=1 ujXΦ(Ayj)

)
= exp

(
λ

∫
Rd

∫
R2

(eiu
∑k
j=1 ujgm(Rθ0 (yj−y)) − 1) dy F (dm)

)
= exp

(
λ

∫
Rd

∫
R2

(eiu
∑k
j=1 ujgm(yj−y) − 1) dy F (dm)

)
= E

(
ei

∑k
j=1 ujXΦ(yj)

)
using the fact that RθRθ0 = Rθ0+θ and FΘ uniform.

It follows that by Theorem 5, for any h bounded continuous function on R, one has for all j = 1, 2,

E(LPXΦ
(h, U)) =

π

2
L(U)E(h(XΦ(0))|∂jXΦ(0)|)
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and assuming moreover that XΦ is symmetric,

E(LTCXΦ
(h, U) = −L(U)E

(
h(XΦ(0))∂2

jXΦ(0)
)
.

Taking hu = eiu· for u ∈ R we obtain

E(LPXΦ
(hu, U)) =

π

2
L(U)E(eiuXΦ(0)|∂jXΦ(0)|)

=
π

2
L(U)×− 1

π

∫ +∞

0

1

v

∂ϕXΦ(0),∂jXΦ(0)(u, v)

∂v
dv,

according to Proposition 2 of [11], using the fact that E(|∂jXΦ(0)|) < +∞ and ϕXΦ(0),∂jXΦ(0)(u, v) =
ϕXΦ(0),∂jXΦ(0)(u,−v) by isotropy. Moreover,

E(LTCXΦ(hu, U)) = −L(U)E
(
eiuXΦ(0)∂2

jXΦ(0)
)

= iL(U)
∂ϕXΦ,∂2

jXΦ

∂v
(u, 0),

where ϕXΦ,∂2
jXΦ

is the characteristic function of (XΦ(0), ∂2
jXΦ(0)) given by, for (u, v) ∈ R2

ϕXΦ,∂2
jXΦ

(u, v) = E
(
ei[uXΦ(0)+v∂2

jXΦ(0)]
)

= exp

(
λ

∫
Rd

∫
R2

(eiugm(x)+iv∂2
j gm(x) − 1) dxF (dm)

)
.

Then,

E(LTCXΦ
(hu, U)) = −L(U)λ

(∫
Rd

∫
R2

∂2
j gm(x)eiugm(x) dxF (dm)

)
ϕXΦ

(u),

with ϕXΦ
= ϕXΦ,∂2

jXΦ
(·, 0) the characteristic function of XΦ(0). �

Let us also mention that in the recent paper [23] such a formula is also proposed in a similar isotropic
framework in Theorem 3.3.
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