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LEVEL TOTAL CURVATURE INTEGRAL:
EULER CHARACTERISTIC AND 2D RANDOM FIELDS

HERMINE BIERME AND AGNES DESOLNEUX

ABSTRACT. We introduce the level total curvature function associated with a real valued function f defined on
the plane R? as the function that, for any level ¢ € R, computes the total (signed) curvature of the boundary
of the excursion set of f above level ¢t. Thanks to the Gauss-Bonnet theorem, the total curvature is directly
related to the Euler Characteristic of the excursion set. We show that the level total curvature function can
be explicitly computed in two different frameworks: piecewise constant functions (also called here elementary
functions) and smooth (at least C?) functions. Considering 2D random fields (in particular considering shot
noise random fields), we will compute their mean total curvature function, and this will provide new explicit
computations of the mean Euler Characteristic of excursion sets, beyond the Gaussian framework.
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1. INTRODUCTION

Computing the Euler Characteristic of excursion sets of random fields is a problem that has received much
attention. Indeed, in many applications, the Euler Characteristic is a very useful index of the geometry of the
field, as explained for instance in the review paper of R. Adler [2], or in the papers of K. Worsley [29] or [30]
where applications in astrophysics or in brain imaging are mentioned.

In the framework of Gaussian random field, the Euler Characteristic of excursion sets is well-known and
well-studied. For stationary isotropic Gaussian random fields, an explicit formula for any level ¢ may be set for
the expectation of the Euler Characteristic, only depending on the variance and the second spectral moment
of the field. This is an important result with many statistical applications. In particular, for large levels ¢, the
Euler Characteristic gives a good approximation of the probability that the suprema of the field is greater than
t and can therefore be used as a p-value: this is the Euler Characteristic heuristic (see [5] for instance). In a
“tour de force”, a Central Limit Theorem has recently been established in [15] that proves the accuracy of the
estimation over only one sample path as the size of the observation is growing. There are also some interesting
results apart from the Gaussian framework for x?, F and t-fields [29] as well as stable [3] or infinitely divisible
random fields [4] for instance. Most of general results rely on strong smoothness regularity assumptions and
on conditional distribution densities that are often difficult to evaluate for non-Gaussian fields.
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2 HERMINE BIERME AND AGNES DESOLNEUX

Now, in this paper, we will be interested in another family of infinitely divisible random fields, that are not
Gaussian, namely the shot noise random fields. We will work here in dimension n = 2. A shot noise random
field is defined on R2 by

Vo € R?, X (z)= ngl(x —z;),

where the z; are the points of an homogeneous Poisson point process of intensity A in R2, and the m; are
“marks”, independent of the Poisson point process. Given a bounded open subset U of R?, we will consider
the excursion set of X of level t € R in U, defined by

Ex(t;U):={z e Ust. X(x)>t}.

Despite its “global” definition (the number of connected components minus the number of holes), the Euler
Characteristic of an excursion set is in fact a purely local quantity related, by Morse theory, to the number
of critical points of X in U, or, by the Gauss-Bonnet theorem, to the total curvature of the boundary of the
excursion set. Here, we will extensively use this second equivalence to obtain explicit computations of the
mean Euler Characteristic of the excursion sets of a shot noise random field.

More precisely, our contributions are fourfold: (1) We propose a general definition of the level total curvature
integral of a function, that allows to compute the total curvature (and therefore the Euler Characteristic) of its
excursion sets for almost every level. (2) We give explicit computations for elementary shot noise random fields,
where the functions g,,, are piecewise constant functions (with piecewise smooth discontinuity set). This allows
us to generalize results of the literature (about the Boolean model [23], or about “random configurations” [13]).
We also give explicit results for isotropic elementary and smooth shot noise random fields. (3) For smooth
stationary random fields (not necessarily shot noise ones), we give a new proof of the equivalence of the
different definitions of the mean Euler Characteristic of the excursion sets, relying only on the stationarity
of the random field. (4) For Gaussian stationary and isotropic random field, we show that its mean total
curvature (divided by 27) when the field is discretized on an hexagonal tiling, converges, when the size of the
hexagons goes to 0, to the well-known formula for the Euler Characteristic of its excursion sets.

Let us finally emphasize that we have made here the deliberate choice of not working in the weakest possible
functional framework. Our goal is to work with piecewise smooth functions (like the indicator function of a
set having a piecewise C? boundary for instance). But we believe some of our results can be extended to
functions with a weakest regularity. Let us also mention the recent work of R. Lachi¢ze-Rey in [18] and [19]
that relates the Euler Characteristic to the three-point joint distribution of the random field. And also the
even more recent paper [20] where R. Lachiéze-Rey gives formulas for the Euler Characteristic of isotropic
shot noise random field that are a.s. Morse functions.

2. TOTAL CURVATURE AND EULER CHARACTERISTIC OF EXCURSION SETS

2.1. Total curvature: Definition and properties. We first recall here some basic facts and definitions
about plane curves. Let U be an open bounded set of R?, and let I be a continuous oriented simple curve
on U of finite length and piecewise C2, with a finite number of “corners”. This curve can else be “open”: in
this case it can be arc length parametrized by a continuous piecewise C? function v : (0,L) — U in such a
way that there is a finite set of points c1,...c; € (0,L) at which « is not C? (but is continuous). For any
s€(0,L)\ {c1,...,cx}, the tangent vector at point x = y(s) is given by

Tr(z) ='(s) with [[¥(s)[ =1,
where || - || is the usual Euclidean norm in R2.
The unit normal vector, denoted by vr(x), is then defined as the 43 rotation of Tt (z), also denoted as
vr(z) = Tr(x)™ = 7'(s)",

in such a way that (Tr(z),vr()) is a direct orthonormal basis of R2.
The signed curvature kp(z) of I' at & = ~y(s) is then defined as

rr(z) = (1"(s),7'(s)") = (7'(s),vr (),

where (-,-) is the usual Euclidean scalar product on R2.

At the points of discontinuity of the tangent, we assume moreover that lim e v (s) =~"(¢c;
~' (cj), are well defined in the unit sphere S! and are not colinear (no cusp), such that we define the turning
angle at © = ~y(¢;) as the angle ar(x) € (—, 7) between the tangent “before” x and the one “after” z, that is

) and limsﬁcj ~'(s) =

ar(z) = Argy/(¢f) — Argy/(¢;) € (—m,m),
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where Arg is the argument (angle determination) of points on the unit circle St. We write
CF = {7(01)a s 77(016)}

the set of these points, and we call them corners of the curve T

The curve I' can also be “closed”: in that case, the function « is defined on the closed interval [0, L]
(meaning, following Do Carmo [14] p.30, that it is the restriction of a piecewise C? function on an open
interval containing [0, L]) and such that all derivatives exist and agree at 0 and L, that is

7(0) =7(L), ' (0)=+"(L) and ~"(0)=~"(L).
All the above definitions of tangent, normal, curvature and turning angle remain the same.

We will also sometimes just say that I is an oriented simple curve piecewise C? in U if I' may be written as
a finite disjoint union of I'y, ..., T, with each I'; being a continuous oriented simple curve piecewise C? in U
with finite length L; and a finite number of corners. It follows that I is of finite length L = L1 +...+ L, and
may also be arc length parametrized. It has also a finite number of corners given by Cr = Cr, U...Cr,,, with
disjoint union. Its curvature is then defined for H!-almost every = € I' by kr(x) = &r, () if z € T;, where H*
denotes the one dimensional Hausdorff measure (the length measure) on the curve.

In the following U will denote an open bounded square of R?, of the form x¢ + (0,7)2, for some zo € R?
and some T > 0. Its closure is denoted U = xg + [0, T]? and OU will denote its boundary.

Definition 1 (Total curvature). We say that a curve T is of finite total curvature in U, if it is an oriented
simple curve piecewise C? on U whose curvature xr is integrable on T NU, that is kp € LY(T N U, HY). It
follows that the total absolute curvature of I' in U is

TaC(T, U) ::/ @) H )+ Y Jar(@)] < +os.

rnu zeCrNU
We then define the total curvature of T in U as

TC((T,U) ::/ wr(z)H (dx) + Z ar(z).

rnu zeCrNU
with [ k(@)1 (dz) = fOL kr(v(s))ds, where v : (0, L) — R? is a parametrization of T NU by arc length.

Notice that the definition of TaC is the same as the one introduced by Milnor in [24]. But here, in this
work, we will pay a particular attention to the signed total curvature, and not to its absolute value. Actually,
our definition of total curvature is the same as to the one of Santalé in [25], Chapter 7. The total curvature
is intrinsic, it doesn’t depend on the parametrization of the curve. But it depends on its orientation: if we
reverse the orientation of the curve then its total curvature is changed into its opposite.

Examples:

e Consider a positively oriented unit radius circle I' = {z € R?;||z|| = 1} = 9D(0,1), where D(0,1)
denotes the disk of center 0 and radius 1. Then T is a closed curve. An arc length parametrization
of the curve is given by v : s € [0,27] — (cos(s), sin(s)) such that Cr = §). Now, for r > 0, the circle
of radius r is given by rI" and admits v, : s € [0,27r] — ry(s/r) as an arc length parametrization. It
follows that when rI" C U,

2mr
TC@HT,U) = TaC(rT,U) = / ;dt = 27.
0

e A positively oriented boundary of a unit square I' = 9(0, 1)? may be parametrized by the piecewise C
function v defined on [0,4] by v(s) = (1, s) for s € [0,1], v(s) = (2—s,1) for s € [1,2], v(s) = (0,3 —3)
for s € [2,3], v(s) = (s —3,0) for s € [3,4]. The curve I is closed, it has 4 corners given by
Cr = {(0,0),(0,1),(1,0),(1,1)}. Now, for r > 0, as previously, the positively oriented boundary of a
square of side r admits +, : s € [0,4r] — ry(s/r) as an arc length parametrization and the corners C,r
are simply given by rCr. At the corners we have a,r(x) = 7/2 and k,r(x) = 0 for points that are not
corners, such that when rI' C U, we also have

TC(rT,U) = TaC(rT,U) = 4 x g — o
Remark: It is a well-known result of differential geometry of plane curves that the total curvature of any

continuous simple closed curve is 27 or —27 (depending on the orientation of the curve). This result is
sometimes called Hopf’s Umlaufsatz, or also the theorem of turning tangents ([14] p.396).
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Definition 2 (Level total curvature integral). Let f be a real-valued function defined on U. Fort € R, we
define the excursion set of f for the level t as

E;t;U) :={x €U s.t. f(zx) >t}

We assume that for almost every t € R, the boundary OE¢(t;U) is a simple curve piecewise C?, positively
oriented in such a way that the normals are oriented towards Ey(t;U). We moreover assume that

LTaC, (U) ::/TaC(aEf(t; U),U) dt < +oc.
R

Note that this implies that OE;(t;U) is a curve of finite total curvature in U in the sense of Definition 1 for
a.e. t € R. We say that the function f is of finite level total curvature integral (on U). It follows that the
function

(1) t s TCOE; (1 U),U) = ¢y (t, U)

is in L'(R). This function, denoted by ¢ (-,U) is called the level total curvature function of f in U.
Then, the level total curvature integral of f is defined for any bounded continuous function h on R by

(2) LTC;(h,U) = /R h(t)TC(OE, (t;U),U) dt = /IR h(t) (¢, U) dt,

and we simply denote LTC;(U) for LTCy(1,U).

Let us remark that when ¢t > maxy f, then E;(¢;U) = () and therefore ¢¢(t,U) = 0. On the other hand,
when ¢ < miny f, then E¢(t;U) = U, and thus OE(t;U) NU = (). Therefore we also have ¢¢(t,U) = 0. This
shows that the level total curvature function is 0 for levels ¢ outside the range of f.

Let us also notice that when H is a C' diffeomorphism on R with bounded derivative h = H’, by a simple
change of variable, the function H o f is also of finite level total curvature integral on U with ¢ pos(¢,U) =
Yy (Hil(t)v U) and

LTChos(U) =LTCy(h,U).

2.2. Link with Euler Characteristic. The link between the level total curvature and Euler Characteristic

is given by the Gauss-Bonnet theorem. The precise statement of the theorem is the following (it is taken from
the book of Do Carmo [14] p.274).

Theorem 1 (Gauss-Bonnet Theorem). Let S be an oriented surface, and let D C S be a regular region such
that its boundary OD is formed by n closed, simple and piecewise reqular curves I'y,...,I',,. Suppose that each
I'; is positively oriented and let o, . ..oy be the set of all turning angles of the curves I'y,...,I'y. Then

Z/ kr, ( Y(dx) +ZO‘1 / K do = 2nx(D),

where K is the Gaussian curvature of S and x(D) is the Euler Characteristic of D.

