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LEVEL TOTAL CURVATURE INTEGRAL:

EULER CHARACTERISTIC AND 2D RANDOM FIELDS

HERMINE BIERMÉ AND AGNÈS DESOLNEUX

Abstract. We introduce the level total curvature function associated with a real valued function f defined on

the plane R2 as the function that, for any level t ∈ R, computes the total (signed) curvature of the boundary
of the excursion set of f above level t. Thanks to the Gauss-Bonnet theorem, the total curvature is directly

related to the Euler Characteristic of the excursion set. We show that the level total curvature function can

be explicitly computed in two different frameworks: piecewise constant functions (also called here elementary
functions) and smooth (at least C2) functions. Considering 2D random fields (in particular considering shot

noise random fields), we will compute their mean total curvature function, and this will provide new explicit

computations of the mean Euler Characteristic of excursion sets, beyond the Gaussian framework.
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1. Introduction

Computing the Euler Characteristic of excursion sets of random fields is a problem that has received much
attention. Indeed, in many applications, the Euler Characteristic is a very useful index of the geometry of the
field, as explained for instance in the review paper of R. Adler [2], or in the papers of K. Worsley [29] or [30]
where applications in astrophysics or in brain imaging are mentioned.

In the framework of Gaussian random field, the Euler Characteristic of excursion sets is well-known and
well-studied. For stationary isotropic Gaussian random fields, an explicit formula for any level t may be set for
the expectation of the Euler Characteristic, only depending on the variance and the second spectral moment
of the field. This is an important result with many statistical applications. In particular, for large levels t, the
Euler Characteristic gives a good approximation of the probability that the suprema of the field is greater than
t and can therefore be used as a p-value: this is the Euler Characteristic heuristic (see [5] for instance). In a
“tour de force”, a Central Limit Theorem has recently been established in [15] that proves the accuracy of the
estimation over only one sample path as the size of the observation is growing. There are also some interesting
results apart from the Gaussian framework for χ2, F and t-fields [29] as well as stable [3] or infinitely divisible
random fields [4] for instance. Most of general results rely on strong smoothness regularity assumptions and
on conditional distribution densities that are often difficult to evaluate for non-Gaussian fields.
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Now, in this paper, we will be interested in another family of infinitely divisible random fields, that are not
Gaussian, namely the shot noise random fields. We will work here in dimension n = 2. A shot noise random
field is defined on R2 by

∀x ∈ R2, X(x) =
∑
i

gmi(x− xi),

where the xi are the points of an homogeneous Poisson point process of intensity λ in R2, and the mi are
“marks”, independent of the Poisson point process. Given a bounded open subset U of R2, we will consider
the excursion set of X of level t ∈ R in U , defined by

EX(t;U) := {x ∈ U s.t. X(x) ≥ t}.

Despite its “global” definition (the number of connected components minus the number of holes), the Euler
Characteristic of an excursion set is in fact a purely local quantity related, by Morse theory, to the number
of critical points of X in U , or, by the Gauss-Bonnet theorem, to the total curvature of the boundary of the
excursion set. Here, we will extensively use this second equivalence to obtain explicit computations of the
mean Euler Characteristic of the excursion sets of a shot noise random field.

More precisely, our contributions are fourfold: (1) We propose a general definition of the level total curvature
integral of a function, that allows to compute the total curvature (and therefore the Euler Characteristic) of its
excursion sets for almost every level. (2) We give explicit computations for elementary shot noise random fields,
where the functions gmi are piecewise constant functions (with piecewise smooth discontinuity set). This allows
us to generalize results of the literature (about the Boolean model [23], or about “random configurations” [13]).
We also give explicit results for isotropic elementary and smooth shot noise random fields. (3) For smooth
stationary random fields (not necessarily shot noise ones), we give a new proof of the equivalence of the
different definitions of the mean Euler Characteristic of the excursion sets, relying only on the stationarity
of the random field. (4) For Gaussian stationary and isotropic random field, we show that its mean total
curvature (divided by 2π) when the field is discretized on an hexagonal tiling, converges, when the size of the
hexagons goes to 0, to the well-known formula for the Euler Characteristic of its excursion sets.

Let us finally emphasize that we have made here the deliberate choice of not working in the weakest possible
functional framework. Our goal is to work with piecewise smooth functions (like the indicator function of a
set having a piecewise C2 boundary for instance). But we believe some of our results can be extended to
functions with a weakest regularity. Let us also mention the recent work of R. Lachièze-Rey in [18] and [19]
that relates the Euler Characteristic to the three-point joint distribution of the random field. And also the
even more recent paper [20] where R. Lachièze-Rey gives formulas for the Euler Characteristic of isotropic
shot noise random field that are a.s. Morse functions.

2. Total curvature and Euler Characteristic of excursion sets

2.1. Total curvature: Definition and properties. We first recall here some basic facts and definitions
about plane curves. Let U be an open bounded set of R2, and let Γ be a continuous oriented simple curve
on U of finite length and piecewise C2, with a finite number of “corners”. This curve can else be “open”: in
this case it can be arc length parametrized by a continuous piecewise C2 function γ : (0, L) → U in such a
way that there is a finite set of points c1, . . . ck ∈ (0, L) at which γ is not C2 (but is continuous). For any
s ∈ (0, L) \ {c1, . . . , ck}, the tangent vector at point x = γ(s) is given by

TΓ(x) = γ′(s) with ‖γ′(s)‖ = 1,

where ‖ · ‖ is the usual Euclidean norm in R2.
The unit normal vector, denoted by νΓ(x), is then defined as the +π

2 rotation of TΓ(x), also denoted as

νΓ(x) = TΓ(x)⊥ = γ′(s)⊥,

in such a way that (TΓ(x), νΓ(x)) is a direct orthonormal basis of R2.
The signed curvature κΓ(x) of Γ at x = γ(s) is then defined as

κΓ(x) = 〈γ′′(s), γ′(s)⊥〉 = 〈γ′′(s), νΓ(x)〉,

where 〈·, ·〉 is the usual Euclidean scalar product on R2.
At the points of discontinuity of the tangent, we assume moreover that lims→c−i

γ′(s) = γ′(c−i ) and lims→c+i
γ′(s) =

γ′(c+i ), are well defined in the unit sphere S1 and are not colinear (no cusp), such that we define the turning
angle at x = γ(ci) as the angle αΓ(x) ∈ (−π, π) between the tangent “before” x and the one “after” x, that is

αΓ(x) = Arg γ′(c+i )−Arg γ′(c−i ) ∈ (−π, π),
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where Arg is the argument (angle determination) of points on the unit circle S1. We write

CΓ = {γ(c1), . . . , γ(ck)}
the set of these points, and we call them corners of the curve Γ.

The curve Γ can also be “closed”: in that case, the function γ is defined on the closed interval [0, L]
(meaning, following Do Carmo [14] p.30, that it is the restriction of a piecewise C2 function on an open
interval containing [0, L]) and such that all derivatives exist and agree at 0 and L, that is

γ(0) = γ(L), γ′(0) = γ′(L) and γ′′(0) = γ′′(L).

All the above definitions of tangent, normal, curvature and turning angle remain the same.

We will also sometimes just say that Γ is an oriented simple curve piecewise C2 in U if Γ may be written as
a finite disjoint union of Γ1, . . . ,Γn with each Γi being a continuous oriented simple curve piecewise C2 in U
with finite length Li and a finite number of corners. It follows that Γ is of finite length L = L1 + . . .+Ln and
may also be arc length parametrized. It has also a finite number of corners given by CΓ = CΓ1 ∪ . . . CΓn , with
disjoint union. Its curvature is then defined for H1-almost every x ∈ Γ by κΓ(x) = κΓi(x) if x ∈ Γi, where H1

denotes the one dimensional Hausdorff measure (the length measure) on the curve.

In the following U will denote an open bounded square of R2, of the form x0 + (0, T )2, for some x0 ∈ R2

and some T > 0. Its closure is denoted U = x0 + [0, T ]2 and ∂U will denote its boundary.

Definition 1 (Total curvature). We say that a curve Γ is of finite total curvature in U , if it is an oriented
simple curve piecewise C2 on U whose curvature κΓ is integrable on Γ ∩ U , that is κΓ ∈ L1(Γ ∩ U,H1). It
follows that the total absolute curvature of Γ in U is

TaC(Γ, U) :=

∫
Γ∩U
|κΓ(x)|H1(dx) +

∑
x∈CΓ∩U

|αΓ(x)| < +∞.

We then define the total curvature of Γ in U as

TC(Γ, U) :=

∫
Γ∩U

κΓ(x)H1(dx) +
∑

x∈CΓ∩U
αΓ(x).

with
∫

Γ∩U κΓ(x)H1(dx) =
∫ L

0
κΓ(γ(s)) ds, where γ : (0, L)→ R2 is a parametrization of Γ ∩ U by arc length.

Notice that the definition of TaC is the same as the one introduced by Milnor in [24]. But here, in this
work, we will pay a particular attention to the signed total curvature, and not to its absolute value. Actually,
our definition of total curvature is the same as to the one of Santaló in [25], Chapter 7. The total curvature
is intrinsic, it doesn’t depend on the parametrization of the curve. But it depends on its orientation: if we
reverse the orientation of the curve then its total curvature is changed into its opposite.

Examples:

• Consider a positively oriented unit radius circle Γ = {x ∈ R2; ‖x‖ = 1} = ∂D(0, 1), where D(0, 1)
denotes the disk of center 0 and radius 1. Then Γ is a closed curve. An arc length parametrization
of the curve is given by γ : s ∈ [0, 2π] → (cos(s), sin(s)) such that CΓ = ∅. Now, for r > 0, the circle
of radius r is given by rΓ and admits γr : s ∈ [0, 2πr]→ rγ(s/r) as an arc length parametrization. It
follows that when rΓ ⊂ U ,

TC(rΓ, U) = TaC(rΓ, U) =

∫ 2πr

0

1

r
dt = 2π.

• A positively oriented boundary of a unit square Γ = ∂(0, 1)2 may be parametrized by the piecewise C2

function γ defined on [0, 4] by γ(s) = (1, s) for s ∈ [0, 1], γ(s) = (2−s, 1) for s ∈ [1, 2], γ(s) = (0, 3−s)
for s ∈ [2, 3], γ(s) = (s − 3, 0) for s ∈ [3, 4]. The curve Γ is closed, it has 4 corners given by
CΓ = {(0, 0), (0, 1), (1, 0), (1, 1)}. Now, for r > 0, as previously, the positively oriented boundary of a
square of side r admits γr : s ∈ [0, 4r]→ rγ(s/r) as an arc length parametrization and the corners CrΓ
are simply given by rCΓ. At the corners we have αrΓ(x) = π/2 and κrΓ(x) = 0 for points that are not
corners, such that when rΓ ⊂ U , we also have

TC(rΓ, U) = TaC(rΓ, U) = 4× π

2
= 2π.