The intuitive explanation of the Gauss-Bonnet Theorem for subsets of R? is the following. First, we see
here the Euler Characteristic as a count of the number of connected components minus the number of holes.
Then, for each connected component, the total curvature of its boundary (that is a simple closed curve) is
+27, whereas for a hole, since it is oriented in an “inverse way”, its total curvature is —2xw. Therefore adding
all these total curvatures, we get 27 times the Euler Characteristic of the set.

A direct consequence of the Gauss-Bonnet Theorem is that if we consider the flat surface S = zg + [0, 772,
then its Gaussian curvature is 0. Hence, for U = x¢ + (0,7)?, when considering a regular compact region
D c U, with boundary given by I' = 0D C U of finite total curvature in U, one has

27x(D) = TC(T, U).

More generally we obtain the following corollary that gives the link between the Euler Characteristic of the
excusion sets and their level total curvature.

Corollary 1. Let U = x9+(0,T)2, and let f be a function defined on an open set containing U = xq+ [0, T]?.
We assume that f is of finite level total curvature integral in U (in the sense of Definition 2). Then, for almost
every t € R,

O] JXO)
2mx(Ey(t;U)) = TC(OE(t;U),U) + Y B = vy (t,U) + Y A",
Jj=1 j=1

where the ﬁj(.t), 1 <j < kW are the possible turning angles of OE;(t;U) at points that are on the boundary of
U (see Figure 1).
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FiGure 1. By the Gauss-Bonnet theorem, the Fuler Characteristic of the excursion set
E¢(t;U) (in gray) is equal to the total curvature of its boundary in the open rectangular
domain U plus the turning angles at the points where Ef(t; U) meets OU and also plus 7/2
for each of the corners of the rectangle U that are in Ef(t;U). All these special points are the
ones marked by the small dashed circles on the figure.

Remark: To avoid the problem of the boundary of U = g + (0,7)2, one can consider functions defined on
the flat torus U = T?2. Since it has a zero Gaussian curvature everywhere, the Gauss-Bonnet theorem with
S = T2, implies that, for any level ¢,

2nx(Ef(t;U)) = TC(OE;(t;U),U) = ¢4 (t,U).

Now, considering a non-periodic domain U = (0,7)? C R2, the total curvature of the boundary of an
excursion set F, divided by 27, can be seen as a “modified” Euler Characteristic, in a sense very similar to the
one used in the book of Adler and Taylor [6] or in the paper of Estrade and Ledn [15], where critical points
in U are only taken into account, and not the ones on the boundary of U. Moreover, we will often consider
large domains (that is T' goes to infinity), and in that case, the total curvature (in expectation) will grow like
T? whereas the sum of the turning angles on U will (in expectation also) grow like 7T'.

2.3. Link with Euler Integral. Let us quote that due to the additivity property of the Euler Characteristic
X(AUB) = x(4) + x(B) —x(ANB),

it is natural to set up an integration theory with respect to Euler Characteristic [21, 28]. However, since x is
only finitely additive, a careful choice of integrands must be done. This problem was tackled by defining the
class constructible functions [26], then extended by the class of “tame” real-valued functions in [8]. Following
this framework, Bobrowski and Borman obtained in [12] the first probabilistic statement about the persistent
homology generated by sublevel sets. We briefly recall the definitions used in [12] for comparison with our
setting. When f is a real continuous function defined on a compact topological set S, it is said to be a tame
function if the homotopy types of Ef(t;S) = {z € S; f(z) > t} and {z € S; f(z) < t} change only finitely
many times as ¢t varies over R and the Euler Characteristic of each set is always finite. For such a function, a
lower and upper Euler integrals are defined by

/fmm
/fdx

where x(f > 1) = x(Ef(:9)), x(f <t) =
function ¢ ( U)of finU deﬁned in (1),

400
A (X = 1) — x(f < 1) dt

+o0
A (W(F > 1) — x(f < 1)) dr,

X(S) — x(f > t), etc. In contrast with the level total curvature
taking S = x¢ + [0,T)?, for some zg € R? and T' > 0, leads to
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X(f >t) = x(S) =1 for any ¢t < ming f and thus ¢ — x(f > t) is not integrable on R, explaining the above
definition of Euler integrals.
However, note that in the periodic case for S = U = T? one has x(S) = 0 and the lower Euler integral just

becomes
/dexJ =/x(f > t)dt.
S R

And it is therefore equal to our level total curvature integral divided by 27, in view of the above remark, since

LTC; (U) = /R oyt Ut

We now show how the level total curvature integral can be explicitly computed in different situations. The
first situation is the one of sums of piecewise constant functions (also called elementary functions), and the
second situation will be the case of smooth (at least C?) functions.

2.4. The case of elementary functions. We first introduce some notations. For a point € U and a
real positive number p, we denote by B,(z) the open ball of radius p and center x. For an oriented simple
piecewise C? curve v with finite length, and a point  on =, then for p small enough, B,(x) \ v is made of
two connected components. These two “half-balls” are respectively denoted by B:(x,'y) and B (z,7). The
half-ball Bp+ (x,7) is the component that is on the side of the normal v, to 7.

Definition 3 (Elementary function). We say that a function f defined on U is an elementary function on U
if [ is a piecewise constant function taking a finite number of values (meaning that f(U) is a finite subset of
R), and if the discontinuity set of f in U, denoted by Sy, can be decomposed as

Sf ZRf UCf UIf,
where (see also Figure 2)
e Ry is the reqular part of the discontinuity set of f: it is the finite and disjoint union of C* simple
curves having finite length and finite total curvature. More precisely, if x € Ry, then there exists
p > 0 such that Sy N B,(x) is a simple C? oriented curve vy separating the ball B,(x) in two half-balls

B (x,v) and B, (x,7). Moreover there exist two real numbers f*(x) > f~(x) such that f(y) = f*(x)
for ally € Bf (z,7) and f(y) = f~(x) for ally € B, (x,7). We also denote

vi(w) =vy(x) and ks(z) = Ky (2) with kp € L*(Rp, HY).

e C; is the set of corner points: it is a finite set of points (meaning H°(Cy) < +oo, with H® the counting
measure) such that if x € Cy, then there exists p > 0 such that Sy N B,(x) is a simple piecewise
C? oriented curve vy having only one corner at x. We write ay(z) € (—m, ) the turning angle of v
at x. As for regular points, v separates the ball B,(x) in two half-balls Bf (z,7) and B, (x,v), and
moreover there exist two real numbers f*(x) > f~(x) such that f(y) = f*(x) for all y € Bf(x,7)
and f(y) = f~ () for ally € B, (v,7). The turning angle at such a corner point is denoted

ap(z) = ay(z).

o I; is the set of intersection points: it is a finite set of points (meaning H°(Z¢) < +00) such that for
x € Iy, then there exists p > 0 such that SgNB,(x) is the union of two different simple and oriented C*
curves y1 and 7y such that {x} = v1Ny2 and such that the intersection is non-degenerate (meaning that
vy, (z) and v, (x) are not colinear). Each curve separates the ball in two half-balls, and there exist 4 real

numbers f~(x) < f¥(x), f{(x) < f1(x), such that f = f~(x) on B, (2,71)NB, (2,72); f = f1 (z) on
B, (z,m) N B (z,72); f = [X(x) on B} (2,7%1) N B, (v,72) and f = f*(x) on B} (z,7)N B} (x,72).
And we define
Br(x) = dsi(vy, (), v4,(2))
= min(|Argvy, (z) — Argvy, (2)], 27 — |Arg vy, () — Argra, (2)]) € (0,7),

the geodesic distance between v, (z) and v, (z) on St.



LEVEL TOTAL CURVATURE INTEGRAL: EULER CHARACTERISTIC AND 2D RANDOM FIELDS 7

>

FIGURE 2. The three types of points of the discontinuity set of an elementary function. From
left to right: a regular point, a corner point and an intersection point.

Proposition 1. If f is an elementary function on U, then f is of finite level total curvature integral on U
with

® IC0) = [ @) - k@ )+ Y (e~ @)y

zeCyNU

+ > (@) —max(fE(2), 2 (2) + min(fF (), fZ (@) — £ (@)]Bf(x) < +oo.
c€LyNU
Moreover, for allt € R, 0E¢(t,U) is a curve of finite total curvature in the sense of Definition 1. And if h

is a bounded continuous function on R, and H is a primitive of h (for instance H(t) = fot h(u) du), then the
level total curvature integral of f is given by

4)  LTC;(h.U) = /R[H(f+(x))—H(f_(w))]fif(JC)Hl(dw)Jr > H(f (@) ~ H(f (2))]ay(x)
f z€Cy

+ Y H(f (@) + H(f (2)) = H(fZ (2)) = H(f; ())8s ().

T€Ly

In particular, when h =1, we get

5) LTC,(U) = /R [FH(@) - [ @)k @M de) + 30 [ (@) - f(@)ag()
f IECf
+ D U@+ (@)~ fE (@) ~ S (@)]B ().
.’EEIf

Proof. We assume that m = Card(f(U)) > 2. Otherwise, if m = 1, then for all t € R, Ef(t;U) = 0 or U
and therefore TaC(0E;(t;U),U) = TC(OE;(t;U),U) = 0. In the following we denote the values of f in U by
v1 < ... < Uy, and set vg = —oo. We first remark that Ey(t;U) = 00 for t > vy, ; Ef(t;U) = Ey(v;;U) for
vi—1 <t <w;and E¢(t;U) = U for t <wv;. The set of discontinuity points is given by Sy = U2 0Ef(v;; U).

Let us compute the total curvature of I'; := 0FE¢(v;; U) for each 2 <i < m. Since I'; C Sy, we can write

Note that for € T;, one has f*(z) > v; and f~(z) < v; with kp,(x) = kf(z) for z € T; N Ry and
ar,(z) = af(z) for x € I'; NCy C Cr,.

When z € I'; N Z¢, we have an intersection point of f, and it may become a corner point for I';. Indeed,
using the same notations for intersection points as in Definition 3, we may write © € v, N 2 with the two
simple C? curves 71 and 2 being such that (y1 U72) N B,(z) = Sy N B,(z). If v; < min(fF(2), f; (z)), then
LinBy(z) = (11N B, (2,72))U(y2NB, (z,7)) and x € Cr, with ar, (x) = —B;(x). Without loss of generality
we may assume that f¥(z) < fi(z). If ff(z) < v; < fi(z) then I'; N B,(x) = 72 and therefore x is not
a corner point of ;. If v; > max(f*(z), f~(x)), then T'; N By(z) = (y1 N Bf (,72)) U (y2 N Bf (z,7)) and
ar, (z) = B1(a).
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Finally, it follows that

Ter) = [ @)+ 3 )

xeFme

+ Y B (qu:>maX(ff(x)vf:(w))+ L <min(s* (0),1 (x)))
xzel;NLy
while

) = [ meHdn Y a)
RO z€l;NCy
+ Z ﬁf ( vi>max(fF (z),f- (x))
zel'; ﬂl-f

Ivigmin(ff(w),f: (w))) ’

Now let us prove that f is of finite level curvature integral. Let h be a non-negative continuous bounded
function on R and H a primitive of h. We have

/h )TaC(DE;(t,U)) dt = Z/

t)TaC(Ty, U) dt = > [H(v;) — H(v;—1)]TaC(T;, U).

=2
Then, using the above formula for TaC(I';,U), we get the sum of three terms. The first one is given by
m

Slt(e) — H(wi) | L e ) ) G ),

- | ()| (dx)
i=2
i(z)), the mlmmal (resp. maximal) index i = 2

Rf NIy

When z € §§ = UZ,TI';, we denote i(x), (resp. j(z) >
such that z € I'; and f~(z) := v;(4)—1, (vesp. fH(x) :=

=2,...,m
Vj(z)). It follows that

m J(z)

> [H(vi) = H(vi)]r, () > H H(vi-1)]
i=2 i=i(x)

H(vj(2)) — H(vi(z)-1)
= H(f"(x)) - H(f (2)).
Therefore the first term is

[ @) = @) @) 7 ).
f
Similarly, the second term is equal to

m

Z[H(vi)—H(UH)} Yo lar@) = Y [H(f ()

— H(f(@))] |ay(z)].
TI,'EFiQCf .Z‘ECf
Finally, the third one is equal to
Z[H(UZ) - H(Ui—l)} Z |5f(1')| (Iui>max(ff(z) - (x)) + v <min(fF (z) (:v)))
1=2 xzel'y;NZy

J() k(z)
-y ﬂf@c)( S [HE) - Hwe)l + Y [H(w) - H(v)]
€Ly i=l(x

i=l(x)+1 i=i(x) )
where we have introduced k(z) and I(z) with i(z) < k(z) < I(z) < j(z) such that min(f*(z), = (%)) = vk
and max(f¥(z), fZ(x)) = vy(). It follows that this third term is equal to

Z Br(x) (H(vj())

— H(vi(z)) + (H (Vp(a))
’tEIf

= > Br(@) (H(f* (@) = H(max(f* (2), £~ (2))) + H(win(f* (2), = (@) = H(f~(2))))
€Ly

- H(vi(z)—l)))

In particular, for h = 1, we obtain Formula (4) and the fact that

(6) LTaC () = /R TaC(OE, (£, U))dt < +oc.
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Therefore, f is of finite level total curvature integral and ¢ — 1 ¢(t,U) = TC(OE(t,U)) is in L'(R). Note that
the same computations as above for h a bounded continuous function on R (not necessarily non-negative),
gives the result (5) for

LTCy(h,U) = / h(t)y(t,U)dt.

R
Indeed now, the third term is equal to

Z;[H (vi) — H(vi-1)] ;I By(x) (Ivi>max<fj<z>,f:(z>) - Iviémin(ff(r)yfi(r)»
Jj(x) k(x)
=Y B@ | Y. [Hw)—Hwia)]— > [H(v)— H(vi1)]
z€ly i=l(x)+1 i=i(x)
=Y Bela) (H(f(2) + H(f~(2) — H(f* () — H(f} (x)))
€Ly
Taking again h = 1 we obtain (6). O

The above proposition gives the formula for the level total curvature of an elementary function on U. Now,
since we will be interested in shot-noise random fields that are obtained by summing elementary functions, we
need to have also a formula for the level total curvature of a sum of elementary functions on U. This is the
aim of the following proposition.

Proposition 2. Let f,g be elementary functions on U such that their respective discontinuity sets Sy and S,
intersect only at a finite number of regular points, that is Sy NSy C Ry N'Ry. We moreover assume that the
intersections are non-degenerate, meaning that if * € Ry N'Ry, then vy(x) and vy(x) are not colinear. Then
f+ g is also an elementary function with
¢ Rivg =R ARG =R URy N (RfNR,) and
— 0 € Ryvg N Ry, then rpyg(w) = y(x) with (f + (@) = £+ () + g(x) and (f +g)~(x) =
[ (@) + g(x);
—if 1 € Rptg N Ry, then kyig(x) = Ky(x) with (f + g)t(x) = f(x) + ¢ (z) and (f + g9) (z) =
f(@) + g7 (2);
o Crig=CrUCy is a disjoint union and
2 itz €Cy, then agyg(x) = ap(x) with (f+6)* (z) = F+(z)+9(x) and (f+9)~(2) =
— i3 €Cy, then agsy(x) = ag(z) with (F+9)*(z) = F(z)+g" () and (f+9) (z) =
© Tr o =Ty UL,U(Ry N'Ry) is a disjoint union and
— if & € Iy, then Big(x) = Br(x) with (f + 9)*(x) = fT(x) +g(x), (f +9)(x) = [~ (x) +g(2),
(f +9)5(2) = i (2) +g(x) and (f + 9)1(x) = f1 () + g(x)
— if & € Iy, then Brig(x) = By(x) with (f +9)*(z) = f(2) + g (2), (f +9)"(2) = f(2) + 97 (2),
(f +9)5(2) = f(2) + g7 (2) and (f + 9) 1 () = f(2) + g7 (x)
—ifx € Ry NRy then Brig(x) = dgi(vy(z),vy(z)) € (0,7) with (f + g)*(z) = fT(z) + g7 (x),
(f+9)" (@) =f(2)+g™(2) and {(f +9)T(2), (f +9) 7 (@)} = {fT (@) + g~ (2), f~ () + g" (2)}.

Moreover, we have that

(@) +9(z),
f(@)+97(z);

(™) LTCy44(U) = LTC; (U) + LTC, (V).
while
(8) LTaCyyy(U) = LTaCs(U)+ LTaCy(U)
Y U+t @ - max((f+9) (@), (F + 9): (@)
T€RsNRyNU

+min((f +9)7(2), (f +9)5 (@) = (f + 9)_(96))) Bftg(2)

< LTaCHU)+LTaC,(U) +2n 3. [(FH(@) = f (@) + (g7 (&) — g~ (2))].
TERFNRyNU

Proof. Since f and g are both piecewise constant on U, then f + ¢ is also piecewise constant on U, and its
discontinuity set is Syy4 C Sy US,. We now need to show that a point in Sy, is else a regular point, a corner
or an intersection point in the sense of Definition 3.

If z € S§\ Sy, then we have three cases:
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-ifz € Ry \ Sy, then © € Ryyy with kpy4(z) = k¢(x) and (f + g)"(x) = fH(z) + g(z) and (f + ¢) (z) =
() +g().
-if 2 € Cp \ Sy, then z € Cpyy with apig(2) = ap(z) and (f +g)*(2) = fF(z) + g(z) and (f +9)"(z) =
[~ (@) +g(z).
-if v € Iy\Sy, then x € Ty g with Bryg(z) = By(z) and (f+9)*(2) = fF(2)+g(2), (f+9)” (x) = [~ (z)+g(z),
(f+9)3 (@) = fL(2) +g(x) and (f + g)E(2) = X (2) + g(2) .
The same symmetric formulas hold when = € Sy \ Sy. Now, when z € Sy NSy = Ry N'Ry, since we made the
hypothesis that the intersection points are non-degenerate, then & becomes an intersection point of f+g, that is
x € Tyiq and moreover By 4(x) = dgi (vf(x), vy(x)), (f+9)"(z) = fH(x)+g" (2), (f+9)" (2) = f~(2)+g™ (2),
and {(f + )% (@), (f + 97 (@)} = {/* (@) + 9~ (@), = (@) + g+ (@)}

Finally, having identified the discontinuity set of f+ g, since we assume that H*(RyNR,) < +oo we deduce
that

/Rf+g g +o(@M(d) = /Rf |k ()| H' (d) +/ kg (z)|H (dz) < +o0,

Rg
HO(Cryg) = H(Crig) +H(Crrg) < +o0
and  H(Zy1y) = HUZp) +HYUZy) +HO(RyNRy) < +o0.

This finishes to prove that f+g is an elementary function. We also notice in particular that when z € RyNR,,
one has (f +¢)*(z) + (f +9)"(z) = (f + 9)L(2) + (f + 9)5(x) = fF(2) + g7 (x) + f~(2) + g~ (x), such that
applying the result of the previous proposition (Equation (5)) we can obtain the formula for the level total
curvature of f + g. In particular, taking h = 1 we get (7). O

Remark: Formula (7) says that the total curvature of a sum of two elementary functions is the sum of their
total curvature. This result is quite striking, but we have to underline that it does not hold in general for two
non elementary functions. This will appear clearly in the next section where we will consider smooth functions
f and where the formula for the level total curvature integral is obviously non linear in f.

2.5. The case of smooth functions. In the previous section, we have computed the level total curvature of
elementary functions, that are piecewise constant functions (that are in particular not continuous). Here, we
now consider the case of smooth (at least C?) functions. The question of the link between these two cases will
be discussed in Section 4.3 where we will consider a “discretization” of a smooth Gaussian random field. But
here, at the moment, there is no randomness. In the sequel, for f a C? function we denote by V f its gradient
vector and by D2 f its Hessian matrix.

Proposition 3. Let f be a smooth (at least C?) function on an open set containing U. Then f is of finite
level total curvature integral on U with

LTaCy(U) < /U D2 (2)]] da,

where || - ||, is the matriz norm subordinated to the Euclidean norm. Moreover, for h a bounded continuous
function on R, the level total curvature integral of f is given by

2f(x). x)t x)t
LTCy(h,U) :/Rh(t)wf(t, U)dt = —/Uh(f(x))D I )(Hv;ff((;)”;vf( L)

Proof. Since f is a C? function on an open set containing U, by Morse-Sard theorem (see [17] p.69 for instance),
the set of critical values of f has measure 0 in R. Let us also recall the co-area formula for Lipschitz mappings
(see [16] p.117 for instance), for any L-integrable function g,

[ s@ivi@ = [ [ s o )

[ 19l = [ w080 nv)a,
U R

where 0E;(t; U)NU = {z € U; f(x) = t}, by continuity of f. In other words, combining this with Morse-Sard
theorem we have that for almost every ¢ € R, H'(0E;(t;U) N U) < +oo and for all points € U such that
f(x) =t then Vf(z) # 0. Let ¢t be such a non-critical value. Now, for a curve v given by an implicit form
f(y(s)) = t, we have 7/(s)t = Vf(7(5))/||Vf(7(s))|| and therefore the curvature at = ~(s) is given by

D@V (@), 9 (@)
V@I

dx.

Taking g = 1, we get

(9) rr(r) =
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where if A = (a;j)1<i <2 is a 2 x 2 symetric matrix and y = (y1,y2) € R?, we use the notation

A(y,y) = YAy = anyi + azys + 201291
And thus, we get

TaC(OE; (£U),U) = / I () [ 1 (dr)
BE; (t;U)NU
and Yg(t,U) = TC(OE;(t;U),U) = /aE o wp(z)H (dx).
FAYZ]

Now, using the co-area formula with g = |k/|,

vrac; ) = [ | 1o () [ ()
R JOE; (t:U)NU

/ 1 @)V £ () | d
U

IN

/ D2 (2] de,
U

in view of (9). It follows that f is of finite level total curvature integral on U and, for h a bounded continuous
function on R, using again the co-area formula but now with g = (ho f) Ky,

Lrey i = [ nowseve = [ [ o T )

/U W(f (@)1 @)V £ (@)]] de

B D2 @).(VI@) V@)
IR MGl e

in view of (9).

3. ELEMENTARY SHOT NOISE RANDOM FIELDS

3.1. Level total curvature of an elementary shot noise random field. We consider here a shot-noise
random field defined on R? by
Vo e R?,  Xg(x) = ng,i (x — x;),
iel

where ® = {(z;,m;)}ies is a Poisson point process on R? x R? defined on a probability space (2, A,P),
of intensity AL x F, with A > 0 real, £ the Lebesgue measure on R? and F a probability measure on R%.
Note that equivalently, we may define ® as an independently marked Poisson point process where {x;}; is an
homogeneous Poisson point process of intensity A and the m; are “marks”, following a law F'(dm) on R¢ (with
d > 1) and independent of the Poisson point process {x;};. Let g : R? x R? — R be a measurable function
such that the functions g,, := g(-,m) satisfy

(10) /R2 y |gm (z)| dz F(dm) < 4o0.

Then, the random field Xg is well defined as an almost surely locally integrable function on R? (see [10]).
Note that moreover, the random field Xg is stationary. We will first give formulas for the level total curvature
integral of X¢ on an open bounded set U in the case where the g,, are elementary functions on R?, then we
will compute the Fourier transform of the function ¢ — E(¢x, (¢,U)). Finally we will give explicit results in
the case of weighted indicator functions of random set, obtained from a deterministic compact set D with a
boundary given by a finite union of closed curves with finite total curvatures, by random rotation and dilation.
Specific computations for disks with D = D(0,1) and squares with D = [0, 1]? are linked with some recent
results on Boolean models.

Throughout the rest of this section we also assume that the g,, are elementary functions on R?, with
compact support and such that

(11) /R , LTaC,,, (R?)F(dm) < +oo,

where LTaC,, (R?) is defined by (4) choosing U = R?. Note that this implies that for F-almost every m € R9,
gm is of finite level total curvature integral and we may define 1, (-, R?), the level total curvature function of
gm in R? as a function in L'(R). For F-almost every m, g,, is assumed to have a compact support, that can
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be included in a square [—T5,, T;,]? with T, € Ry, and its maximal value [|g, || = : max 2|gm| is finite.

We will assume moreover that
(12) / T2 F(dm) < 400 and / gonlloo F(dm) < +00.
Rd Rd

Note that the first assumption of (12) implies that there is only a finite random number of g,,, denoted by
N(U), contributing to the values of Xg on the bounded set U = (0,72, for T > 0. Actually, it is clear that

N(U) < #{Z';Uﬂ (xl + [7Tmmei]2) 7é Q} < #{Za ”‘rl”OO < 2Tmi + T}>

with [|2]|ec = max(|z1], |22]), for © € R?. Tt follows that E(N(U)) < X [3u(2T + T)?F(dm). Since F is a
finite measure, under (12), we get

(13) E(N(U)) < +oc.

In the following we will use the notation 7, to denote the translation of z in R? (ie. 7,y =y + x for all
y € R?). We will also denote ®; = ® \ {(x;,m;)} for i € I, ®;; = &\ {(z;,m;), (x;,m;)} for i # j in I, and
their associated shot noise random fields

Viv X<I>i ({E) = Z 9my, ({E - l’k) and vj 7& 7;7 Xq)ij (:L’) = Z 9my, (.’E - xk)‘
Fsk#i ksk#i,k#j

Theorem 2. Assume that for F-almost every m € R, the function g,, is an elementary function on R? (in
the sense of Definition 3) satisfying (10), (11) and (12), and such that

(14) / H° (S, \ Ry,.) F(dm) < 400
Rd
(15) / / HY (Ry,, NTuRy,, ) dzF(dm)F(dm') < 400
RdxR4d JR2
(16) /]Rd » /R2 HO ({y €Ry , NTRy, ;v (y) = tvg, (y — x)}) dxF(dm)F(dm') = 0.