Remark: It is a well-known result of differential geometry of plane curves that the total curvature of any
continuous simple closed curve is 2π or −2π (depending on the orientation of the curve). This result is
sometimes called Hopf’s Umlaufsatz, or also the theorem of turning tangents ([14] p.396).
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Definition 2 (Level total curvature integral). Let f be a real-valued function defined on U . For t ∈ R, we
define the excursion set of f for the level t as

Ef (t;U) := {x ∈ U s.t. f(x) ≥ t}.
We assume that for almost every t ∈ R, the boundary ∂Ef (t;U) is a simple curve piecewise C2, positively
oriented in such a way that the normals are oriented towards Ef (t;U). We moreover assume that

LTaCf (U) :=

∫
R

TaC(∂Ef (t;U), U) dt < +∞.

Note that this implies that ∂Ef (t;U) is a curve of finite total curvature in U in the sense of Definition 1 for
a.e. t ∈ R. We say that the function f is of finite level total curvature integral (on U). It follows that the
function

(1) t 7→ TC(∂Ef (t;U), U) := ψf (t, U)

is in L1(R). This function, denoted by ψf (·, U) is called the level total curvature function of f in U .
Then, the level total curvature integral of f is defined for any bounded continuous function h on R by

(2) LTCf (h, U) =

∫
R
h(t)TC(∂Ef (t;U), U) dt =

∫
R
h(t)ψf (t, U) dt,

and we simply denote LTCf (U) for LTCf (1, U).

Let us remark that when t > maxU f , then Ef (t;U) = ∅ and therefore ψf (t, U) = 0. On the other hand,
when t ≤ minU f , then Ef (t;U) = U , and thus ∂Ef (t;U) ∩ U = ∅. Therefore we also have ψf (t, U) = 0. This
shows that the level total curvature function is 0 for levels t outside the range of f .

Let us also notice that when H is a C1 diffeomorphism on R with bounded derivative h = H ′, by a simple
change of variable, the function H ◦ f is also of finite level total curvature integral on U with ψH◦f (t, U) =
ψf (H−1(t), U) and

LTCH◦f (U) = LTCf (h, U).

2.2. Link with Euler Characteristic. The link between the level total curvature and Euler Characteristic
is given by the Gauss-Bonnet theorem. The precise statement of the theorem is the following (it is taken from
the book of Do Carmo [14] p.274).

Theorem 1 (Gauss-Bonnet Theorem). Let S be an oriented surface, and let D ⊂ S be a regular region such
that its boundary ∂D is formed by n closed, simple and piecewise regular curves Γ1, . . . ,Γn. Suppose that each
Γi is positively oriented and let α1, . . . αp be the set of all turning angles of the curves Γ1, . . . ,Γn. Then

n∑
i=1

∫
Γi

κΓi(x)H1(dx) +

p∑
i=1

αi +

∫∫
D

K dσ = 2πχ(D),

where K is the Gaussian curvature of S and χ(D) is the Euler Characteristic of D.

The intuitive explanation of the Gauss-Bonnet Theorem for subsets of R2 is the following. First, we see
here the Euler Characteristic as a count of the number of connected components minus the number of holes.
Then, for each connected component, the total curvature of its boundary (that is a simple closed curve) is
+2π, whereas for a hole, since it is oriented in an “inverse way”, its total curvature is −2π. Therefore adding
all these total curvatures, we get 2π times the Euler Characteristic of the set.

A direct consequence of the Gauss-Bonnet Theorem is that if we consider the flat surface S = x0 + [0, T ]2,
then its Gaussian curvature is 0. Hence, for U = x0 + (0, T )2, when considering a regular compact region
D ⊂ U , with boundary given by Γ = ∂D ⊂ U of finite total curvature in U , one has

2πχ(D) = TC(Γ, U).

More generally we obtain the following corollary that gives the link between the Euler Characteristic of the
excusion sets and their level total curvature.

Corollary 1. Let U = x0 +(0, T )2, and let f be a function defined on an open set containing U = x0 +[0, T ]2.
We assume that f is of finite level total curvature integral in U (in the sense of Definition 2). Then, for almost
every t ∈ R,

2πχ(Ef (t;U)) = TC(∂Ef (t;U), U) +

k(t)∑
j=1

β
(t)
j = ψf (t, U) +

k(t)∑
j=1

β
(t)
j ,

where the β
(t)
j , 1 ≤ j ≤ k(t) are the possible turning angles of ∂Ef (t;U) at points that are on the boundary of

U (see Figure 1).
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Figure 1. By the Gauss-Bonnet theorem, the Euler Characteristic of the excursion set
Ef (t;U) (in gray) is equal to the total curvature of its boundary in the open rectangular
domain U plus the turning angles at the points where Ef (t;U) meets ∂U and also plus π/2
for each of the corners of the rectangle U that are in Ef (t;U). All these special points are the
ones marked by the small dashed circles on the figure.

Remark: To avoid the problem of the boundary of U = x0 + (0, T )2, one can consider functions defined on
the flat torus U = T2. Since it has a zero Gaussian curvature everywhere, the Gauss-Bonnet theorem with
S = T2, implies that, for any level t,

2πχ(Ef (t;U)) = TC(∂Ef (t;U), U) = ψf (t, U).

Now, considering a non-periodic domain U = (0, T )2 ⊂ R2, the total curvature of the boundary of an
excursion set E, divided by 2π, can be seen as a “modified” Euler Characteristic, in a sense very similar to the
one used in the book of Adler and Taylor [6] or in the paper of Estrade and León [15], where critical points
in U are only taken into account, and not the ones on the boundary of U . Moreover, we will often consider
large domains (that is T goes to infinity), and in that case, the total curvature (in expectation) will grow like
T 2 whereas the sum of the turning angles on ∂U will (in expectation also) grow like T .

2.3. Link with Euler Integral. Let us quote that due to the additivity property of the Euler Characteristic

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B),

it is natural to set up an integration theory with respect to Euler Characteristic [21, 28]. However, since χ is
only finitely additive, a careful choice of integrands must be done. This problem was tackled by defining the
class constructible functions [26], then extended by the class of “tame” real-valued functions in [8]. Following
this framework, Bobrowski and Borman obtained in [12] the first probabilistic statement about the persistent
homology generated by sublevel sets. We briefly recall the definitions used in [12] for comparison with our
setting. When f is a real continuous function defined on a compact topological set S, it is said to be a tame
function if the homotopy types of Ef (t;S) = {x ∈ S; f(x) ≥ t} and {x ∈ S; f(x) ≤ t} change only finitely
many times as t varies over R and the Euler Characteristic of each set is always finite. For such a function, a
lower and upper Euler integrals are defined by∫

S

fbdχc =

∫ +∞

0

(χ(f ≥ t)− χ(f < −t)) dt∫
S

fddχe =

∫ +∞

0

(χ(f > t)− χ(f ≤ t)) dt,

where χ(f ≥ t) = χ(Ef (t;S)), χ(f < t) = χ(S) − χ(f ≥ t), etc. In contrast with the level total curvature
function ψf (·, U) of f in U defined in (1), taking S = x0 + [0, T ]2, for some x0 ∈ R2 and T > 0, leads to
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χ(f ≥ t) = χ(S) = 1 for any t ≤ minS f and thus t 7→ χ(f ≥ t) is not integrable on R, explaining the above
definition of Euler integrals.

However, note that in the periodic case for S = U = T2 one has χ(S) = 0 and the lower Euler integral just
becomes ∫

S

fbdχc =

∫
R
χ(f ≥ t)dt.

And it is therefore equal to our level total curvature integral divided by 2π, in view of the above remark, since

LTCf (U) =

∫
R
ψf (t, U)dt.

We now show how the level total curvature integral can be explicitly computed in different situations. The
first situation is the one of sums of piecewise constant functions (also called elementary functions), and the
second situation will be the case of smooth (at least C2) functions.

2.4. The case of elementary functions. We first introduce some notations. For a point x ∈ U and a
real positive number ρ, we denote by Bρ(x) the open ball of radius ρ and center x. For an oriented simple
piecewise C2 curve γ with finite length, and a point x on γ, then for ρ small enough, Bρ(x) \ γ is made of
two connected components. These two “half-balls” are respectively denoted by B+

ρ (x, γ) and B−ρ (x, γ). The

half-ball B+
ρ (x, γ) is the component that is on the side of the normal νγ to γ.

Definition 3 (Elementary function). We say that a function f defined on U is an elementary function on U
if f is a piecewise constant function taking a finite number of values (meaning that f(U) is a finite subset of
R), and if the discontinuity set of f in U , denoted by Sf , can be decomposed as

Sf = Rf ∪ Cf ∪ If ,

where (see also Figure 2)

• Rf is the regular part of the discontinuity set of f : it is the finite and disjoint union of C2 simple
curves having finite length and finite total curvature. More precisely, if x ∈ Rf , then there exists
ρ > 0 such that Sf ∩Bρ(x) is a simple C2 oriented curve γ separating the ball Bρ(x) in two half-balls
B+
ρ (x, γ) and B−ρ (x, γ). Moreover there exist two real numbers f+(x) > f−(x) such that f(y) = f+(x)

for all y ∈ B+
ρ (x, γ) and f(y) = f−(x) for all y ∈ B−ρ (x, γ). We also denote

νf (x) = νγ(x) and κf (x) = κγ(x) with κf ∈ L1(Rf ,H1).

• Cf is the set of corner points: it is a finite set of points (meaning H0(Cf ) < +∞, with H0 the counting
measure) such that if x ∈ Cf , then there exists ρ > 0 such that Sf ∩ Bρ(x) is a simple piecewise
C2 oriented curve γ having only one corner at x. We write αf (x) ∈ (−π, π) the turning angle of γ
at x. As for regular points, γ separates the ball Bρ(x) in two half-balls B+

ρ (x, γ) and B−ρ (x, γ), and

moreover there exist two real numbers f+(x) > f−(x) such that f(y) = f+(x) for all y ∈ B+
ρ (x, γ)

and f(y) = f−(x) for all y ∈ B−ρ (x, γ). The turning angle at such a corner point is denoted

αf (x) = αγ(x).

• If is the set of intersection points: it is a finite set of points (meaning H0(If ) < +∞) such that for
x ∈ If , then there exists ρ > 0 such that Sf∩Bρ(x) is the union of two different simple and oriented C2

curves γ1 and γ2 such that {x} = γ1∩γ2 and such that the intersection is non-degenerate (meaning that
νγ1(x) and νγ2(x) are not colinear). Each curve separates the ball in two half-balls, and there exist 4 real
numbers f−(x) < f+

− (x), f−+ (x) < f+(x), such that f = f−(x) on B−ρ (x, γ1)∩B−ρ (x, γ2); f = f−+ (x) on

B−ρ (x, γ1)∩B+
ρ (x, γ2); f = f+

− (x) on B+
ρ (x, γ1)∩B−ρ (x, γ2) and f = f+(x) on B+

ρ (x, γ1)∩B+
ρ (x, γ2).

And we define

βf (x) = dS1(νγ1
(x), νγ2

(x))

= min(|Arg νγ1
(x)−Arg νγ2

(x)|, 2π − |Arg νγ1
(x)−Arg νγ2

(x)|) ∈ (0, π),

the geodesic distance between νγ1
(x) and νγ2

(x) on S1.
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Figure 2. The three types of points of the discontinuity set of an elementary function. From
left to right: a regular point, a corner point and an intersection point.

Proposition 1. If f is an elementary function on U , then f is of finite level total curvature integral on U
with

LTaCf (U) =

∫
Rf∩U

[f+(x)− f−(x)]|κf (x)|H1(dx) +
∑

x∈Cf∩U
[f+(x)− f−(x)]|αf (x)|(3)

+
∑

x∈If∩U
[f+(x)−max(f+

− (x), f−− (x)) + min(f+
− (x), f−− (x))− f−(x)]βf (x) < +∞.

Moreover, for all t ∈ R, ∂Ef (t, U) is a curve of finite total curvature in the sense of Definition 1. And if h

is a bounded continuous function on R, and H is a primitive of h (for instance H(t) =
∫ t

0
h(u) du), then the

level total curvature integral of f is given by

LTCf (h, U) =

∫
Rf

[H(f+(x))−H(f−(x))]κf (x)H1(dx) +
∑
x∈Cf

[H(f+(x))−H(f−(x))]αf (x)(4)

+
∑
x∈If

[H(f+(x)) +H(f−(x))−H(f+
− (x))−H(f−+ (x))]βf (x).

In particular, when h = 1, we get

LTCf (U) =

∫
Rf

[f+(x)− f−(x)]κf (x)H1(dx) +
∑
x∈Cf

[f+(x)− f−(x)]αf (x)(5)

+
∑
x∈If

[f+(x) + f−(x)− f+
− (x)− f−+ (x)]βf (x).

Proof. We assume that m = Card(f(U)) ≥ 2. Otherwise, if m = 1, then for all t ∈ R, Ef (t;U) = ∅ or U
and therefore TaC(∂Ef (t;U), U) = TC(∂Ef (t;U), U) = 0. In the following we denote the values of f in U by
v1 < . . . < vm and set v0 = −∞. We first remark that Ef (t;U) = ∅ for t > vm ; Ef (t;U) = Ef (vi;U) for
vi−1 < t ≤ vi and Ef (t;U) = U for t ≤ v1. The set of discontinuity points is given by Sf = ∪mi=2∂Ef (vi;U).

Let us compute the total curvature of Γi := ∂Ef (vi;U) for each 2 ≤ i ≤ m. Since Γi ⊂ Sf , we can write

Γi = (Γi ∩Rf ) ∪ (Γi ∩ Cf ) ∪ (Γi ∩ If ) .

Note that for x ∈ Γi, one has f+(x) ≥ vi and f−(x) < vi with κΓi(x) = κf (x) for x ∈ Γi ∩ Rf and
αΓi(x) = αf (x) for x ∈ Γi ∩ Cf ⊂ CΓi .
When x ∈ Γi ∩ If , we have an intersection point of f , and it may become a corner point for Γi. Indeed,
using the same notations for intersection points as in Definition 3, we may write x ∈ γ1 ∩ γ2 with the two
simple C2 curves γ1 and γ2 being such that (γ1 ∪ γ2) ∩Bρ(x) = Sf ∩Bρ(x). If vi ≤ min(f+

− (x), f−+ (x)), then
Γi∩Bρ(x) = (γ1∩B−ρ (x, γ2))∪ (γ2∩B−ρ (x, γ1)) and x ∈ CΓi with αΓi(x) = −βf (x). Without loss of generality

we may assume that f+
− (x) ≤ f−+ (x). If f+

− (x) < vi ≤ f−+ (x) then Γi ∩ Bρ(x) = γ2 and therefore x is not

a corner point of Γi. If vi > max(f+
− (x), f−− (x)), then Γi ∩ Bρ(x) = (γ1 ∩ B+

ρ (x, γ2)) ∪ (γ2 ∩ B+
ρ (x, γ1)) and

αΓi(x) = βf (x).
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Finally, it follows that

TaC(Γi, U) =

∫
Rf∩Γi

|κf (x)|H1(dx) +
∑

x∈Γi∩Cf

|αf (x)|

+
∑

x∈Γi∩If

βf (x)
(

1Ivi>max(f+
− (x),f−− (x)) + 1Ivi≤min(f+

− (x),f−− (x))

)
,

while

TC(Γi, U) =

∫
Rf∩Γi

κf (x)H1(dx) +
∑

x∈Γi∩Cf

αf (x)

+
∑

x∈Γi∩If

βf (x)
(

1Ivi>max(f+
− (x),f−− (x)) − 1Ivi≤min(f+

− (x),f−− (x))

)
.

Now let us prove that f is of finite level curvature integral. Let h be a non-negative continuous bounded
function on R and H a primitive of h. We have∫

R
h(t)TaC(∂Ef (t, U)) dt =

m∑
i=2

∫ vi

vi−1

h(t)TaC(Γi, U) dt =

m∑
i=2

[H(vi)−H(vi−1)]TaC(Γi, U).

Then, using the above formula for TaC(Γi, U), we get the sum of three terms. The first one is given by
m∑
i=2

[H(vi)−H(vi−1)]

∫
Rf∩Γi

|κf (x)|H1(dx) =

∫
Rf
|κf (x)|

m∑
i=2

[H(vi)−H(vi−1)]1IΓi(x)H1(dx).

When x ∈ Sf = ∪mi=2Γi, we denote i(x), (resp. j(x) ≥ i(x)), the minimal (resp. maximal) index i = 2, . . . ,m
such that x ∈ Γi and f−(x) := vi(x)−1, (resp. f+(x) := vj(x)). It follows that

m∑
i=2

[H(vi)−H(vi−1)]1IΓi(x) =

j(x)∑
i=i(x)

[H(vi)−H(vi−1)]

= H(vj(x))−H(vi(x)−1)

= H(f+(x))−H(f−(x)).

Therefore the first term is ∫
Rf

[H(f+(x))−H(f−(x))] |κf (x)|H1(dx).

Similarly, the second term is equal to
m∑
i=2

[H(vi)−H(vi−1)]
∑

x∈Γi∩Cf

|αf (x)| =
∑
x∈Cf

[H(f+(x))−H(f−(x))] |αf (x)|.

Finally, the third one is equal to

m∑
i=2

[H(vi)−H(vi−1)]
∑

x∈Γi∩If

|βf (x)|
(

1Ivi>max(f+
− (x),f−− (x)) + 1Ivi≤min(f+

− (x),f−− (x))

)

=
∑
x∈If

βf (x)

 j(x)∑
i=l(x)+1

[H(vi)−H(vi−1)] +

k(x)∑
i=i(x)

[H(vi)−H(vi−1)]

 ,

where we have introduced k(x) and l(x) with i(x) ≤ k(x) ≤ l(x) < j(x) such that min(f+
− (x), f−− (x)) = vk(x)

and max(f+
− (x), f−− (x)) = vl(x). It follows that this third term is equal to∑

x∈If

βf (x)
(
H(vj(x))−H(vl(x)) + (H(vk(x))−H(vi(x)−1))

)
=
∑
x∈If

βf (x)
(
H(f+(x))−H(max(f+

− (x), f−− (x))) +H(min(f+
− (x), f−− (x)))−H(f−(x)))

)
.

In particular, for h = 1, we obtain Formula (4) and the fact that

(6) LTaCf (U) =

∫
R

TaC(∂Ef (t, U))dt < +∞.
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Therefore, f is of finite level total curvature integral and t 7→ ψf (t, U) = TC(∂Ef (t, U)) is in L1(R). Note that
the same computations as above for h a bounded continuous function on R (not necessarily non-negative),
gives the result (5) for

LTCf (h, U) =

∫
R
h(t)ψ(t, U) dt.

Indeed now, the third term is equal to

m∑
i=2

[H(vi)−H(vi−1)]
∑

x∈Γi∩If

βf (x)
(

1Ivi>max(f+
− (x),f−− (x)) − 1Ivi≤min(f+

− (x),f−− (x))

)

=
∑
x∈If

βf (x)

 j(x)∑
i=l(x)+1

[H(vi)−H(vi−1)]−
k(x)∑
i=i(x)

[H(vi)−H(vi−1)]


=
∑
x∈If

βf (x)
(
H(f+(x)) +H(f−(x))−H(f+

− (x))−H(f−+ (x))
)

Taking again h = 1 we obtain (6). �

The above proposition gives the formula for the level total curvature of an elementary function on U . Now,
since we will be interested in shot-noise random fields that are obtained by summing elementary functions, we
need to have also a formula for the level total curvature of a sum of elementary functions on U . This is the
aim of the following proposition.

Proposition 2. Let f, g be elementary functions on U such that their respective discontinuity sets Sf and Sg
intersect only at a finite number of regular points, that is Sf ∩ Sg ⊂ Rf ∩ Rg. We moreover assume that the
intersections are non-degenerate, meaning that if x ∈ Rf ∩ Rg, then νf (x) and νg(x) are not colinear. Then
f + g is also an elementary function with

• Rf+g = Rf∆Rg = Rf ∪Rg r (Rf ∩Rg) and
– if x ∈ Rf+g ∩ Rf , then κf+g(x) = κf (x) with (f + g)+(x) = f+(x) + g(x) and (f + g)−(x) =
f−(x) + g(x);

– if x ∈ Rf+g ∩ Rg, then κf+g(x) = κg(x) with (f + g)+(x) = f(x) + g+(x) and (f + g)−(x) =
f(x) + g−(x);

• Cf+g = Cf ∪ Cg is a disjoint union and
– if x ∈ Cf , then αf+g(x) = αf (x) with (f+g)+(x) = f+(x)+g(x) and (f+g)−(x) = f−(x)+g(x),
– if x ∈ Cg, then αf+g(x) = αg(x) with (f+g)+(x) = f(x)+g+(x) and (f+g)−(x) = f(x)+g−(x);

• If+g = If ∪ Ig ∪ (Rf ∩Rg) is a disjoint union and
– if x ∈ If , then βf+g(x) = βf (x) with (f + g)+(x) = f+(x) + g(x), (f + g)−(x) = f−(x) + g(x),

(f + g)−+(x) = f−+ (x) + g(x) and (f + g)+
−(x) = f+

− (x) + g(x)
– if x ∈ Ig, then βf+g(x) = βg(x) with (f + g)+(x) = f(x) + g+(x), (f + g)−(x) = f(x) + g−(x),

(f + g)−+(x) = f(x) + g−+(x) and (f + g)+
−(x) = f(x) + g+

−(x)
– if x ∈ Rf ∩ Rg then βf+g(x) = dS1(νf (x), νg(x)) ∈ (0, π) with (f + g)+(x) = f+(x) + g+(x),

(f + g)−(x) = f−(x) + g−(x) and {(f + g)+
−(x), (f + g)−+(x)} = {f+(x) + g−(x), f−(x) + g+(x)}.

Moreover, we have that

(7) LTCf+g(U) = LTCf (U) + LTCg(U),

while

LTaCf+g(U) = LTaCf (U) + LTaCg(U)(8)

+
∑

x∈Rf∩Rg∩U

(
(f + g)+(x)−max((f + g)+

−(x), (f + g)−+(x))

+ min((f + g)+
−(x), (f + g)−+(x)− (f + g)−(x))

)
βf+g(x)

≤ LTaCf (U) + LTaCg(U) + 2π
∑

x∈Rf∩Rg∩U
[(f+(x)− f−(x)) + (g+(x)− g−(x))].