Then, almost surely, for all T > 0 and U = (0,T)?, Xg is an elementary function on U and its discontinuity
set on U is given by Sx, NU where Sx, = Rx, UCx, UZx,, with

e Rx, = (UTngmJ \ < U 7Ry, N ijquj> , and if x € Rx, NU, there exists a unique i such
i ’ 5 7 ' ‘
that © € 74, Ry, with kx4 () = kg, (x — ;) and
Xo™(x) = g, (& — 29) + Xo,(2) and Xo™ (2) = gy, (v — @) + Xa, ();

* Cxy = Ums,Cy,,,, and if x € Cx, NU, there exists a unique i such that x € 74,Cg,, with ax,(z) =
K2

ag,,, (¥ — ;) and

Xot () = gt (x — 2:) + Xo,(2) and Xo™ (z) = g, (x — 2;) + Xo,(2);

o Ix, = (UTMIgmi) U (_U;éﬂ”ing N Ty, Rgmj> and if © € Ix, NU, only two situations occur
K2 1,7
— there exists a unique i such that x € 7,,Z,, , with Bx,(z) = By,, (x — x;) and

XoT(2) = g (v — 2) + Xa,(2), Xo™ (2) = g, (x — 2:) + Xa,(2),
X@_T_(Z‘) = gmLJ_r(x - xl) + X<I>i (x)7 X@i—(l‘) = gmzi_(x - xi) + X‘I’i (J?),

— or there exists a unique pair {i,j} with i # j such that x € 73, Ry, N Ta; Ry, with
Oxs (@) = dgi (vg,, (€ — i), vy, (¢ —x5)) € (0,7)
Xo T () = g, (@ = 20) + g, (2 — 7)) + Xa,, (2), Xo ™ (2) = gy, (2 — 21) + g5, (2 — 7)) + Ko, (@),

{XoT(2), Xa{ (2)} = {gn, (v — 20) + g, (2 — 7)) + Xa, (2), g, (v — 21) + g, (@ — 25) + KXo, (2) }-
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In particular, a.s.

LTCx, (U) = Z LTCy,, (7-2,U)

- Z /Uﬁ r [g;rt” (3’3 - xl) — Gm; (-’17 - Jii)]ligmi (x — -Tz) ’Hl(dx>
+Y > b @ —3) = g, (@ - )]ay,, (= - )

i 2€UNTy,Cy,,,

3> gh @ —2) g, (2 — @) — g, (@ — ) — g, (2 — 20)] By, (@ — 20).

i zeUNTy, T,

9m;

9m;

Proof. Since it is sufficient to prove the result for all U = (0,7)? with T € Q, we only have to prove it holds
almost surely on some fixed U = (0,72, with T > 0.

Let us first remark that when Ag is a finite set of points of R? depending on the marked Poisson point
process ® = {(z;,m;)}, as soon as E(H°(Ag)) < +00, one has,

UA@J. N szngj =0 as.
J
This follows from the fact that, by Slivnyak-Mecke formula (see [7] Theorem 1.4.5),

A

E [ #° UAq)j N 7oy S, < A / dIE(”HO(A<pﬁTrng)) dxzF(dm)
j R2xR

< AE (H'(Ae)) [ L(S,,,) F(dm) =0,

since £ (8,,,) = 0, using Fubini Theorem and translation invariance of both H° and L.

Our first assumption (14) implies that

(17) U Te; (ng \Rg1) N TIngmj NU=0 as.
4, #
Actually, taking Ag = Js, (ngl_ \Rg""i) N U, Campbell formula (see [7] Theorem 1.4.3) ensures that

E(H°(Ag)) < A /R ] RdHO (72 (Sy,, \ Ry,,.) NU) dzF(dm)

IN

AL(U) /R , H° (S, \ Ry,.) F(dm) < +oo.

Then, (17) follows from the preceding remark since |J 7, (ngi \Rgz) N7, S

\ gm; G *
i, #

NU =UAs, N7, S,
J

The second assumption (15) will ensure both that

(18) H° U o Ry, N7z, Ry, NU | <00 as.,
0, #
and
(19) U T$iRg7n7j N TZjRgfnj N kaSgnzk N U = @ a.s.
.3,k #
Here we set Ag = U 72, Ry,., N7 Ry,,,; NU. Using again Slivnyak-Mecke formula and Campbell formula we
0,j#

obtain that
E(H’(As))

IN

A2 /R . /]R o (7R, TRy, OU) daF(dm)da’F ()
x R4 « R4

IN

N L(U) / / H (R, , NT4Ry,, ) deF(dm)F(dm') < +oc.
RdxRd JR2

g, = 0 as.

It follows that H°(Ag) < 400 a.s. and JAs, N 72, S,
k
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Finally and similarly, the last assumption ensures that

(20) {y € U e, R, N7, Ry,., NUivg,, (y —x;) = +vg,., (y—z;)} =0 as.

4, #
This follows from the fact that the expected H° measure of this set is zero, according to Slivnyak-Mecke
formula and Campbell formula, Fubini Theorem and translation invariance.

Now let us consider the random variable N(U) counting the number of functions g¢,,, contributing to the
values of X¢ on U and recall that under the assumption that [, T2 F(dm) < 400, N(U) is a.s. finite, as a
consequence of (13).

We now will prove the result of Theorem 2 by induction on the value of N(U) once we have fixed an almost

sure realization ensuring the previous configuration.
For N(U) = 0 there is nothing to prove since X¢ = 0 on U in this case. Let us assume the result holds
when N(U) =n > 0 and let us prove it for N(U) = n + 1. We can assume that there exists (x;,m;) such
that 7_,, gm, contributes to the values of X on U and write X¢ = Xo, + 7—z,9m,. The number of functions
contributing to Xg, is given by N(U) — 1 so we can use our induction to state that Xg, is an elementary
function on U with discontinuity set Sx,, NU where

Schi = U TIngmjv with ,R’chi = U TZjRgmj \ U ijRQmj mekRgvnk )
Jij#i Jid#i gk #ijFi ki

Cxy, = U ijcgmj and  Ix, = U szIgmj U U Tx].’R,gmj N 72, Ry,
J5J#e JJ#e Jik #jFu kA

Then the discontinuity points are given by Sx, NU with Sx, C Sx,, U7, Sy, = Uz, ng,» with
3 :

Sxa, N7 (Sgu, \ Ry, ) VU C | 72,80, N7 (Sgun, \ Ry, ) NU =10
JiiFi

by (17). Moreover,

SX@- \Rchi - U Tx; (ngj \Rgmj> U U TmJRgmj mekRgmk;
Jig#e g,k #ig#ik#i
with again |J 7., (ng_ \Rgm_)ﬁTxngm, NU = 0 by (17) and U T2; R, N Ry, N2 Sg,,, NU =10
G ’ ’ ' dik ikt ’ '
by (19). Therefore, we may conclude that
chpi mengnmi NnU C RX‘%‘ N TL:Rgmi NnU,

with H° (R Xe, NT2; Rg,, NU ) < 400 by (18). Finally let us quote that the intersections are non-degenerate
in view of (20). Hence, according to Proposition 2, X¢ is an elementary function on U. Moreover, if x €
Rxs, \ T2;Sg,., We get XE(x) = Xgi () + gm, (x — x;) and by induction there exists a unique j # 4 such
that © € 72, Ry, so that Xi(z) = Xo,, (z) + gij (x — 25) + gm, (v — 2;) = Xo,(x) + g,flj (x — x;) and
Kxy(T) = Ko, (z — x;). Similarly, if 2 € 7,,R,,, \ Sx,, we get XoE(z) = Xo, () + g% (z — x;) and
Kxq(T) = Ky, (¥ — ;). In the same way, by induction and using the fact that Cx,, is the disjoint union of

7z,Cg,, We obtain that if z € Cx,,, there exists a unique i such that x € 7,,,C,,, and ax, () = ag,, (z—;) with

I,
Xo*(z) = 9% (z — ;) + Xo,(z). Finally Ty, is the disjoint union of Ixqe,s T Ly, and Rx, N7z, Ry, . By
induction, Zx, = U 7,Z,, U U T2; Ry, NTa Ry, and Rx, N7, Ry, = U 7o, Ry, N72, Ry,

L G T gk Ak ! C G I ’
where unions are all disjoint. Hence, grouping the terms we get the result. 0

Theorem 3. Under the hypothesis of Theorem 2, assuming moreover that

(21) / / (lgmllos + llgm lloo)H® (Ry,, N TeRy,, ) daF (dm)F(dm') < +o0,
R4 xRd JR2

then (w,t) = Yx, ., (t,U) € LY(Q X R) for U = (0,7)%, with T > 0. Let us denote for a.e. t € R,
Uiy (8,U) = E(¥x, (1, U)) = E(TC(OEX, (¢, U)).
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Then ¥ x, (-,U) is an integrable function on R and its Fourier transform is given for all u € R, u # 0 by

Ty, (u,U) = / ey, (8,U) dt = E (LTCx, (™, U))
R
= M(U)E (eM@(O)) ( /R @ (u, R2)F(dm)

A u /
t3 /Rd /szRd Z dsi(vy,, (2 — ), vy, ,(2))AL, 1 (2 — 2, 2) dz F(dm) F(dm )),

2€T2Ryg,, ﬂRgm,

iuat L= . R ’
eUIm(Y) _ oiugm (1)) (et () _ giug, ,(y")
where AL (1) = ¢ e ) VyeR,, mdy €R,,.

and

etugh (2) _ giugy, (2)

Gy (1 RE) = LTC,, (¢ R?) = / . g (2 M (d2)
R u

gm

iugl (2) _ etugnm, (2) ezugm+(z) £+ efugm (2) _ ezugmf(z) _ ezugm+(z)

+ Yy ag, (2)+ 3 — By (2)-

2€Cyq,, z2€Lg,,

And for u = 0, we have

Uy, (0,U) = /R Uy, (t,U)dt =E(LTCx, (U)) = AL(U) /]R LTC,, (R?)F(dm)

with
LTC,, (R®) = 1, (0,R?)
= /R 9m " (2) = gm ™~ ()]Rg,, (H (d2) + D [gm T (2) = g (2)]etg,, (2)

gm 2€Cy,y,
+ ) [gm T (@) + gn”(2) = 9T (2) = 9 (2)]Bg,, (2)-
2€1g,

Proof. First note that in view of (8), one has a.s.

LTaCx, (U) < S 1TaCy,, (72 U) + 20 30 H0 (7 Ry, 07, Ry (0 (gl + lom, 1)
i 0,j#
By Campbell formula,

E ZLTanm,(T_I,iU) :/ LTaCy,, (T—zU)AdzF (dm).
r ! R2 xR?

Hence, by Fubini Theorem,

E (Z LTaC,,,, (Txl.U)> = AL(U) / LTaC,,, (R?)F(dm) < +oo.
i R4

Moreover, by Slivnyak-Mecke formula,

E(> H <Tzi7€gmi N 72, Ry, N U) (1gmallo + 1gm, llso)

0,3 #

/ / H (1R, N 7Ry, (U) (lgmllso + lgmlloo) N2dada' F(dm) F(dm')

RIxRe JR2 xR2

= 2@ [ e, o, (gl + g )W @) (@) Pl
RdxRd JR2 JR2

— L) / / (lgmlloo + lgmlloo)H (Ry,, O 7Ry, ) daF(dm) P(dm’) < +o0,
R4 xRd JR2
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by assumption (21). It follows that E(LTaCx, (U)) < +oc and therefore E ([ [¢x, (t,U)|dt) < +oo. So
for a.e. t € R we can define Uy, (t,U) = E (¢x,(t,U)), which is a function in L'(R). Note that since
LTCx,(U) = >, LTC,y,, (7-4,U) we simply get by Campbell formula and Fubini Theorem that

Ty, (0,U) = / Uy, (t,U)dt = \L(U) / LTC,, (R2)F(dm).
R Rd
Now, let u # 0 and consider the continuous bounded function j,(t) = " with primitive J,,(t) = wzt_l for
t € R. We already know that a.s. LTCx, (j., U fR Ju()x, (t, U)dt may be written as the sum of three
terms R, + C, + I,, with finite expectation under our assumptions. By Fubini Theorem, it follows that

ut

Ty, (u,U)=E (/R Ju) b, (¢, U)dt) =E(Ry) + E(Cy) + E(L,).

For the first term we get

wX}(z) _ iuXy (x)
E / A (W ()
RxgNU vz

- eiU‘gj'—li (z—m;) eiug;zi (z—x;)
Z/ 'L’U.Xq>i (2) - ﬁ!]mi (2; — xl)Hl(dZ)

eiug;(z—x) _ eiug;l(z—:c)

E (eiuX<1>(z)) _ Kg, (2 — o) H' (dz)\dz F (dm),
R2xR4 J 1, U

m

E(R.)

by Slivnyak-Mecke formula. Using translation invariance of both H#' and £ and stationarity of X¢ we get that

zugm _ ezugm( z)
(22) E(R,) = ME(U)E (45 )) /R d / kg (2)H (d=)F(dm).