Proof. Since f and g are both piecewise constant on U , then f + g is also piecewise constant on U , and its
discontinuity set is Sf+g ⊂ Sf ∪Sg. We now need to show that a point in Sf+g is else a regular point, a corner
or an intersection point in the sense of Definition 3.
If x ∈ Sf \ Sg, then we have three cases:
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- if x ∈ Rf \ Sg, then x ∈ Rf+g with κf+g(x) = κf (x) and (f + g)+(x) = f+(x) + g(x) and (f + g)−(x) =
f−(x) + g(x).
- if x ∈ Cf \ Sg, then x ∈ Cf+g with αf+g(x) = αf (x) and (f + g)+(x) = f+(x) + g(x) and (f + g)−(x) =
f−(x) + g(x).
- if x ∈ If \Sg, then x ∈ If+g with βf+g(x) = βf (x) and (f+g)+(x) = f+(x)+g(x), (f+g)−(x) = f−(x)+g(x),
(f + g)−+(x) = f−+ (x) + g(x) and (f + g)+

−(x) = f+
− (x) + g(x) .

The same symmetric formulas hold when x ∈ Sg \ Sf . Now, when x ∈ Sf ∩ Sg = Rf ∩Rg, since we made the
hypothesis that the intersection points are non-degenerate, then x becomes an intersection point of f+g, that is
x ∈ If+g and moreover βf+g(x) = dS1(νf (x), νg(x)), (f+g)+(x) = f+(x)+g+(x), (f+g)−(x) = f−(x)+g−(x),
and {(f + g)+

−(x), (f + g)−+(x)} = {f+(x) + g−(x), f−(x) + g+(x)}.
Finally, having identified the discontinuity set of f+g, since we assume that H0(Rf ∩Rg) < +∞ we deduce

that ∫
Rf+g

|κf+g(x)|H1(dx) =

∫
Rf
|κf (x)|H1(dx) +

∫
Rg
|κg(x)|H1(dx) < +∞ ,

H0(Cf+g) = H0(Cf+g) +H0(Cf+g) < +∞
and H0(If+g) = H0(If ) +H0(Ig) +H0(Rf ∩Rg) < +∞.

This finishes to prove that f+g is an elementary function. We also notice in particular that when x ∈ Rf ∩Rg,
one has (f + g)+(x) + (f + g)−(x) = (f + g)+

−(x) + (f + g)−+(x) = f+(x) + g+(x) + f−(x) + g−(x), such that
applying the result of the previous proposition (Equation (5)) we can obtain the formula for the level total
curvature of f + g. In particular, taking h = 1 we get (7). �

Remark: Formula (7) says that the total curvature of a sum of two elementary functions is the sum of their
total curvature. This result is quite striking, but we have to underline that it does not hold in general for two
non elementary functions. This will appear clearly in the next section where we will consider smooth functions
f and where the formula for the level total curvature integral is obviously non linear in f .

2.5. The case of smooth functions. In the previous section, we have computed the level total curvature of
elementary functions, that are piecewise constant functions (that are in particular not continuous). Here, we
now consider the case of smooth (at least C2) functions. The question of the link between these two cases will
be discussed in Section 4.3 where we will consider a “discretization” of a smooth Gaussian random field. But
here, at the moment, there is no randomness. In the sequel, for f a C2 function we denote by ∇f its gradient
vector and by D2f its Hessian matrix.

Proposition 3. Let f be a smooth (at least C2) function on an open set containing U . Then f is of finite
level total curvature integral on U with

LTaCf (U) ≤
∫
U

‖D2f(x)‖
2
dx,

where ‖ · ‖
2

is the matrix norm subordinated to the Euclidean norm. Moreover, for h a bounded continuous
function on R, the level total curvature integral of f is given by

LTCf (h, U) =

∫
R
h(t)ψf (t, U) dt = −

∫
U

h(f(x))
D2f(x).(∇f(x)⊥,∇f(x)⊥)

‖∇f(x)‖2
dx.

Proof. Since f is a C2 function on an open set containing U , by Morse-Sard theorem (see [17] p.69 for instance),
the set of critical values of f has measure 0 in R. Let us also recall the co-area formula for Lipschitz mappings
(see [16] p.117 for instance), for any L-integrable function g,∫

U

g(x)‖∇f‖(x) dx =

∫
R

∫
∂Ef (t;U)∩U

g(x)H1(dx) dt.

Taking g = 1, we get ∫
U

‖∇f‖(x)dx =

∫
R
H1(∂Ef (t;U) ∩ U) dt,

where ∂Ef (t;U)∩U = {x ∈ U ; f(x) = t}, by continuity of f . In other words, combining this with Morse-Sard
theorem we have that for almost every t ∈ R, H1(∂Ef (t;U) ∩ U) < +∞ and for all points x ∈ U such that
f(x) = t then ∇f(x) 6= 0. Let t be such a non-critical value. Now, for a curve γ given by an implicit form
f(γ(s)) = t, we have γ′(s)⊥ = ∇f(γ(s))/||∇f(γ(s))|| and therefore the curvature at x = γ(s) is given by

(9) κf (x) = −D
2f(x).(∇f⊥(x),∇f⊥(x))

||∇f(x)||3
,
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where if A = (aij)1≤i,j≤2 is a 2× 2 symetric matrix and y = (y1, y2) ∈ R2, we use the notation

A.(y, y) = tyAy = a11y
2
1 + a22y

2
2 + 2a12y1y2.

And thus, we get

TaC(∂Ef (t;U), U) =

∫
∂Ef (t;U)∩U

|κf (x)|H1(dx)

and ψf (t, U) = TC(∂Ef (t;U), U) =

∫
∂Ef (t;U)∩U

κf (x)H1(dx).

Now, using the co-area formula with g = |κf |,

LTaCf (U) =

∫
R

∫
∂Ef (t;U)∩U

|κf (x)|H1(dx) =

∫
U

|κf (x)|‖∇f(x)‖dx

≤
∫
U

‖D2f(x)‖
2
dx,

in view of (9). It follows that f is of finite level total curvature integral on U and, for h a bounded continuous
function on R, using again the co-area formula but now with g = (h ◦ f)κf ,

LTCf (h) =

∫
R
h(t)ψf (t, U)dt =

∫
R

∫
∂Ef (t;U)∩U

h(f(x))κf (x)H1(dx)dt

=

∫
U

h(f(x))κf (x)||∇f(x)|| dx

= −
∫
U

h(f(x))
D2f(x).(∇f(x)⊥,∇f(x)⊥)

‖∇f(x)‖2
dx,

in view of (9).
�

3. Elementary Shot noise random fields

3.1. Level total curvature of an elementary shot noise random field. We consider here a shot-noise
random field defined on R2 by

∀x ∈ R2, XΦ(x) =
∑
i∈I

gmi(x− xi),

where Φ = {(xi,mi)}i∈I is a Poisson point process on R2 × Rd, defined on a probability space (Ω,A,P),
of intensity λL × F , with λ > 0 real, L the Lebesgue measure on R2 and F a probability measure on Rd.
Note that equivalently, we may define Φ as an independently marked Poisson point process where {xi}i is an
homogeneous Poisson point process of intensity λ and the mi are “marks”, following a law F (dm) on Rd (with
d ≥ 1) and independent of the Poisson point process {xi}i. Let g : R2 × Rd → R be a measurable function
such that the functions gm := g(·,m) satisfy

(10)

∫
R2×Rd

|gm(x)| dxF (dm) < +∞.

Then, the random field XΦ is well defined as an almost surely locally integrable function on R2 (see [10]).
Note that moreover, the random field XΦ is stationary. We will first give formulas for the level total curvature
integral of XΦ on an open bounded set U in the case where the gm are elementary functions on R2, then we
will compute the Fourier transform of the function t 7→ E(ψXΦ

(t, U)). Finally we will give explicit results in
the case of weighted indicator functions of random set, obtained from a deterministic compact set D with a
boundary given by a finite union of closed curves with finite total curvatures, by random rotation and dilation.
Specific computations for disks with D = D(0, 1) and squares with D = [0, 1]2 are linked with some recent
results on Boolean models.

Throughout the rest of this section we also assume that the gm are elementary functions on R2, with
compact support and such that

(11)

∫
Rd

LTaCgm(R2)F (dm) < +∞,

where LTaCgm(R2) is defined by (4) choosing U = R2. Note that this implies that for F -almost every m ∈ Rd,
gm is of finite level total curvature integral and we may define ψgm(·,R2), the level total curvature function of
gm in R2 as a function in L1(R). For F -almost every m, gm is assumed to have a compact support, that can
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be included in a square [−Tm, Tm]2 with Tm ∈ R+, and its maximal value ‖gm‖∞ = max
[−Tm,Tm]2

|gm| is finite.

We will assume moreover that

(12)

∫
Rd
T 2
m F (dm) < +∞ and

∫
Rd
‖gm‖∞ F (dm) < +∞.

Note that the first assumption of (12) implies that there is only a finite random number of gm, denoted by
N(U), contributing to the values of XΦ on the bounded set U = (0, T )2, for T > 0. Actually, it is clear that

N(U) ≤ #{i;U ∩
(
xi + [−Tmi , Tmi ]2

)
6= ∅} ≤ #{i; ‖xi‖∞ ≤ 2Tmi + T},

with ‖x‖∞ = max(|x1|, |x2|), for x ∈ R2. It follows that E(N(U)) ≤ λ
∫
Rd(2Tm + T )2F (dm). Since F is a

finite measure, under (12), we get

(13) E(N(U)) < +∞.

In the following we will use the notation τx to denote the translation of x in R2 (i.e. τxy = y + x for all
y ∈ R2). We will also denote Φi = Φ \ {(xi,mi)} for i ∈ I, Φij = Φ \ {(xi,mi), (xj ,mj)} for i 6= j in I, and
their associated shot noise random fields

∀i, XΦi(x) =
∑
k;k 6=i

gmk(x− xk) and ∀j 6= i, XΦij (x) =
∑

k;k 6=i,k 6=j

gmk(x− xk).

Theorem 2. Assume that for F -almost every m ∈ Rd, the function gm is an elementary function on R2 (in
the sense of Definition 3) satisfying (10), (11) and (12), and such that∫

Rd
H0 (Sgm \ Rgm)F (dm) < +∞(14) ∫

Rd×Rd

∫
R2

H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞(15) ∫

Rd×Rd

∫
R2

H0
({
y ∈ Rgm′ ∩ τxRgm ; νgm′ (y) = ±νgm(y − x)

})
dxF (dm)F (dm′) = 0.(16)

Then, almost surely, for all T > 0 and U = (0, T )2, XΦ is an elementary function on U and its discontinuity
set on U is given by SXΦ ∩ U where SXΦ = RXΦ ∪ CXΦ ∪ IXΦ , with

• RXΦ
=

(⋃
i

τxiRgmi

)
\

( ⋃
i,j 6=

τxiRgmi ∩ τxjRgmj

)
, and if x ∈ RXΦ

∩ U , there exists a unique i such

that x ∈ τxiRgmi with κXΦ
(x) = κgmi (x− xi) and

XΦ
+(x) = g+

mi(x− xi) +XΦi(x) and XΦ
−(x) = g−mi(x− xi) +XΦi(x);

• CXΦ =
⋃
i

τxiCgmi , and if x ∈ CXΦ ∩ U , there exists a unique i such that x ∈ τxiCgmi with αXΦ(x) =

αgmi (x− xi) and

XΦ
+(x) = g+

mi(x− xi) +XΦi(x) and XΦ
−(x) = g−mi(x− xi) +XΦi(x);

• IXΦ =

(⋃
i

τxiIgmi

)
∪

( ⋃
i,j 6=

τxiRgmi ∩ τxjRgmj

)
and if x ∈ IXΦ ∩ U , only two situations occur

– there exists a unique i such that x ∈ τxiIgmi , with βXΦ
(x) = βgmi (x− xi) and

XΦ
+(x) = g+

mi(x− xi) +XΦi(x), XΦ
−(x) = g−mi(x− xi) +XΦi(x),

XΦ
−
+(x) = gmi

−
+(x− xi) +XΦi(x), XΦ

+
−(x) = gmi

+
−(x− xi) +XΦi(x);

– or there exists a unique pair {i, j} with i 6= j such that x ∈ τxiRgmi ∩ τxjRgmj with

βXΦ
(x) = dS1(νgmi (x− xi), νgmj (x− xj)) ∈ (0, π)

XΦ
+(x) = g+

mi(x− xi) + g+
mj (x− xj) +XΦij (x), XΦ

−(x) = g−mi(x− xi) + g−mj (x− xj) +XΦij (x),

{XΦ
+
−(x), XΦ

−
+(x)} = {g+

mi(x− xi) + g−mj (x− xj) +XΦij (x), g−mi(x− xi) + g+
mj (x− xj) +XΦij (x)}.
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In particular, a.s.

LTCXΦ
(U) =

∑
i

LTCgmi (τ−xiU)

=
∑
i

∫
U∩τxiRgmi

[g+
mi(x− xi)− g

−
mi(x− xi)]κgmi (x− xi)H

1(dx)

+
∑
i

∑
x∈U∩τxiCgmi

[g+
mi(x− xi)− g

−
mi(x− xi)]αgmi (x− xi)

+
∑
i

∑
x∈U∩τxiIgmi

[g+
mi(x− xi) + g−mi(x− xi)− gmi

+
−(x− xi)− gmi−+(x− xi)]βgmi (x− xi).

Proof. Since it is sufficient to prove the result for all U = (0, T )2 with T ∈ Q, we only have to prove it holds
almost surely on some fixed U = (0, T )2, with T > 0.

Let us first remark that when AΦ is a finite set of points of R2 depending on the marked Poisson point
process Φ = {(xi,mi)}, as soon as E(H0(AΦ)) < +∞, one has,⋃

j

AΦj ∩ τxjSgmj = ∅ a.s..

This follows from the fact that, by Slivnyak-Mecke formula (see [7] Theorem 1.4.5),

E

H0

⋃
j

AΦj ∩ τxjSgmj

 ≤ λ

∫
R2×Rd

E
(
H0(AΦ ∩ τxSgm)

)
dxF (dm)

≤ λE
(
H0(AΦ)

) ∫
Rd
L (Sgm)F (dm) = 0,

since L (Sgm) = 0, using Fubini Theorem and translation invariance of both H0 and L.

Our first assumption (14) implies that

(17)
⋃
i,j 6=

τxi
(
Sgmi \ Rgmi

)
∩ τxjSgmj ∩ U = ∅ a.s..

Actually, taking AΦ =
⋃
i

τxi
(
Sgmi \ Rgmi

)
∩ U , Campbell formula (see [7] Theorem 1.4.3) ensures that

E
(
H0 (AΦ)

)
≤ λ

∫
R2×Rd

H0 (τx (Sgm \ Rgm) ∩ U) dxF (dm)

≤ λL(U)

∫
Rd
H0 (Sgm \ Rgm)F (dm) < +∞.

Then, (17) follows from the preceding remark since
⋃
i,j 6=

τxi
(
Sgmi \ Rgmi

)
∩ τxjSgmj ∩ U =

⋃
j

AΦj ∩ τxjSgmj .

The second assumption (15) will ensure both that

(18) H0

⋃
i,j 6=

τxiRgmi ∩ τxjRgmj ∩ U

 <∞ a.s.,

and

(19)
⋃

i,j,k 6=

τxiRgmi ∩ τxjRgmj ∩ τxkSgmk ∩ U = ∅ a.s.

Here we set AΦ =
⋃
i,j 6=

τxiRgmi ∩ τxjRgmj ∩U . Using again Slivnyak-Mecke formula and Campbell formula we

obtain that

E(H0(AΦ)) ≤ λ2

∫
R2×Rd

∫
R2×Rd

H0
(
τxRgm ∩ τx′Rgm′ ∩ U

)
dxF (dm)dx′F (dm′)

≤ λ2L(U)

∫
Rd×Rd

∫
R2

H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞.

It follows that H0(AΦ) < +∞ a.s. and
⋃
k

AΦk ∩ τxkSgmk = ∅ a.s.
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Finally and similarly, the last assumption ensures that

(20) {y ∈
⋃
i,j 6=

τxiRgmi ∩ τxjRgmj ∩ U ; νgmi (y − xi) = ±νgmj (y − xj)} = ∅ a.s..

This follows from the fact that the expected H0 measure of this set is zero, according to Slivnyak-Mecke
formula and Campbell formula, Fubini Theorem and translation invariance.

Now let us consider the random variable N(U) counting the number of functions gmi contributing to the
values of XΦ on U and recall that under the assumption that

∫
Rd T

2
mF (dm) < +∞, N(U) is a.s. finite, as a

consequence of (13).
We now will prove the result of Theorem 2 by induction on the value of N(U) once we have fixed an almost

sure realization ensuring the previous configuration.
For N(U) = 0 there is nothing to prove since XΦ = 0 on U in this case. Let us assume the result holds
when N(U) = n ≥ 0 and let us prove it for N(U) = n + 1. We can assume that there exists (xi,mi) such
that τ−xigmi contributes to the values of X on U and write XΦ = XΦi + τ−xigmi . The number of functions
contributing to XΦi is given by N(U) − 1 so we can use our induction to state that XΦi is an elementary
function on U with discontinuity set SXΦi

∩ U where

SXΦi
=
⋃
j;j 6=i

τxjSgmj , with RXΦi
=

 ⋃
j;j 6=i

τxjRgmj

 \
 ⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩ τxkRgmk

 ,

CXΦi
=
⋃
j;j 6=i

τxjCgmj and IXΦi
=

 ⋃
j;j 6=i

τxjIgmj

⋃ ⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩ τxkRgmk

 .

Then the discontinuity points are given by SXΦ ∩ U with SXΦ ⊂ SXΦi
∪ τxiSgmi =

⋃
j

τxjSgmj with

SXΦi
∩ τxi

(
Sgmi \ Rgmi

)
∩ U ⊂

⋃
j;j 6=i

τxjSgmj ∩ τxi
(
Sgmi \ Rgmi

)
∩ U = ∅

by (17). Moreover,

SXΦi
\ RXΦi

⊂
⋃
j;j 6=i

τxj

(
Sgmj \ Rgmj

)
∪

⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩ τxkRgmk ,

with again
⋃
j;j 6=i

τxj

(
Sgmj \ Rgmj

)
∩τxiSgmi∩U = ∅ by (17) and

⋃
j,k 6=;j 6=i,k 6=i

τxjRgmj ∩τxkRgmk∩τxiSgmi∩U = ∅

by (19). Therefore, we may conclude that

SXΦi
∩ τxiSgmi ∩ U ⊂ RXΦi

∩ τxiRgmi ∩ U,

with H0
(
RXΦi

∩ τxiRgmi ∩ U
)
< +∞ by (18). Finally let us quote that the intersections are non-degenerate

in view of (20). Hence, according to Proposition 2, XΦ is an elementary function on U . Moreover, if x ∈
RXΦi

\ τxiSgmi we get X±Φ (x) = X±Φi(x) + gmi(x − xi) and by induction there exists a unique j 6= i such

that x ∈ τxjRgmj so that X±Φ (x) = XΦij (x) + g±mj (x − xj) + gmi(x − xi) = XΦj (x) + g±mj (x − xj) and

κXΦ(x) = κgmj (x − xj). Similarly, if x ∈ τxiRgmi \ SXΦi
we get XΦ

±(x) = XΦi(x) + g±mi(x − xi) and

κXΦ
(x) = κgmi (x − xi). In the same way, by induction and using the fact that CXΦ

is the disjoint union of

τxjCgmj we obtain that if x ∈ CXΦ
, there exists a unique i such that x ∈ τxiCgmi and αXΦ

(x) = αgmi (x−xi) with

XΦ
±(x) = g±mi(x− xi) +XΦi(x). Finally IXΦ

is the disjoint union of IXΦi
, τxiIgmi and RXΦi

∩ τxiRgmi . By

induction, IXΦi
=
⋃
j;j 6=i

τxjIgmj ∪
⋃

j,k 6=;j 6=i,k 6=i
τxjRgmj ∩ τxkRgmk and RXi ∩ τxiRgmi =

⋃
j;j 6=i

τxjRgmj ∩ τxiRgmi
where unions are all disjoint. Hence, grouping the terms we get the result. �

Theorem 3. Under the hypothesis of Theorem 2, assuming moreover that

(21)

∫
Rd×Rd

∫
R2

(‖gm‖∞ + ‖gm′‖∞)H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞,

then (ω, t) 7→ ψXΦ(ω)
(t, U) ∈ L1(Ω× R) for U = (0, T )2, with T > 0. Let us denote for a.e. t ∈ R,

ΨXΦ
(t, U) = E(ψXΦ

(t, U)) = E(TC(∂EXΦ
(t, U)).
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Then ΨXΦ
(·, U) is an integrable function on R and its Fourier transform is given for all u ∈ R, u 6= 0 by

Ψ̂XΦ(u, U) =

∫
R
eiutΨXΦ(t, U) dt = E

(
LTCXΦ(eiu·, U)

)
= λL(U)E

(
eiuXΦ(0)

)(∫
Rd
ψ̂gm(u,R2)F (dm)

+
λ

2

∫
Rd

∫
R2×Rd

∑
z∈τxRgm∩Rgm′

dS1(νgm(z − x), νgm′ (z))∆
u
m,m′(z − x, z) dxF (dm)F (dm′)

)
,

where ∆u
m,m′(y, y

′) =
(eiug

+
m(y) − eiug−m(y))(eiug

+

m′ (y) − eiug
−
m′ (y

′))

iu
, ∀y ∈ Rgm and y′ ∈ Rgm′ ,

and

ψ̂gm(u,R2) = LTCgm(eiu·,R2) =

∫
Rgm

eiug
+
m(z) − eiug−m(z)

iu
κgm(z)H1(dz)

+
∑
z∈Cgm

eiug
+
m(z) − eiug−m(z)

iu
αgm(z) +

∑
z∈Igm

eiugm
+(z) + eiugm

−(z) − eiugm
+
−(z) − eiugm

−
+(z)

iu
βgm(z).