Similarly, for the second term we get

eiuX;r(z) — eiuXg (2)

E(C,) = E Z o ax, (%)
ZGCXq)ﬁU
uXo.( )eiug:;i(z—zi) o eiug;lyi(z—mi) )
= E Ler, e . ) —x;))H (d
S Lecr e - O, (= — M (d2)

'Lugm(z _ plug,, (2)
(23) = M(U)E wX<1><0 / Yy £ ¢ ag, (2)F(dm),

zeC

gm

(1)

Finally, the last term may be itself decomposed in two terms, say I, = I, * + L(f). With similar computations

we get
zugm _|_ ezugm “(2) _ eiugm'_*'(z) _ 6iugm;(z)
(1) 1uX O)
@ =) =z (o) | > — By (2)F (dm)
while, by Slivnyak-Mecke formula, since Txi’RgW NTe; Ry, = Ta; R, N2 R,
E(I$))
1 u. z u
= E 52 Z et Xey ( )Aml m](Z—ifi,Z—l'j)dsl(l/gmi (z—xi)ﬂ/gmj (z —xj))
1#] 2€T0; Ry, NTa; Rgmj nu
! Z E(eXeG ) A (2 —x,2 —2)dgi (v, (2 — x), v, , (2 — 2'))N2dzF (dm)dz' F(dm’)
- 2 m,m’ i ST \Vgm P Gm! ’

26Tz Rgp N7t Ry, NU

gm

By change of variables, translation invariance of H° and £, and stationarity of Xg, we get

)\2
E(Iﬁz)) = ?E(U WX“’ O) /]Rd Rd/R “m7m,(zfx,z)d51(1/gm (zfx),l/gm,(z))dxF(dm)F(dm').
X 2

eTngm Ry, ./
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Now, (22)4(23)+(24) is equal to

(25) AC(U)E (ei'“X4><0>) /R g, (u, B2 F (dm),
which concludes the proof. O

3.2. Explicit computations. In this section, we will give some explicit computations of the mean level total
curvature function of elementary shot noise random fields. These results generalize the results of Decreusefond
et. al. [13] obtained for indicator functions of a square, and also the known results on the Boolean model
(that correspond to the excursion set of level t = 1). We will also show some numerical simulations.

Let us first recall that for shot noise random fields, the characteristic function of X¢(0) is explicit and given
by (see for instance [9])

E(eiuer(O)) = exp ()\/ (eiugm(x) _ 1)d$F(dm)> .
R2 xRd

In this section we consider D a compact subset of R? having a piecewise smooth boundary given by I' = 9D
a finite union of positively oriented closed simple curves, piecewise C? and of finite total curvature, i.e.
TaC(T', R?) < +00. Note that by Gauss-Bonnet Theorem we have
TC(T,R?) = 27x(D).
We will focus on the case where the marks are of the form m = (b,r,6) € [0, +00)? x [0,27] C R? with d = 3,
with distribution F(dm) = Fp(db)Fr(dr)Fe(df) and functions g, given by
Vz € RZa gm(x) = bIRerD(m)v

where rD is the dilation of D by the factor r, and Ry denotes the rotation of angle 8. We denote by B, R
and © independent random variables with distributions Fg, Fr (with support in R, ) and Fg (with support
in [0,27]). We will mainly focus on the case where © is uniform on [0,27], that is Fo(df) = 5=1Tjg o.df for
random shapes with uniform rotation; or on the case where ® = 0 a.s., that is Fg = §g corresponding to
simpler marks m = (b, r).

Theorem 4. We assume that
E(|B]) =E(B) < +oo and E(R?) < 4o0.
Then Xo satisfies assumptions of Theorem 2 and 8 and

Ty, (0,0) = / E(tx, (t.U))dt = E(LTCx, (7)) = 20AL(U)E(B)x (D).

We denote the mean perimeter and the mean area of D by
D= . H' (ORgrD) Fr(dr)Fe(df) = H' (OD)E(R) and @ := . L(RgrD) Fr(dr)Fe(df) = L(D)E(R?).
When fwreover, Fo is the uniform law on [0,2x], then, for all u #RO,

T (10.0) = ME(O)R(Xe0) LI (0 (D) 4 5 (Fala) - 1)

In the case where B =1 a.s. we deduce that

(26) Vk e NVt € (k,k+1], E(yx,(t,U)) =2aAL(U)e (Ag)k (X(D) — %ﬁ + 4p2k> .
. I3 m™a

Proof. Since B > 0 a.s. and TaC(RyrI", R?) = TaC(T', R?), the g,,’s are elementary functions with for F'(dm)
almost every m = (b,r,0),
LTaC(gm, R?) = |b| TaC(T, R?).
Let us remark that Equation (10) becomes
/ (g (2)|dzF(dm) = E(|B|) @ < +oo.
R4 JR2
Equation (11) is easily checked since

/ LTaC,, (R?)F(dm) = E(|B|) TaC(T,R?) < +oc.
]Rd

Assumption (12) also follows from the fact that @ < +o0o and E(|B|) < 4o0. For (14), let us remark that
Z,,, = 0 and C,,, = RyrCr such that H° (S,,, \ Ry,.) = H° (Cr), ensuring (14), by assumption on I
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Now, in order to check (15) and (16) we need a kind of kinematic formula. For f a measurable non-negative
function on [—m, )2, periodically extended on R?, and I'y, I's two simple closed curves, we can compute the
integral

on(f)i= [ 3 fAmn () Argr,(c — ) da

zel'1NTp 2

Using computations analogous to the kinematic formula of Santald [25], Chapter 7 (where he considers
random translations and rotations), we have that if T'; and 'y are two simple closed curves, then

Ly ple T s
(27) Ir, r,(f) = /0 ; f(01(s1) + 5792(82) + §)| sin(01(s1) — O2(s2))| dsi1 dsa,

where the curve I'y (resp. I'z) of length Ly = HY(T') (resp. Lo = H'(T'3)), is parametrized by s +— ~1(s1)
(resp. by s3 + Y2(s2)) where s1 (resp. sg) is arc length, and 0;(s1) = Arg~;(s1) (resp. O2(s2) = Arg~5(s2)).
Heuristically, this formula can be obtained using the change of variable x = F(s1, s2) = 71(s1) — 72(s2), for
which the Jacobian is

|det(dF)| = |sin(01(s1) — 02(s2))],

and noticing that the intersection point of I'y and 7,I's is then z = 71 (s1) = @ + Y2(s2).
In particular, taking f = 1, it follows that I, r,(1) < LiLs. Note also that we moreover have the exact
formula

27 27 27
/ / IRgthrgpz(l)deQ’ =271 X / |Sin(0)|d9L1L2 =27 X 4L1L2,
0 0 0

according to a generalization of Poincaré’s Formula (see [25] for instance). Using the fact that I' is a finite
disjoint union of closed curves we obtain that IROTF’R&T/p(l) < L?rr/, since the length of RyrT', resp. Rjr'T,

is rL, resp. r'L, with L = H(T') the length of I and

27 27
/ / IRQTF’Rérzp(l)deH/ =21 x 4L%rr.
0 0
It follows that

/ /HO (R, N7oRy,) deF (dm)F(dm’) = / / Iigrr sy vt (1) Fo (d6) o (d0') Fr (dr) Fr(dr)
R xR JR2 R} J[0,27]?

2
4172 ( / rFr(dr)> = 4p?,
R+
with p = LE(R) the mean perimeter, proving (15).
Moreover, for f(60y,602) = Iy, =g, + 19, =g, -+, where = stands for equality modulo 27, we clearly have

Ir,r,(f) =0,

in view of (27). Since I is a finite disjoint union of closed curves, it follows that

/ / H° ({y €ERy , NTeRy,. iV,  (y) = vy, (y — x)}) dzF(dm)F(dm')
R xRd JR2 )

IN

- //[ ]IRMF,Rw'F(f)F@(dQ)F@(d9’)FR(dT)FR(dT’)=0»
Rr2 J[0,27]2

so that (16) holds.
Therefore we get the statement of Theorem 2.
Moreover, we also get

Lo ] ol + o )M (Ry,, 017.R, ) doP(dm) ()
R4 xR? JRR?
< a5 [ (B W DFR(D Fa(a) = S7°E(B) <+

RxR

and (21) is also satisfied so that Theorem 3 holds.
Note that, for v = 0, we simply have

Tro(0,U) = \L(U) /R ITC,,, (B)F(dm) = ML(U)E(B)TC(T, B).
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Since TC(I',R?) = 271x(D), we obtain the first general statement. For u # 0, we can explicitly compute the
characteristic function of X¢(0), given by

E(eiux“’(o)) = exp ()\/ (eiug’"(w) - 1)F(dm)dx> = e/\a(ﬁB(“)*l)7
R? xR2

where Fp (u) = E(e"B) = [, e Fp(db) is the characteristic function of B. In particular for B =1 a.s. X¢(0)
is a Poisson random variable of parameter Aa. We also have

iuglt (2) _ Jiug,, (2) iugh (2) _ Liug,, (2)
wg'm (U7R ) - / Zu K:g?n (Z)H (dz) + Z Zu agm, (Z)
Rgm ZGCgm
eiub -1 ) eiub -1 5
= & " TC(ReT,R?) = TC(T, R?),
U U
so that R
- FB u)—1
[, o B F(am) = P =S w2,

Finally, let us remark that for f(61,62) = min(|0; — 02|, 27 — |01 — 02|) (distance between two angles), we get

Lo 3 el =), () Al (e = 0,2) do Pldm) Fidm)

2€Te Ry, MRy,

w / / IRerF,Rglr’F(f)FG (dQ)F@(dH/)FR(dr)FR<dT/)
(A R3 J[0,27]?

This last expression may not be simple to compute. However, assuming from now on that Fg(df) =
il[o’gﬂdﬁ, we obtain by (27), for two simple closed curves I'y1, T,

/[0 - IRyt Ry 1o (f)Fo(dO)Fo(db')

1 27 Ly Lo . .
= 5 / min(|61(s1) — O2(s2) — 0], 2m — |01(s1) — O2(s2) — 0])| sin(61(s1) — O2(s2) — 0)|ds1ds2df
o Jo Jo
— Iy Ls.

Since I is a finite disjoint union of such closed curves, we get
/ Iryrr Ry e (f)Fo(d8)Fo(do') = LPrr'.
[0,27]2

It follows that for uniform rotations, we have
Fp(u) —1

U, (u,U) = M(U)E( X @) =

A~
(o) + 5 (Faw) - 1r?).
When moreover B = 1 a.s., we can deduce an exact formula for the mean level total curvature function

of Xg. Actually, in this case X(0) follows a Poisson law of parameter Aa and Felw)=1 i¢ the characteristic

Fp(u)-1
U

function of a uniform random variable Z on [0, 1], while FE(u) is the characteristic function of Z + 1.

Then, considering Z independent from X4 (0) we recognize
— 4 A 4 A
W, (u,U) = AL(U) [IE (embxsrral) <TC(F,R2) - 2p2> +E (erXe @+ 251]) 2p2] .

Note also that since here the random field X¢ has integer values, then Vk € N,
Vie (kk+1], {zeU;Xe(x) >t} ={xeU;Xp(x)>k+1},
and therefore E(¢x, (t,U)) = E(Yx, (k+1,U)).
Hence we may conclude that
—(\a)* A P>
(28) Vk e N, Vt € (k,k+1], E(px,(t,U)) = )\ﬁ(U)e"\“% (TC(RR?) - 5132 + §k>
! a
Note that, thanks to Gauss-Bonnet Theorem, we have TC(T',R?) = 27y (D), so that we may rewrites this as
in (26).
O
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Let us remark that formula (26) only involves the Euler Characteristic, the mean perimeter and the mean
area of the shapes. When k£ = 0, we find the formula of the mean Euler Characteristic of a rotation invariant
Boolean model as obtained by Mecke and Wagner in [23] and by Mecke in [22] stating that

E(x({z €e U; X(z) > 1}))
7 L(U)

with mo(D) = @, m1(D) = /27 and my(D) = x(D)/7.
The typical behavior of E(¢x (k,U)), as a function of k € N, is the following:
e It starts, when k is small, by being negative. This is explained by the fact that {Xg > k} is essentially
made of one big connected component with many small holes in it. In particular the minimum value
is achieved for an integer denoted k_. The explicit value of k_ can be computed from Equation (28).
The formula is not very nice, but it has a simple asymptotic behavior when A is large, since then we
have

= e D) (Amy(D) — N*my(D)?),

k_ = \a— VA +O(1).
e Then, after k_, the mean level total curvature E(¢x, (k,U)) increases and it crosses 0 in the interval

that contains kg where
2ra

ko = \a — p—x(D) = Xa+ O(1).
For this level, there are as many connected components as holes.

e After kg, the mean level total curvature is positive and it increases till a value k; and afterwards it
decreases and goes to 0 as k goes to infinity. As for k_ the value of &k, is explicit, and its asymptotic
behavior when A is large is

ky = X\a+VAa+ O(1).
Example 1: Random disks
We assume here that D = D(0,1) is a disk of radius 1, and that B = 1 a.s.. In this case we have TC(9D) =
2rx(D) = 27, p = 27E(R) and @ = 7E(R?). Note also that since RgrD = rD for all §, whatever Fg is, the
shot noise field has the same law than one with marks given by m = (b,r) € [0, +00)? C R?, with distribution
G(dm) = Fp(db)Fr(dr). Then, for all 6,6, we may compute, Ir,.r,r, »r(f) = Lrr~r(f) as

2 2m
7'7’// / |91 — 02” SiH(@l — 02)‘d91d92 =27r X 271'7'/.
0 0

Hence,

1 - (\a)k E(R)?
(29) Yk EeNVE € (kk+1], —E(¥x,(tU)) = AL(U)e*M( k!) (1 — mAE(R)? + EE@)’“) .