And for u = 0, we have

Ψ̂XΦ(0, U) =

∫
R

ΨXΦ(t, U) dt = E(LTCXΦ(U)) = λL(U)

∫
Rd

LTCgm(R2)F (dm)

with

LTCgm(R2) = ψ̂gm(0,R2)

=

∫
Rgm

[gm
+(z)− gm−(z)]κgm(z)H1(dz) +

∑
z∈Cgm

[gm
+(z)− gm−(z)]αgm(z)

+
∑
z∈Igm

[gm
+(z) + gm

−(z)− gm+
−(z)− gm−+(z)]βgm(z).

Proof. First note that in view of (8), one has a.s.

LTaCXΦ(U) ≤
∑
i

LTaCgmi (τ−xiU) + 2π
∑
i,j 6=

H0
(
τxiRgmi ∩ τxjRgmj ∩ U

)
(‖gmi‖∞ + ‖gmj‖∞).

By Campbell formula,

E

(∑
i

LTaCgmi (τ−xiU)

)
=

∫
R2×Rd

LTaCgm(τ−xU)λdxF (dm).

Hence, by Fubini Theorem,

E

(∑
i

LTaCgmi (τ−xiU)

)
= λL(U)

∫
Rd

LTaCgm(R2)F (dm) < +∞.

Moreover, by Slivnyak-Mecke formula,

E

∑
i,j 6=

H0
(
τxiRgmi ∩ τxjRgmj ∩ U

)
(‖gmi‖∞ + ‖gmj‖∞)


=

∫
Rd×Rd

∫
R2×R2

H0
(
τxRgm ∩ τx′Rgm′ ∩ U

)
(‖gm‖∞ + ‖gm′‖∞)λ2dxdx′F (dm)F (dm′)

= λ2L(U)

∫
Rd×Rd

∫
R2

∫
R2

1Iz∈Rg
m′
∩τxRgm (‖gm‖∞ + ‖gm′‖∞)H0(dz)dxF (dm)F (dm′)

= λ2L(U)

∫
Rd×Rd

∫
R2

(‖gm‖∞ + ‖gm′‖∞)H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) < +∞,
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by assumption (21). It follows that E(LTaCXΦ
(U)) < +∞ and therefore E

(∫
R |ψXΦ

(t, U)|dt
)
< +∞. So

for a.e. t ∈ R we can define ΨXΦ(t, U) = E (ψXΦ(t, U)), which is a function in L1(R). Note that since
LTCXΦ(U) =

∑
i LTCgmi (τ−xiU) we simply get by Campbell formula and Fubini Theorem that

Ψ̂XΦ(0, U) =

∫
R

ΨXΦ(t, U)dt = λL(U)

∫
Rd

LTCgm(R2)F (dm).

Now, let u 6= 0 and consider the continuous bounded function ju(t) = eiut with primitive Ju(t) = eiut−1
iu , for

t ∈ R. We already know that a.s. LTCXΦ
(ju, U) =

∫
R ju(t)ψXΦ

(t, U)dt may be written as the sum of three
terms Ru + Cu + Iu with finite expectation under our assumptions. By Fubini Theorem, it follows that

Ψ̂XΦ
(u, U) = E

(∫
R
ju(t)ψXΦ

(t, U)dt

)
= E(Ru) + E(Cu) + E(Iu).

For the first term we get

E(Ru) = E

(∫
RXΦ

∩U

eiuX
+
Φ (z) − eiuX

−
Φ (x)

iz
κXΦ(z)H1(dz)

)

= E

(∑
i

∫
τxiRgmi∩U

eiuXΦi
(z) e

iug+
mi

(z−xi) − eiug
−
mi

(z−xi)

iu
κgmi (z − xi)H

1(dz)

)

=

∫
R2×Rd

∫
τxRgm∩U

E
(
eiuXΦ(z)

) eiug+
m(z−x) − eiug−m(z−x)

iu
κgm(z − x)H1(dz)λdxF (dm),

by Slivnyak-Mecke formula. Using translation invariance of both H1 and L and stationarity of XΦ we get that

(22) E(Ru) = λL(U)E
(
eiuXΦ(0)

)∫
Rd

∫
Rgm

eiug
+
m(z) − eiug−m(z)

iu
κgm(z)H1(dz)F (dm).

Similarly, for the second term we get

E(Cu) = E

 ∑
z∈CXΦ

∩U

eiuX
+
Φ (z) − eiuX

−
Φ (z)

iu
αXΦ

(z)


= E

(∑
i

1Iz∈τxiCgmi∩U
eiuXΦi

(z) e
iug+

mi
(z−xi) − eiug

−
mi

(z−xi)

iu
αgmi (z − xi)H

1(dz)

)

= λL(U)E
(
eiuXΦ(0)

)∫
Rd

∑
z∈Cgm

eiug
+
m(z) − eiug−m(z)

iu
αgm(z)F (dm),(23)

Finally, the last term may be itself decomposed in two terms, say Iu = I
(1)
u + I

(2)
u . With similar computations

we get

(24) E(I(1)
u ) = λL(U)E

(
eiuXΦ(0)

)∫
Rd

∑
z∈Igm

eiugm
+(z) + eiugm

−(z) − eiugm
+
−(z) − eiugm

−
+(z)

iu
βgm(z)F (dm),

while, by Slivnyak-Mecke formula, since τxiRgmi ∩ τxjRgmj = τxjRgmj ∩ τxiRgmi ,

E(I(2)
u )

= E

1

2

∑
i 6=j

∑
z∈τxiRgmi∩τxjRgmj ∩U

eiuXΦij
(z)∆u

mi,mj (z − xi, z − xj)dS1(νgmi (z − xi), νgmj (z − xj))


=

1

2

∫∫ ∑
z∈τxRgm∩τx′Rgm′∩U

E
(
eiuXΦ(z)

)
∆u
m,m′(z − x, z − x′)dS1(νgm(z − x), νgm′ (z − x

′))λ2dxF (dm)dx′F (dm′),

By change of variables, translation invariance of H0 and L, and stationarity of XΦ, we get

E(I(2)
u ) =

λ2

2
L(U)E

(
eiuXΦ(0)

)∫
Rd×Rd

∫
R2

∑
z∈τxRgm∩Rgm′

∆u
m,m′(z−x, z)dS1(νgm(z−x), νgm′ (z))dxF (dm)F (dm′).
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Now, (22)+(23)+(24) is equal to

(25) λL(U)E
(
eiuXΦ(0)

)∫
Rd
ψ̂gm(u,R2)F (dm),

which concludes the proof. �

3.2. Explicit computations. In this section, we will give some explicit computations of the mean level total
curvature function of elementary shot noise random fields. These results generalize the results of Decreusefond
et. al. [13] obtained for indicator functions of a square, and also the known results on the Boolean model
(that correspond to the excursion set of level t = 1). We will also show some numerical simulations.

Let us first recall that for shot noise random fields, the characteristic function of XΦ(0) is explicit and given
by (see for instance [9])

E(eiuXΦ(0)) = exp

(
λ

∫
R2×Rd

(eiugm(x) − 1)dxF (dm)

)
.

In this section we consider D a compact subset of R2 having a piecewise smooth boundary given by Γ = ∂D
a finite union of positively oriented closed simple curves, piecewise C2 and of finite total curvature, i.e.
TaC(Γ,R2) < +∞. Note that by Gauss-Bonnet Theorem we have

TC(Γ,R2) = 2πχ(D).

We will focus on the case where the marks are of the form m = (b, r, θ) ∈ [0,+∞)2 × [0, 2π] ⊂ Rd with d = 3,
with distribution F (dm) = FB(db)FR(dr)FΘ(dθ) and functions gm given by

∀x ∈ R2, gm(x) = b1IRθrD(x),

where rD is the dilation of D by the factor r, and Rθ denotes the rotation of angle θ. We denote by B, R
and Θ independent random variables with distributions FB , FR (with support in R+) and FΘ (with support
in [0, 2π]). We will mainly focus on the case where Θ is uniform on [0, 2π], that is FΘ(dθ) = 1

2π1I[0,2π]dθ for
random shapes with uniform rotation; or on the case where Θ = 0 a.s., that is FΘ = δ0 corresponding to
simpler marks m = (b, r).

Theorem 4. We assume that

E(|B|) = E(B) < +∞ and E(R2) < +∞.
Then XΦ satisfies assumptions of Theorem 2 and 3 and

Ψ̂XΦ
(0, U) =

∫
R
E(ψXΦ

(t, U))dt = E(LTCXΦ
(U)) = 2πλL(U)E(B)χ(D).

We denote the mean perimeter and the mean area of D by

p :=

∫
R2

H1(∂RθrD)FR(dr)FΘ(dθ) = H1(∂D)E(R) and a :=

∫
R2

L(RθrD)FR(dr)FΘ(dθ) = L(D)E(R2).

When moreover, FΘ is the uniform law on [0, 2π], then, for all u 6= 0,

Ψ̂XΦ(u, U) = λL(U)E(eiuXΦ(0))
F̂B(u)− 1

iu

(
2πχ(D) +

λ

2
(F̂B(u)− 1)p2

)
.

In the case where B = 1 a.s. we deduce that

(26) ∀k ∈ N, ∀t ∈ (k, k + 1], E(ψXΦ
(t, U)) = 2πλL(U)e−λa

(λa)k

k!

(
χ(D)− λ

4π
p2 +

p2

4πa
k

)
.

Proof. Since B ≥ 0 a.s. and TaC(RθrΓ,R2) = TaC(Γ,R2), the gm’s are elementary functions with for F (dm)
almost every m = (b, r, θ),

LTaC(gm,R2) = |b|TaC(Γ,R2).

Let us remark that Equation (10) becomes∫
Rd

∫
R2

|gm(x)|dxF (dm) = E(|B|) a < +∞.

Equation (11) is easily checked since∫
Rd

LTaCgm(R2)F (dm) = E(|B|) TaC(Γ,R2) < +∞.

Assumption (12) also follows from the fact that a < +∞ and E(|B|) < +∞. For (14), let us remark that
Igm = ∅ and Cgm = RθrCΓ such that H0 (Sgm \ Rgm) = H0 (CΓ), ensuring (14), by assumption on Γ.
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Now, in order to check (15) and (16) we need a kind of kinematic formula. For f a measurable non-negative
function on [−π, π)2, periodically extended on R2, and Γ1, Γ2 two simple closed curves, we can compute the
integral

IΓ1,Γ2
(f) :=

∫
R2

∑
z∈Γ1∩τxΓ2

f(Arg νΓ1
(z),Arg νΓ2

(z − x)) dx .