An example of such a random field with comparisons between the theoretical value of E(¢x, (t,U))/2,
corresponding to mean Euler characteristic of excursion sets, and an empirical estimate on a large domain are
shown on Figure 3. The caption of the figure gives the practical and technical details of the simulation.

Let us quote that we can also compute the mean level total curvature for a non isotropic shape. This is the
case of squares for instance, as developed in the following example.

Example 2: Random squares
We assume here that D is a square of side length 1 and © = 0 a.s. or equivalently that marks are given
by m = (b,7) € [0,4+00)? C R?, with distribution G(dm) = Fg(db)Fg(dr). In this case, I' = 9D is made
of four line segments, with TC(I',R?) = 2rx(D) = 27, p = 4E(R) and @ = E(R?). On the boundary
of a square, the curvature is 0, and it has four corner points with a turning angle equal to 7/2. Now,
according to the kinematic formula (27), the only remaining terms are for 01(s1) = 602(s2) = § for which
f(@l(sl),ﬂg(SQ)) = min(|91(51) — 92(82)‘7271' - |91(81) — 92(82)” = % It follows that

Qo
IFl,Fg(f) = 5 X 87‘1 X 1.

Therefore

/ / ds (v (2 — 7), g, (2))AY (2 — 2, 2) do F(dm) F(dm)
R4 JR2 xR4

ZET, 72 NRy

Im/

2 2 =2
_ ) —1)7 / Topyor () Fra(dr) Fra(dr') = QWML
R2 1 16
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FIGURE 3. Shot noise random field with indicator functions of random disks. This sample has
been obtained using Matlab, with a domain of size 2000 x 2000 pixels, a Poisson point process
of intensity A = 0.001, and random disks of radius R = 50 or R = 100 (each with probability
0.5). Top right figure: empirical Euler Characteristic as a function of the level ¢ (computed
thanks to the Matlab function bweuler), compared with the theoretical value (red stars) of
Equation (29). Bottom line: Three excursion sets corresponding respectively from left to right
to the level ¢ = 15, ¢ = 19 (that is the “critical level” where the Euler Characteristic turns
from negative to positive) and t = 25.

It follows that we get in this case
Fp(u) -1

Vx, (u,U) = M(U)E( X @) = (TC(F,RQ) +2mA(Fp(u) — 1)?2) .

For B =1 a.s., inverting as previously, we obtain

(30) Vk e N,Vt € (k, k + 1] iI[E(w (t,U)) = )\E(U)e_m(/\a)k 1— A + ﬁk
’ ’ g XeD TN k! 167 " 16a )
It is illustrated on Figure 4.
This formula generalizes one of the results of Decreusefond et. al. [13]. Actually, considering the Boolean
model made of squares of constant size R = 2¢ a.s. for some ¢ > 0, we get for £k =0, and a > 0,

vt € (0, 1], %E(d}xq) (.10, a]?)) = Aa?e 227 (1 - A(2¢)?),

that corresponds to the mean Euler Characteristic of the Boolean model in dimension 2, considered in the
torus of size a > 0 in Theorem 11 of [13].

4. MEAN LEVEL TOTAL CURVATURE OF SMOOTH RANDOM FIELDS

In this section we consider a smooth stationary random field X defined on R2. Let us introduce some
notations for the derivatives of X. A point € R? is defined by its two coordinates x = (x1, z2) and we denote
fori,j=1,2

0X %X
X; = d X =——.
axi an J ami(’)xj
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FIGURE 4. Shot noise random field with indicator functions of random squares. This sample
has been on a domain of size 2000 x 2000 pixels, a Poisson point process of intensity A = 0.001,
and random squares of side length R = 50 or R = 100 (each with probability 0.5). Top
right figure: empirical Euler Characteristic as a function of the level ¢, compared with the
theoretical value (red stars) of Equation (30). Bottom line: Three excursion sets corresponding
respectively from left to right to the level ¢ = 4, t = 6 (that is the “critical level” where the
Euler Characteristic turns from negative to positive) and t = 9.

X1 Xio

With these notations it follows that VX = ( §; ) and D?X = ( X1y Xop

). Note that since X is

stationary, for any = € R?,

(X (), VX (z), D’ X (2)) £ (X (0), VX(0), D*X(0)).

When X, VX and D2X have also finite second order moment, X (z) and VX (z) are not correlated, as well
as VX (z) and D2X (z) (see [1] p.31 for instance). This is very useful for Gaussian fields since it implies that
VX (z) is independent from (X (x), D®X (x)).

4.1. A general result for smooth stationary random fields. Using the result of Section 2.5 and the
stationarity of X, we have the following formula.

Theorem 5. Let X be a stationary C? random field on R?, such that D?X has a finite expectation. Then,
(w, 1) = Yx)(t,U) € LY(Q x R). Let us denote Ux (t,U) = E(vx(t,U)) for a.e. t € R, then for any h
bounded continuous function on R, one has

/ ht) U x(t,U)dt = —L(U)E <h(X(O))
R

D2X(0).(VX(0)+,VX(0)})
IVX(0)]]? )
It follows that when the field X is isotropic, i.e. X o A e for all orthogonal matrix A, then the above
formula reduces to
/ )W (U dt = —L(U)E (h(X(0))X::(0)), ¥i=1,2.
In particular, taking h =1 Djue have
E(LTCx (U)) = —L(U)E (X11(0)) = —L(V)E (X22(0)) = 0.
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Assuming moreover that X (0) admits a density px o) we get for almost every t € R
x(t,U) = —L(U)E (X;(0)]X(0) =t) px(0)(t), Vi=1,2.

Proof. Let h be a bounded continuous function on R. According to Proposition 3, since X is a.s C2, we obtain

LTaCx (U /||D2 x)||, dz as.
and
DQX(x).(VX(x)L,VX(x)L)
LTCx (h,U) h tYx(t,U)d h VX@]2 dz a.s..

Note that [D2X (@)L, < [Xu(e)| + [ Xaa(e)| + 21X sa()] 50 that
/ E(jwx (£, U)|)dt < E (LTaCx (U)) < o0,
R

since D?X () has finite expectation. Hence (w,t) — ¥x () (t,U) € L'(Q2 x R) and using Fubini Theorem we
obtain for Ux (t,U) = E(yx(t,U)),

/h(t)\IJX(t,U)dt = E(LTCx(h,U))
R
D2X (z).(VX (2)*, VX (z)4)
-/ ("(X (=) VX2 ) o
DQX(O).(VX(O)L,VX(O)L)>
VX(0)]2

)

—L(U)E (h(X(O))

by stationarity of X.
Under the assumption that the field is isotropic, we can exploit further on this formula. First let us recall that
by Taylor formula, since X is a.s. C? we have a.s. for all z, z € R?,

X(x+2)=X(x)+ (VX(z),2) + %DQX(x).(z, z) + OHZH_>0(||Z||2).
In particular we obtain that, for any orthogonal matrix A,

V(X 0 A)(z) = "AVX (Az) and D*(X o A)(x) = 'A(D?X)(Axz)A.
Writing (e1, e2) the canonical basis of R?, we also have for i = 1,2,

X(x+ee;)+ X(x—ee;) —2X(x)

Xii(z) = 513% g2 ’
Xiolx) = gg% X(x+eler +e2))+X(x—eler + 62))2;2)((1‘ +e(er —ea)) — X(x—e(e; —ea))

Since X o A ™% X we deduce that

(X(2), VX (z), D2X (z)) £ (X (Az),’"AVX (Az),'A(D>X)(Ax)A),
and specifying to x = 0, it follows that
(31) (X(0), VX(0), D2X(0)) £ (X(0),’AVX(0), "A(D2X)(0)A).

Let us introduce the random variable © with values in 27T identified with [0, 27) such that

vxo) = (20 ) = 1vxoi( S )
cosf —sind

. and a reflexion matrix Sp =
sinf  cos6

). Let us quote that R_gVX(0) = 'RyVX(0) = |[VX(0)]| ( ij((gjz)) > SyVX(0) =

cos(f — ©)
sin(f — ©)

For any 6 € [0,27) let us consider a rotation matrix Ry = (

< cosf) sinf

sinf —cost

1Sy VX (0) = [|[VX(0)] ( ) From (31) with A = Ry and A = Sy we have that

(X(0), [IVX(0)], ©, D*X(0)) (X(0), [VX(0)[l,© — 8,"Rg D* X (0) Ry)

d
L (X(0),|VX(0)],6 — ©,SyD*X(0)Sp)
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It follows that
(X(0),[IVX(0)[|,©,'RgD*X (0)Rg)
(X(0),[IVX(0)[],©,"SyD*X(0)Sp)

(X(0),[VX(0)],© + 6, D*X(0))
(X(0), [VX(0)].0 — ©,D*X(0))

[

But RyD?(X)(0)Ry.(e;,e;) = ‘SpD*(X)(0)Sp.(ei, e;) and 'RegD?(X)(0)Ry.(e1,e2) = — 1Sy D?(X)(0)Sy.(e1, €2),
for i = 1, 2. Hence we can deduce that

(X(0), [IVX(0)],© + 0, X11(0), X25(0), X12(0)) £ (X(0), [ VX(0)[,0 — ©, X11(0), X22(0), ~ X1(0)),
from which we have for all 6 € [0, 27),
(32)  (X(0),[VX(0)[}, 0, X11(0), X25(0), X12(0)) £ (X(0), [ VX (0)[}, 20 — ©, X11(0), X22(0), — X12(0))-
Now,

D2X(0).(VX(0)*, VX(0)4)
VX (0)[?

E (h(X(O)) > =E (h(X(0)) (X11(0) sin® © + X2(0) cos® © — 2X15(0) sin © cos O))

Choosing § = 7 in (32) we get on the one hand

E(h(X(0))[X11(0)sin? © + Xo3 cos® O]) = E(h(X(0))[X11(0) cos? © + Xqysin” O)]).

Therefore, adding the two side,
E(h(X(0))[X11(0) sin® © + Xap cos? 0]) = %]E(h(X(O))[XH(O) + Xa)).
On the other hand
E(h(X(0))X12(0)sin © cos ©) = E(h(X(0))[—X12(0)] cos ©sin ©),
implying that E(h(X(0))X12(0) sin © cos ©) = 0. Finally, considering Sy with 6§ = 7, we have (X (0), X11(0)) 4
(X(0), X22(0)), that concludes the proof for the formula. Recall that since X is stationary, all its derivatives

are centered so that E(LTCx (U)) = 0, by taking h = 1 in the above formula.
When, moreover X (0) admits a density px (), we can further write

E(h(X (0))X.i(0)) = / B(VE(X35(0)| X (0) = H)px oy (D,

such that for any continuous bounded function h

[ o0y de= [ 10) (~LOEXOIX0) = i (0) dt

implying that, for almost every t € R,
Ux(t,U) = —L(U)E (X;(0)|X(0) = t) px (o) (t)-

Remark. Let us quote that using twice (32), we also get that for any 6,6,

(X(0),[IVX(0)[l,© + 6", X11(0), X22(0), X12(0)) (X(0),[[VX(0)[|,20 — © + 6, X11(0), X22(0), —X12(0))
(X(0), [[VX(0)[I,2(0 +6'/2) — ©, X11(0), X22(0), —X12(0))

(X(0), IVX(0)],0, X11(0), X22(0), X12(0)).

(
(

Il i~

Hence we may deduce that the conditional law of © knowing (X (0), |[VX (0)]], X11(0), X22(0), X12(0)) is uni-

form on [0, 27] (see [11] for instance) and therefore © is also independent from (X (0), ||[VX (0)]], X11(0), X22(0), X12(0)).
Finally, let us mention that for Gaussian random field, invariance under all orthogonal matrices is a direct
consequence from invariance under all rotation matrices. This follows from the fact that its covariance function

must be radial.
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Remark. As we were finishing this paper, we found a similar recent result (see Corollary 2.3 of [20]) that
should rewrite in our stationary setting, under additional assumption on X, as

B ([ Ox(Ex.0) ) = L (h(X(O)) {Z Toxe Xa(0)| + 1/ (X(0))

2
> IVX(O)GQiXi(())Q] > :
=1

for h : R — R a C! function with compact support, Q1 = {x = (z1,22);72 < 1 < 0} and Q2 = {z =
(x1,22); 21 < 2 < 0}. Under the assumption that X is also isotropic, according to Remark 2.5 of [20],

E (1 (X (0)) Iy x oyeq; Xi(0)2) = *— :

167
Note that by stationarity

E (1 (X(0)[VX(0)[%) -

E (1 (X(0))X.(0)) /0 E (1 (X (te0)) Xi(te:)?) dt:E( /O h’(X(tei))Xi(tei)zdt>

= 5 ([ M) Xt ) = B ((X(0) X (0).
integrating by parts and using E (h(X (e;))X;(e;)) = E (h(X(0))X;(0)). Moreover, by (32),

E ((X(0))Iyx(0)eq. Xii(0)) =E (h(X(O))I@eHg(FM)Xn(0)) = éE(h(X(O))Xn(O))-

It follows that

B ([ nonExe i) = - Y (§- T ) EGO)Xa0) = 5 [ nows0)d
by Theorem 5.
Example. Let X be a stationary isotropic Gaussian random field. Then,
_ Cov(X(0), X11(0)) _ %px(0) _ A

where px(z) = Cov(X(z), X(0)), 0% = px(0) and X2 denotes the second spectral moment. Hence, we get in
this case that, for almost every ¢t € R,

oo 1 2

e 202,

Ux(t,U) = L(U)

0% o\2m
Let us emphasize that this is exactly the formula obtained for 27E (x (Ex (t,U))), stated for all ¢ € R, under
additional assumptions on X (see (3.2.8) of [2] for instance).

Examples of such stationary isotropic random fields with comparisons between the theoretical values of
E(¢x(t,U))/2m (corresponding to the mean Euler characteristic of excursion sets) and an empirical estimate
on the square of fixed size [0, 1] are shown on Figure 5 and 6 (with 02 = 1 and Ay = 27?). The captions of the
figures give the practical and technical details on simulations. Note that in view of the covariance functions a
scaling relation may be set between T" and the size of the square.

Actually, in the review paper of Adler [2], several “equivalent” definitions of the Euler Characteristic of an
excursion set are given. The equivalence of the different definitions involves deep results of differential geometry,
mainly the Gauss-Bonnet theorem and the Morse theory. We summarize here three definitions of the mean
Euler Characteristic of an excursion set Ex (¢;U), not taking into account the boundary of U = (0,1)%. In
the following, we assume that (X (0), VX (0), D2X(0)) have a joint density of probability on R x R? x R3,
where here the Hessian matrix D2X(0) is seen as the vector (X11(0), X22(0), X12(0)) in R3. We denote by
p:(t,y1,y2,a,b,¢) € R® — p(t,y1,y2,a,b,c) this joint probability density. The additional hypothesis needed
for all the following formulas to be well-defined will be given in the statement of Theorem 6.

(1) Using the recursive formula that consider intersections with horizontal lines, a first way to define the
mean Euler Characteristic of the excursion set of level ¢ is

X1(t) = —E(X2(0)X11(0)Ix, 0)>0l(X, X1) = (£,0))px.x, (£,0),
where px x, is the density of (X (0), X1(0)). We can rewrite this as

x1(t) = —/ay21y2>op(t,0,y27a, b, ¢) dya da dbdc.
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FIGURE 5. Gaussian random field with covariance p(x) = e=T*l2I” for T = 10. This sample
has been obtained using Matlab, with a discretized domain of size 2!° x 219 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level ¢ (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (35). Bottom line: Three excursion sets corresponding respectively
from left to right to the level ¢t = —1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and ¢t = 1.

This formula amounts to count the mean number of points that are such that X (x) = ¢ and such that
the set Ex (¢;U) is locally above the horizontal line passing through x.

The second definition is a consequence of Morse Theorem: it is the signed sum (according the index
of the Hessian matrix) of the number of critical points of X (i.e. points such that VX (z) = 0) and
that are above the level t. That gives the second formula, introducing pyx the density of VX(0),

x2(t) = E(det(D*X(0))Ix(0)>:| VX (0) = 0)pyx (0) = / (ab — )14 p(s,0,0,a,b,c)ds dadb de.

The third formula comes from the Gauss-Bonnet theorem, that we have recalled in Section 2.2. Since we
don’t consider boundary terms, the third definition for the mean Euler Characteristic of the excursion
set becomes

1 ays + by? — 2cy1yo
X3 t :_7/ pt7y17y27aab7c dylddea/dde
0= yi +us ( )
With our notations for the mean level total curvature, this third definition is also
1
x3(t) = ?E(¢X (t,U)).
™

We now show that these three definitions are equal. This is a known fact, but the interesting point is that

the proof only uses the stationarity of X and doesn’t need any result of differential geometry!

Theorem 6. Let X be a stationary C? random field on R?, such that X, VX and D?*X have finite second
order moment. We moreover assume that
(A1) The joint probability density p of (X (0), VX (0), D>X(0)) exists and is continuous on RS,
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1000

FIGURE 6. Gaussian random field with covariance p(z) = e=T*I=I” for T = 100. This sample
has been obtained using Matlab, with a discretized domain of size 2'° x 219 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level ¢ (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (35). Bottom line: Three excursion sets corresponding respectively
from left to right to the level t = —1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and ¢ = 1.

(A2) There exists a constant C > 0 such that for all i,5 =1 or 2, and for all t,y1,y2 € R,
E(X:5(0)* [ (X(0), X1(0), X2(0)) = (£, y1, 92))px %1%, (. 1, 92) < C
and  E(X;(0)*] (X(0), X;(0)) = (t,5;))px.x, (t.y;) < C.
Then, the stationarity of X implies that
VteR, xi(t) = xa(t) = xs(t).

Proof. Let us first notice that thanks to the hypothesis on X, the three functions x1, x2 and 3 are well-defined
and continuous on R.
In the following we will denote by ¢ the Gaussian function on R, given by

_ 1 —s2/2
Vs eR, ¢(s) \/ﬂe .
And we will denote by @ its primitive given by ®(s) = [°__¢(v) dv. (This notation @ is also the same as the
notation of the Poisson Point Process, but we believe the context is clear and there is no danger of confusion).
The two functions ¢ and ¢ will be used, with a rescaling of parameter € > 0 to approximate respectively the
Dirac distribution at 0 and the indicator function of R .

Let h be a bounded continuous function on R and let H denote a primitive of h. We consider the three
following integrals: Iy, I and I3, given by I, = [ h(t)x;(t) dt, and we will show that they are equal (we drop
the point notation (0) in the following for sake of conciseness). Since the y; are continuous, this will imply
that they are equal on R.
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We start, thanks to the hypothesis (A1) and (A2), by rewriting I; as a limit:

L = /h(t)¢1(t) dt = f/h(t)ay21y2>0p(t70,yg,a7b, ¢) dya da dbde dt
Xo\ 1 X
= —limE [h(X)XQXu(I) (2) ~¢ (1”
e—0 3 € 9
In the same way we can rewrite I5 as a limit:
Iy, = /h(t)wg(t) dt = /h(t)(ab — A 154 p(s5,0,0,a,b,c)dsdadbdcdt
1 X X
T X2V g 2L 22
= lmE [H(X)(X11X22 X12)€2</>< 5 )(b( 5 ﬂ

And we recall that I3 is given by:

p(t7 Y1,Y2,a, b7 C) dyl dy2 dadbdcdt

1 ay% + by% — 2cy1Y2
b= [how@a--5- [
2 Y +v5
X11 X3 + X2 X7 — 2X12X1 X2
X7+ X3 '

21

For € > 0, let us denote

F=E [h(X)X2X11<I> <)§2) 1o <X1ﬂ and I5=FE {H(X)(XHXQQ _ X244 <X1> ¢ (XQ)] .

€ € g2 € €

- g {h(X)

We first notice that we can also write

0 X1 0 X2 0 Xl 0 X2
LE=E|HX)—¢|— | —|— || -E|HX)m—/—|— ) =—0—|].
- [mnge(2) ot (2)) -2 l0ae (2) 0 (%)
Then, by stationarity of X, we have that
0 0 X1 X2 0 0 Xl X2
0=—E|HX)—®|— |D|— d 0=—E|HX)—o(— )2 —]]|.
o (1005 (2)(2)] 0= gim[mngre(2)#(2))
Computing these two partial derivatives, and considering their difference, some terms cancel and we get
0 X1 X2 0 Xl X2
15 E|Xih(X)—o(— | — || —E|Xoh(X)—o—|Q | —
b o mpuoogge (20 (2)] e poreoge (2)+(2))
1, /X X
E {th(X)Xud) <1> ® (2)} +I%.
€ € €
Now, as € goes to 0 the first term of the right-hand side goes to 0, and thus
I, = Is.

In the definition of x1(t), the idea was to consider horizontal sections of the excursion set. But it is natural
to consider also the sections in any other direction. For « € [0,27), we first introduce the partial derivatives
in the direction o and a* = a + 5 by:

9] 0 . 0 0 . 0
=cosa—— +sina— and = —sina— + cosa—.

360(1 (9$1 8%2 8602 8.731 (9$2

Then, the equivalent of I in the direction « is given by

fila) = —E {h(x)aeaz de2, ? (3ea2> gd) (5865‘1 ﬂ .

The same computations as above with the partial derivatives in the directions o and o show that

1 (10X 10X
Ii(a) = limE [det(DiX) H(X) ¢ (E e 1) ¢ (586 2)} =1

Indeed, computing the partial derivatives in the directions a et o amounts to apply a rotation of angle a to
the gradient of X, and this doesn’t change the norms, nor the determinant of the Hessian.
Therefore we also have

1 2m

IQ Il(Oé> do.

zgo
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To end the proof, we show that the integral on the right-hand side is equal to I3. Indeed, we have
L(a) =— /y1y>0h(t)(a cos® a + bsin? a + 2¢sin a cos a)p(t, —y sin a, y cos o, a, b, ¢) dt dy da db de.

Then, integrating on «, and making the polar change of variable y; = —ysin « and ys = y cos «, we get

2w 2 b 2 _ 2
/0 I(a)da = /h(t) 22 erzyl_i_ 7 Y1y p(t,y1,Y2,a,b, ) dt dy; dys da dbdec = 2715.
TTY2

O

4.2. Smooth shot noise random fields. As in Section 3, we consider here a shot noise random field defined
on R? by
Vr € R?, Xo(z) = ngi(:v —x),
il

where ® = {(x;,m;)}ics is a Poisson point process on R? x R of intensity AL x F, with A > 0 real, £ the
Lebesgue measure on R? and F' a probability measure on R%. In order to get explicit formulas we have to make
an assumption of isotropy. Moreover, since smooth shot noise random fields do not always admit a probability
density (we have discussed this through several examples in our first paper [9]) we have to work with their
characteristic functions.

Theorem 7. Let assume that g : R2 x R? — R is a measurable function such that for F-almost every m € R¢
the functions gm, = g(-,m) are C® on R? satisfying

(33) / | Digy (2)| da F(dm) < +oo,
R2 xRd

9llg,,
axil 895;2 ’
field such that DX has finite expectation, ensuring the assumptions of Theorem 5.

We assume moreover that m = (1, 0) € R4~ x [0,27] C R? and F(dm) = G(dm)Fe(df), with Fg the uniform
law on [0,27], and

for all j = (j1,j2) € N2 with |j| = j1 + j2 < 3 and where Dig,, = Then Xg is a.s. a stationary C?

g(' ) m) = g(') (’ffl,@)) = g(R9'a Th),
o~ - L . 1 0 cosf —sinf
for F-a.e. m, with §(So-, m) = g(-, m), recalling that Sy = ( 0 1 > and Ry = ( sinf  cosd > Then
Xg is isotropic and the Fourier transform of Ux, (-,U) is given for all u € R by, for all j = 1,2,

U, (u,U) = ~\L(U)E (ei“X<I><°)) ( /]R

where the notation 8? stands for aa—;.
J

. (“)?gm (z)e'm9m (@) dg; F(dm)) ,

Remark: Note that when g(A-, m) = g(-, m), for all orthogonal matrix A, X¢ has the same law as the
shot noise random field given with marks m € R?~! of law G(dm).

Proof. Following similar arguments as in Proposition 3 of [9], (33) will ensure that X¢ is a.s. a stationary
C? field such that D2X has finite expectation, and we can differentiate under the sum. In particular, for all
J=12,

3?Xq>(x) = Z@?gmi (x — ;).
iel
Hence the general formula of Theorem 5 is valid for Xeg.