Using computations analogous to the kinematic formula of Santaló [25], Chapter 7 (where he considers
random translations and rotations), we have that if Γ1 and Γ2 are two simple closed curves, then

(27) IΓ1,Γ2
(f) =

∫ L1

0

∫ L2

0

f(θ1(s1) +
π

2
, θ2(s2) +

π

2
)| sin(θ1(s1)− θ2(s2))| ds1 ds2,

where the curve Γ1 (resp. Γ2) of length L1 = H1(Γ1) (resp. L2 = H1(Γ2)), is parametrized by s1 7→ γ1(s1)
(resp. by s2 7→ γ2(s2)) where s1 (resp. s2) is arc length, and θ1(s1) = Arg γ′1(s1) (resp. θ2(s2) = Arg γ′2(s2)).
Heuristically, this formula can be obtained using the change of variable x = F (s1, s2) = γ1(s1) − γ2(s2), for
which the Jacobian is

|det(dF )| = | sin(θ1(s1)− θ2(s2))|,
and noticing that the intersection point of Γ1 and τxΓ2 is then z = γ1(s1) = x+ γ2(s2).

In particular, taking f = 1, it follows that IΓ1,Γ2
(1) ≤ L1L2. Note also that we moreover have the exact

formula ∫ 2π

0

∫ 2π

0

IRθΓ1,R′θΓ2
(1)dθdθ′ = 2π ×

∫ 2π

0

| sin(θ)|dθL1L2 = 2π × 4L1L2,

according to a generalization of Poincaré’s Formula (see [25] for instance). Using the fact that Γ is a finite
disjoint union of closed curves we obtain that IRθrΓ,R′θr′Γ(1) ≤ L2rr′, since the length of RθrΓ, resp. R′θr

′Γ,

is rL, resp. r′L, with L = H1(Γ) the length of Γ and∫ 2π

0

∫ 2π

0

IRθrΓ,R′θr′Γ(1)dθdθ′ = 2π × 4L2rr′.

It follows that∫
Rd×Rd

∫
R2

H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′) =

∫
R2

+

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(1)FΘ(dθ)FΘ(dθ′)FR(dr)FR(dr′)

≤ 4L2

(∫
R+

rFr(dr)

)2

= 4p2,

with p = LE(R) the mean perimeter, proving (15).
Moreover, for f(θ1, θ2) = 1Iθ1≡θ2 + 1Iθ1≡θ2+π, where ≡ stands for equality modulo 2π, we clearly have

IΓ1,Γ2(f) = 0,

in view of (27). Since Γ is a finite disjoint union of closed curves, it follows that∫
Rd×Rd

∫
R2

H0
({
y ∈ Rgm′ ∩ τxRgm ; νgm′ (y) = ±νgm(y − x)

})
dxF (dm)F (dm′)

=

∫
R2

+

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(f)FΘ(dθ)FΘ(dθ′)FR(dr)FR(dr′) = 0,

so that (16) holds.
Therefore we get the statement of Theorem 2.
Moreover, we also get∫

Rd×Rd

∫
R2

(‖gm‖∞ + ‖gm′‖∞)H0
(
Rgm′ ∩ τxRgm

)
dxF (dm)F (dm′)

≤ 4p2

∫
R×R

(|b|+ |b′|)FB(db)FB(db′) = 8p2E(|B|) < +∞,

and (21) is also satisfied so that Theorem 3 holds.
Note that, for u = 0, we simply have

Ψ̂XΦ(0, U) = λL(U)

∫
Rd

LTCgm(R2)F (dm) = λL(U)E(B)TC(Γ,R2).
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Since TC(Γ,R2) = 2πχ(D), we obtain the first general statement. For u 6= 0, we can explicitly compute the
characteristic function of XΦ(0), given by

E(eiuXΦ(0)) = exp

(
λ

∫
Rd×R2

(eiugm(x) − 1)F (dm)dx

)
= eλa(F̂B(u)−1),

where F̂B(u) = E(eiuB) =
∫
R e

iubFB(db) is the characteristic function of B. In particular for B = 1 a.s. XΦ(0)
is a Poisson random variable of parameter λa. We also have

ψ̂gm(u,R2) =

∫
Rgm

eiug
+
m(z) − eiug−m(z)

iu
κgm(z)H1(dz) +

∑
z∈Cgm

eiug
+
m(z) − eiug−m(z)

iu
αgm(z)

=
eiub − 1

iu
TC(RθrΓ,R2) =

eiub − 1

iu
TC(Γ,R2),

so that ∫
Rd
ψ̂gm(u,R2)F (dm) =

F̂B(u)− 1

iu
TC(Γ,R2).

Finally, let us remark that for f(θ1, θ2) = min(|θ1 − θ2|, 2π − |θ1 − θ2|) (distance between two angles), we get∫
Rd

∫
R2×Rd

∑
z∈τxRgm∩Rgm′

dS1(νgm(z − x), νgm′ (z)) ∆u
m,m′(z − x, z) dxF (dm)F (dm′)

=
(F̂B(u)− 1)2

iu

∫
R2

+

∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(f)FΘ(dθ)FΘ(dθ′)FR(dr)FR(dr′).

This last expression may not be simple to compute. However, assuming from now on that FΘ(dθ) =
1

2π1I[0,2π]dθ, we obtain by (27), for two simple closed curves Γ1,Γ2,∫
[0,2π]2

IRθΓ1,Rθ′Γ2
(f)FΘ(dθ)FΘ(dθ′)

=
1

2π

∫ 2π

0

∫ L1

0

∫ L2

0

min(|θ1(s1)− θ2(s2)− θ|, 2π − |θ1(s1)− θ2(s2)− θ|)| sin(θ1(s1)− θ2(s2)− θ)|ds1ds2dθ

= L1L2.

Since Γ is a finite disjoint union of such closed curves, we get∫
[0,2π]2

IRθrΓ,Rθ′r′Γ(f)FΘ(dθ)FΘ(dθ′) = L2rr′.

It follows that for uniform rotations, we have

Ψ̂XΦ(u, U) = λL(U)E(eiuXΦ(0))
F̂B(u)− 1

iu

(
TC(Γ,R2) +

λ

2
(F̂B(u)− 1)p2

)
.

When moreover B = 1 a.s., we can deduce an exact formula for the mean level total curvature function

of XΦ. Actually, in this case XΦ(0) follows a Poisson law of parameter λa and F̂B(u)−1
iu is the characteristic

function of a uniform random variable Z on [0, 1], while F̂B(u) F̂B(u)−1
iu is the characteristic function of Z + 1.

Then, considering Z independent from XΦ(0) we recognize

Ψ̂XΦ
(u, U) = λL(U)

[
E
(
eiu[XΦ(0)+Z]

)(
TC(Γ,R2)− λ

2
p2

)
+ E

(
eiu[XΦ(0)+Z+1]

) λ
2
p2

]
.

Note also that since here the random field XΦ has integer values, then ∀k ∈ N,

∀t ∈ (k, k + 1], {x ∈ U ;XΦ(x) ≥ t} = {x ∈ U ;XΦ(x) ≥ k + 1},

and therefore E(ψXΦ
(t, U)) = E(ψXΦ

(k + 1, U)).

Hence we may conclude that

(28) ∀k ∈ N, ∀t ∈ (k, k + 1], E(ψXΦ
(t, U)) = λL(U)e−λa

(λa)k

k!

(
TC(Γ,R2)− λ

2
p2 +

p2

2a
k

)
Note that, thanks to Gauss-Bonnet Theorem, we have TC(Γ,R2) = 2πχ(D), so that we may rewrites this as
in (26).

�
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Let us remark that formula (26) only involves the Euler Characteristic, the mean perimeter and the mean
area of the shapes. When k = 0, we find the formula of the mean Euler Characteristic of a rotation invariant
Boolean model as obtained by Mecke and Wagner in [23] and by Mecke in [22] stating that

E(χ({x ∈ U ;X(x) ≥ 1}))
πL(U)

= e−λm0(D)
(
λm2(D)− λ2m1(D)2

)
,

with m0(D) = a, m1(D) = p/2π and m2(D) = χ(D)/π.
The typical behavior of E(ψX(k, U)), as a function of k ∈ N, is the following:

• It starts, when k is small, by being negative. This is explained by the fact that {XΦ ≥ k} is essentially
made of one big connected component with many small holes in it. In particular the minimum value
is achieved for an integer denoted k−. The explicit value of k− can be computed from Equation (28).
The formula is not very nice, but it has a simple asymptotic behavior when λ is large, since then we
have

k− = λa−
√
λa+O(1).

• Then, after k−, the mean level total curvature E(ψXΦ
(k, U)) increases and it crosses 0 in the interval

that contains k0 where

k0 = λa− 2πa

p2 χ(D) = λa+O(1).

For this level, there are as many connected components as holes.
• After k0, the mean level total curvature is positive and it increases till a value k+ and afterwards it

decreases and goes to 0 as k goes to infinity. As for k− the value of k+ is explicit, and its asymptotic
behavior when λ is large is

k+ = λa+
√
λa+O(1).

Example 1: Random disks
We assume here that D = D(0, 1) is a disk of radius 1, and that B = 1 a.s.. In this case we have TC(∂D) =
2πχ(D) = 2π, p = 2πE(R) and a = πE(R2). Note also that since RθrD = rD for all θ, whatever FΘ is, the
shot noise field has the same law than one with marks given by m̃ = (b, r) ∈ [0,+∞)2 ⊂ R2, with distribution
G(dm̃) = FB(db)FR(dr). Then, for all θ, θ′, we may compute, IRθrΓ,Rθ′r′Γ(f) = IrΓ,r′Γ(f) as

rr′
∫ 2π

0

∫ 2π

0

|θ1 − θ2|| sin(θ1 − θ2)|dθ1dθ2 = 2πr × 2πr′.

Hence,

(29) ∀k ∈ N,∀t ∈ (k, k + 1],
1

2π
E(ψXΦ

(t, U)) = λL(U)e−λa
(λa)k

k!

(
1− πλE(R)2 +

E(R)2

E(R2)
k

)
.

An example of such a random field with comparisons between the theoretical value of E(ψXφ(t, U))/2π,
corresponding to mean Euler characteristic of excursion sets, and an empirical estimate on a large domain are
shown on Figure 3. The caption of the figure gives the practical and technical details of the simulation.

Let us quote that we can also compute the mean level total curvature for a non isotropic shape. This is the
case of squares for instance, as developed in the following example.

Example 2: Random squares
We assume here that D is a square of side length 1 and Θ = 0 a.s. or equivalently that marks are given
by m̃ = (b, r) ∈ [0,+∞)2 ⊂ R2, with distribution G(dm̃) = FB(db)FR(dr). In this case, Γ = ∂D is made
of four line segments, with TC(Γ,R2) = 2πχ(D) = 2π, p = 4E(R) and a = E(R2). On the boundary
of a square, the curvature is 0, and it has four corner points with a turning angle equal to π/2. Now,
according to the kinematic formula (27), the only remaining terms are for θ1(s1) = θ2(s2) ± π

2 for which
f(θ1(s1), θ2(s2)) = min(|θ1(s1)− θ2(s2)|, 2π − |θ1(s1)− θ2(s2)|) = π

2 . It follows that

IΓ1,Γ2
(f) =

π

2
× 8r1 × r2.