Under the additional assumption on the kernel, we can prove isotropy. Actually, for any k > 1, uq, - ,ux €
R and y1,--- ,yr € R?, one has

E (eiz_l;zl U]X‘P(?]J)) = exp ()\/ / (e’iu Z?:l ujgm (yj—x) _ 1) dx F(dm)) )
Rd JR2
Hence, for any orthogonal matrix A, by the change of variables x = Ay,
E (ei >y quq:(ij)> = exp ()\/ / (eiu S uigm (A(y—v) _ 1) dy F(dm))
Rd JR2

Note that there exists §y € [0, 27) such that A = Sp, or A = Ry, but for m = (m, ),
Jm © Soy = Gim © RoSo, = Gin © SoRoSe, = Gim © R—9—g,-
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FIGURE 7. Hexagonal tiling restricted to a square domain (0,7)?. The centers (set C.) of the
hexagons are the black stars, and the vertices (set R.) are the points marked by a red circle.
The distance between two neighbouring centers is v/3¢ and the side length of the hexagons is

€.

Since, Fg is the uniform law, we may assume without loss of generality that

E (ei PR qucp(ij)) = exp <>\/ / (e Zj=1 v39m (Rog (45—1)) _ 1) dyF(dm)>
R JR?

= exp <>\/ / (6iu S uigm(y;—y) _ 1) dy F(dm)) -F (ei POLN ujxé(yj))
R2 JR2

using the fact that RgRy, = Rg,+0 and Fg uniform.
It follows that by Theorem 5, for any h bounded continuous function on R, one has
/Rh(t)\lfxq) (t,U)dt = —L(U)E (h(X(0))9? X(0)), Vj=1,2.
Taking h = e for u € R we obtain
Vo (u,U) = —LO)E (X092 X4/(0)) = ic(U)%@XM?XCP (u,0),
where ¢, 92, is the characteristic function of (X2(0),07 X(0)) given by, for (u,v) € R?

E (ez‘[ux@<o>+ua§xq)<o>1)
exp <)\/ / (eiugm(m)“"a?gm(x) —1)dx F(dm)) .
Rd R2

Ty, (w,U) = —L{U)A ( /]R

with ox, = ¢ X002 x4 (-, 0) the characteristic function of X4 (0).

PX,02Xa (u,v) =

Then,

i Joe 3J2»gm(:l:)ei“g’"(z) dx F(dm)) Vxq(u),

O

Let us also mention that in the recent paper [20] such a formula is also proposed in a similar isotropic

framework in Theorem 3.3.

4.3. Link with discretization of a smooth Gaussian field. In the previous sections of this paper, we have
considered two types of functions: the elementary (piecewise constant) ones and the smooth ones. Now, given
a regular tiling of the plane, one may consider a discretization of a smooth function f by taking it constant
on each tile. This is a classical setting when doing numerical simulations where functions are seen as images
discretized on pixels. But using pixels (that are small squares) is not very convenient since at each point of
the dual grid, we have to order the 4 neighbouring values to be able to compute the level total curvature. In
the following, we will consider a more convenient tiling given by regular hexagons (since here there will be

only 3 neigbouring values).
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Let us first introduce some notations for the tiling with hexagons. Let ¢ > 0 and for 8 € R, let us denote
by ey the unit vector of coordinates (cos#,sinf). Let us consider a regular tiling with hexagons of “size” e
where the set of the centers of the hexagons is given by

1 3
C. = {kiV3eeo + kaV/3eey 35 ki, ko € Z} = {((k1 + 5]@2)\/35, Skee) s b, ko € 2}

The distance between the centers of two neighbouring hexagons is v/3¢, the side length of the hexagons is ¢
and the area of each hexagon is B‘f 2. The vertices of the hexagons is the set of points R. given by

Re :C5+{5e%+n%;0§n§5}.

On Figure 7, we show such a tiling with regular hexagons. The points of C. are plotted with black stars and
the points of R. are the vertices of the hexagons marked by small red circles. For z € C. we will denote by
D(z,¢€) the (open) hexagon of center z and size £. Notice that the distance between a vertex z € R, and the
centers of its three neigbouring hexagons is equal to €.

Let f be a function defined on R?, and let us consider a tiling with regular hegaxons of size £ > 0. We then
consider a discretized version f. of f defined by

(34) Ve €R?, fo(x) =) f(2)Ip(q (@)

z€Ce

The function f. is piecewise constant, and the set of its discontinuity points is given by the hexagons edges,
such that xy = 0. Each vertex x € R. separates three values of f. and therefore can not be seen as a corner
point or as an intersection point, as defined in Definition 3. However we can still compute the level total
curvature of f. following the same line as for elementary functions. If we denote for each vertex x € V., its

three ordered neighbouring values by fg(l)(x) < f5(2) () < f5(3)(x), we obtain the following proposition.

Proposition 4. Let U C R? be open and bounded, and let f be defined on U. Then for all € > 0, the function
fe is of finite level total curvature integral with

INaCr(U) =3 3 [f9) ~ 1)

zeV.NU

Moreover, for h a bounded continuous function on R, and H a primitive of h, the level total curvature integral
of f- is given by

LTCy. (h,U) = % Y [HP @) + H(fD (2) = 2H(fP (2))].

zeV.NU

In particular,
0

LTC.(U) = 3 Y @)+ 1) - 2P ()],

zeV.NU

When f is a smooth function, we may hope that LTCy_(h,U) will converge, as ¢ goes to 0 to some limit.
Now, because of the ordering of the three neighbouring values of each vertex, such a result is difficult to obtain
in general. Now, if we consider that f is in fact a smooth random field X, assuming moreover Gaussianity
and isotropy, one can compute the level total curvature in expectation, and find its limit as € goes to 0. This
is the aim of the following theorem.

Theorem 8. Let X be a Gaussian stationary isotropic random field on R? admitting a finite spectral moment
of order 2: Ao = —0?px(0) = —93px(0), where px(z) = Cov(X(z),X(0)) for x € R%. Let T > 0 and
U = (0,T)% Foranye >0, let us denote X. the discretized field defined by (34). Then (w,t) — Yx () (t,U) €
LY(Q2 x R). Let us denote

Ux. (t,U) =E(x. (t,U)) = E(TC(OEx. (t,U) NU).
Then, for a.e. t € R,

— -2 -y
(35) Ux.(6U) 5 Ux(bU) = LU0 e,

with 0% = px (0) = VarX (0).
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Remark. Let us recall that according to Theorem 3.2.2 of [2], when X satisfies strong additional properties,
for all level t € R, the mean Euler Characteristic of excursion set is given by

E (x (Ex(t,U))) = %cwmﬂa;ﬂe—%

See also Figure 5 and 6 for illustration.

Proof. We first assume that X is a centered stationary isotropic Gaussian random field, with unit variance
(0% = 1) and with covariance function given by

Vt, s € R?, px(t) = Cov(X(t+s),X(s)) = P(HtHQ)a

for p: R — R, a C? function on R and note that Ay = —2p/(0). Let ¢ > 0 and consider X, defined by (34)
with X instead of f. For T > 0 we will consider the level total curvature of X. on U = (0,7T)2. Note that, by
stationary and isotropy, for any x € V.,

(XO(), X (), XP)(2) £ (X (0, X e X (5?%)) ’
where e € S! is a unit vector of R? and R is the rotation of angle = 27 Qur assumptions imply that the
3-dimensional random vector (X2, X2, X3) = (X(s?e), (e {Re),X(S) (5?1{26) is a centered Gaussian
vector with covariance matrix given by
1 p(e?) ple?)

p(e?) 1 p(e?)

p(e?) p(e?) 1
Hence, it is a correlated Gaussian vector with equal correlation and hence exchangeable. Since p(0) = 02 = 1,

we may choose ¢ in such a way that p(¢2) > 0. In this case, denoting as usual ¢ the standard normal density
and @ its cumulative distribution, marginal densities of order statistics are given for 1 < i < 3 by: (see

Corollary 6.1.1 of [27])
x4+ +/p(e?)z
9@ (@ / \/752 fey < — > ¢(2)dz,
W) =32(=y)*e(y), fi2)(y) = 62(y)P(—y)o(y), and fi5)(y) = 30(y)*b(y),

corresponding to the marginal densities of the ordered statistics of an i.i.d. standard Gaussian vector. It
follows that the random variable LTaCx_(U) has finite expectation and we can define the L' (R) function

Ux. (t,U) = E(¥x. (t,U)) = E(TC(OEx. (1, U) N U)).

Moreover, by Fubini Theorem, for any function h continuous and bounded, the random variable LTCx_ (h,U)
is integrable and

with

/ h(t)Ux_(t,U)dt = E(LTCx._ (h,U)) = g# V.NU)E (H(Xgi‘)) + H(XWV) - 2H(XE(2))) ,
R
with

B (X)) + HX) =20(X) = [ Bl (@) +0)(@) — 2000 (2)1do

=3 [ [ HGVT=0E) = VAERI80) + 8(=1)* =~ 10() () o()o()dyd>
after the change of variables y = 1;7 ”’)((52 Note that, integrating by parts, we have
1
[ ewe-notay =5 [ ooty
R

Hence by parity of ¢,
(36) [0+ 8()? ~ 19)8(~lot)ay =0,

Moreover, by odd parity we get

(37) / [B()? + B(—y)* — 4B(5)D(—y) ]y (y)dy = 0.
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It follows that for h =1,
E(LTCx, (U)) = / Ux_ (t,U)dt = 0.
R

zut 1

Now let u # 0 and consider the functions ¢ — j,(t) = et and J,,(t) = . Then, denoting by ¢ the Fourier
transform of ¢, we have

E (Ju(X®) + Ju<X§1>> —2J,(X))
ﬁ VA
~of [

[‘P(y)2 +0(=y)? — 42(y)P(~y)]d(y) ¢ (2)dydz

~ G/ T ,
= 30(uv/p) | T B + B()? — 4B B (—)]ol)dy,
using (36). By Taylor-Lagrange and assumption on p, assuming that ¢ < 1, we get that
‘ 2 pe? 3
I 1 iuly T @) + [ (- (oas| < P a7

Using (36) and (37), it follows that

ly €2)]
‘ /IR T@(W + ®(—y)* — 40(y)®(—y)]d(y)dy

< max |o/|?/2€3 / 6 (y)dy
[0,1] R

But, denoting by H the Hermite polynomial of order k defined by Hy, = (—1)k¢®) ¢~ since Hy(y) = y> — 1,
by (36) we get

/R PLO(y)? + D(—y)? — 40 () ®(—y)|é(y)dy

[ @) + @(=)* 12 )2(-)lom)dy
= /R[@(y)2 +®(—y)? — 4P (y)D(—y)]o" (y)dy

- [169() ~ 68(=lo )/ ()

~ 1 / y6(y)* 2 (y)dy,

by integration by parts. But
12 [ yotw? ey = > [y oy =2 [ e oty =
R ™ JR T JR V37

integrating again by parts and recognizing the density of a centered Gaussian variable with variance 1/3.
Hence,

32%iu

> ( / <p’<s>>ds> Huv/p(E) + o)

Now since U = (0,T)?, the number of vertices in U is about two times the number of hexagons centers, such
that # (V. NU) = 2T2%5_2 + 0(e72). Therefore, since L(U) = T?,

E (Ju(XE) + Ju(XD) = 27,(x) ) =

T 2 3%

E (LTCx. (ju,U)) = *QE(U)EW

; (=¢(0)(u) +0(1) = LU)(~20'(0)) Hrd () + o(1).
It follows that we have the pointwise convergence

U, (U) — L)(~20/(0)) Hip(w).

But we can bound ¥x_(-,U) uniformly on € by a function in L!(R) such that by inverse Fourier transform,
they are also pointwise convergent according to Lebesgue Theorem. Fourier transform injectivity in L!(R)
gives the conclusion for a.e. ¢ € R, once we have noticed that Ao = —2p'(0).
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For the general case, since o
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2 = Var(X(z)), the Gaussian random field X /o is itself unit variance with

covariance px/o?. The assumption on spectral moment, due to isotropy, implies that px is C? on R? and
satisfies 01 px (0) = d2px (0) = 8102px (0) = 0, while 97 px (0) = 3px (0) = Aa. It follows that, for e € S1, the
function p(t) = L px (y/[tle) is C* on R and satisfies Cov(X (z)/o, X (0)/0) = p(||z||?) with p'(0) = —2%. But

Ux, (t,U) = E(TC(dEx., (t,U) NU) = E(TC(dEx_ ;o (t/o,U) N U).

By the previous proof we know that

and conclude for the proof since L(U)(—2p'(0))(H1¢)(t/o) = L(U)22

(1]
(2]
(3]

(4]

(8]

(29]

(30]

E(TC(OEx. /(t/0,U) NU) — LIU)(=2¢'(0))(H19)(t/0),

2

e 202, O

Az t
o2 o
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