Therefore

1

2

∫
Rd

∫
R2×Rd

∑
z∈τxRgm∩Rgm′

dS1(νgm(z − x), νgm′ (z))∆
u
m,m′(z − x, z) dxF (dm)F (dm′)

=
(F̂B(u)− 1)2

iu

∫
R2

+

IrΓ,r′Γ(k)FR(dr)FR(dr′) = 2π
(F̂B(u)− 1)2

iu

p2

16
.
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Figure 3. Shot noise random field with indicator functions of random disks. This sample has
been obtained using Matlab, with a domain of size 2000×2000 pixels, a Poisson point process
of intensity λ = 0.001, and random disks of radius R = 50 or R = 100 (each with probability
0.5). Top right figure: empirical Euler Characteristic as a function of the level t (computed
thanks to the Matlab function bweuler), compared with the theoretical value (red stars) of
Equation (29). Bottom line: Three excursion sets corresponding respectively from left to right
to the level t = 15, t = 19 (that is the “critical level” where the Euler Characteristic turns
from negative to positive) and t = 25.

It follows that we get in this case

Ψ̂XΦ
(u, U) = λL(U)E(eiuXΦ(0))

F̂B(u)− 1

iu

(
TC(Γ,R2) + 2πλ(F̂B(u)− 1)

p2

16

)
.

For B = 1 a.s., inverting as previously, we obtain

(30) ∀k ∈ N,∀t ∈ (k, k + 1],
1

2π
E(ψXΦ

(t, U)) = λL(U)e−λa
(λa)k

k!

(
1− λ

16
p2 +

p2

16a
k

)
.

It is illustrated on Figure 4.
This formula generalizes one of the results of Decreusefond et. al. [13]. Actually, considering the Boolean

model made of squares of constant size R = 2ε a.s. for some ε > 0, we get for k = 0, and a > 0,

∀t ∈ (0, 1],
1

2π
E(ψXΦ

(t, [0, a]2)) = λa2e−λ(2ε)2 (
1− λ(2ε)2

)
,

that corresponds to the mean Euler Characteristic of the Boolean model in dimension 2, considered in the
torus of size a > 0 in Theorem 11 of [13].

4. Mean level total curvature of smooth random fields

In this section we consider a smooth stationary random field X defined on R2. Let us introduce some
notations for the derivatives of X. A point x ∈ R2 is defined by its two coordinates x = (x1, x2) and we denote
for i, j = 1, 2

Xi :=
∂X

∂xi
and Xij :=

∂2X

∂xi∂xj
.
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Figure 4. Shot noise random field with indicator functions of random squares. This sample
has been on a domain of size 2000×2000 pixels, a Poisson point process of intensity λ = 0.001,
and random squares of side length R = 50 or R = 100 (each with probability 0.5). Top
right figure: empirical Euler Characteristic as a function of the level t, compared with the
theoretical value (red stars) of Equation (30). Bottom line: Three excursion sets corresponding
respectively from left to right to the level t = 4, t = 6 (that is the “critical level” where the
Euler Characteristic turns from negative to positive) and t = 9.

With these notations it follows that ∇X =

(
X1

X2

)
and D2X =

(
X11 X12

X12 X22

)
. Note that since X is

stationary, for any x ∈ R2,

(X(x),∇X(x), D2X(x))
d
= (X(0),∇X(0), D2X(0)).

When X, ∇X and D2X have also finite second order moment, X(x) and ∇X(x) are not correlated, as well
as ∇X(x) and D2X(x) (see [1] p.31 for instance). This is very useful for Gaussian fields since it implies that
∇X(x) is independent from (X(x), D2X(x)).

4.1. A general result for smooth stationary random fields. Using the result of Section 2.5 and the
stationarity of X, we have the following formula.

Theorem 5. Let X be a stationary C2 random field on R2, such that D2X has a finite expectation. Then,
(ω, t) 7→ ψX(ω)(t, U) ∈ L1(Ω × R). Let us denote ΨX(t, U) = E(ψX(t, U)) for a.e. t ∈ R, then for any h
bounded continuous function on R, one has∫

R
h(t)ΨX(t, U) dt = −L(U)E

(
h(X(0))

D2X(0).(∇X(0)⊥,∇X(0)⊥)

‖∇X(0)‖2

)
.

It follows that when the field X is isotropic, i.e. X ◦ A fdd
= X for all orthogonal matrix A, then the above

formula reduces to ∫
R
h(t)ΨX(t, U) dt = −L(U)E (h(X(0))Xii(0)) , ∀i = 1, 2.

In particular, taking h = 1 we have

E(LTCX(U)) = −L(U)E (X11(0)) = −L(U)E (X22(0)) = 0.
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Assuming moreover that X(0) admits a density pX(0) we get for almost every t ∈ R

ΨX(t, U) = −L(U)E (Xii(0)|X(0) = t) pX(0)(t), ∀i = 1, 2.

Proof. Let h be a bounded continuous function on R. According to Proposition 3, since X is a.s C2, we obtain

LTaCX(U) ≤
∫
U

‖D2X(x)‖2 dx a.s.

and

LTCX(h, U) =

∫
R
h(t)ψX(t, U) dt = −

∫
U

h(X(x))
D2X(x).(∇X(x)⊥,∇X(x)⊥)

‖∇X(x)‖2
dx a.s..

Note that ‖D2X(x)‖2 ≤ |X11(x)|+ |X22(x)|+ 2|X12(x)| so that∫
R
E(|ψX(t, U)|)dt ≤ E (LTaCX(U)) < +∞,

since D2X(x) has finite expectation. Hence (ω, t) 7→ ψX(ω)(t, U) ∈ L1(Ω × R) and using Fubini Theorem we
obtain for ΨX(t, U) = E(ψX(t, U)),∫

R
h(t)ΨX(t, U) dt = E(LTCX(h, U))

= −
∫
U

E
(
h(X(x))

D2X(x).(∇X(x)⊥,∇X(x)⊥)

‖∇X(x)‖2

)
dx

= −L(U)E
(
h(X(0))

D2X(0).(∇X(0)⊥,∇X(0)⊥)

‖∇X(0)‖2

)
,

by stationarity of X.
Under the assumption that the field is isotropic, we can exploit further on this formula. First let us recall that
by Taylor formula, since X is a.s. C2 we have a.s. for all x, z ∈ R2,

X(x+ z) = X(x) + 〈∇X(x), z〉+
1

2
D2X(x).(z, z) + o‖z‖→0(‖z‖2).

In particular we obtain that, for any orthogonal matrix A,

∇(X ◦A)(x) = tA∇X(Ax) and D2(X ◦A)(x) = tA(D2X)(Ax)A.

Writing (e1, e2) the canonical basis of R2, we also have for i = 1, 2,

Xii(x) = lim
ε→0

X(x+ εei) +X(x− εei)− 2X(x)

ε2
,

X12(x) = lim
ε→0

X(x+ ε(e1 + e2)) +X(x− ε(e1 + e2))−X(x+ ε(e1 − e2))−X(x− ε(e1 − e2))

2ε2

Since X ◦A fdd
= X, we deduce that

(X(x),∇X(x), D2X(x))
d
= (X(Ax), tA∇X(Ax), tA(D2X)(Ax)A),

and specifying to x = 0, it follows that

(31) (X(0),∇X(0), D2X(0))
d
= (X(0), tA∇X(0), tA(D2X)(0)A).

Let us introduce the random variable Θ with values in 2πT identified with [0, 2π) such that

∇X(0) =

(
X1(0)
X2(0)

)
= ‖∇X(0)‖

(
cos Θ
sin Θ

)
.

For any θ ∈ [0, 2π) let us consider a rotation matrix Rθ =

(
cos θ − sin θ
sin θ cos θ

)
and a reflexion matrix Sθ =(

cos θ sin θ
sin θ − cos θ

)
. Let us quote that R−θ∇X(0) = tRθ∇X(0) = ‖∇X(0)‖

(
cos(Θ− θ)
sin(Θ− θ)

)
, Sθ∇X(0) =

tSθ∇X(0) = ‖∇X(0)‖
(

cos(θ −Θ)
sin(θ −Θ)

)
. From (31) with A = Rθ and A = Sθ we have that

(X(0), ‖∇X(0)‖,Θ, D2X(0))
d
= (X(0), ‖∇X(0)‖,Θ− θ, tRθD2X(0)Rθ)
d
= (X(0), ‖∇X(0)‖, θ −Θ, tSθD

2X(0)Sθ)
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It follows that

(X(0), ‖∇X(0)‖,Θ, tRθD2X(0)Rθ)
d
= (X(0), ‖∇X(0)‖,Θ + θ,D2X(0))

(X(0), ‖∇X(0)‖,Θ, tSθD2X(0)Sθ)
d
= (X(0), ‖∇X(0)‖, θ −Θ, D2X(0))

But tRθD
2(X)(0)Rθ.(ei, ei) = tSθD

2(X)(0)Sθ.(ei, ei) and tRθD
2(X)(0)Rθ.(e1, e2) = − tSθD

2(X)(0)Sθ.(e1, e2),
for i = 1, 2. Hence we can deduce that

(X(0), ‖∇X(0)‖,Θ + θ,X11(0), X22(0), X12(0))
d
= (X(0), ‖∇X(0)‖, θ −Θ, X11(0), X22(0),−X12(0)),

from which we have for all θ ∈ [0, 2π),

(32) (X(0), ‖∇X(0)‖,Θ, X11(0), X22(0), X12(0))
d
= (X(0), ‖∇X(0)‖, 2θ −Θ, X11(0), X22(0),−X12(0)).

Now,

E
(
h(X(0))

D2X(0).(∇X(0)⊥,∇X(0)⊥)

‖∇X(0)‖2

)
= E

(
h(X(0))

(
X11(0) sin2 Θ +X22(0) cos2 Θ− 2X12(0) sin Θ cos Θ

))
Choosing θ = π

4 in (32) we get on the one hand

E(h(X(0))[X11(0) sin2 Θ +X22 cos2 Θ]) = E(h(X(0))[X11(0) cos2 Θ +X22 sin2 Θ]).

Therefore, adding the two side,

E(h(X(0))[X11(0) sin2 Θ +X22 cos2 Θ]) =
1

2
E(h(X(0))[X11(0) +X22]).

On the other hand

E(h(X(0))X12(0) sin Θ cos Θ) = E(h(X(0))[−X12(0)] cos Θ sin Θ),

implying that E(h(X(0))X12(0) sin Θ cos Θ) = 0. Finally, considering Sθ with θ = π
2 , we have (X(0), X11(0))

d
=

(X(0), X22(0)), that concludes the proof for the formula. Recall that since X is stationary, all its derivatives
are centered so that E(LTCX(U)) = 0, by taking h = 1 in the above formula.

When, moreover X(0) admits a density pX(0), we can further write

E(h(X(0))Xii(0)) =

∫
R
h(t)E(Xii(0)|X(0) = t)pX(0)(t)dt,

such that for any continuous bounded function h∫
R
h(t)ΨX(t, U) dt =

∫
R
h(t)

(
−L(U)E(Xii(0)|X(0) = t)pX(0)(t)

)
dt,

implying that, for almost every t ∈ R,

ΨX(t, U) = −L(U)E (Xii(0)|X(0) = t) pX(0)(t).

�

Remark. Let us quote that using twice (32), we also get that for any θ, θ′,

(X(0), ‖∇X(0)‖,Θ + θ′, X11(0), X22(0), X12(0))
d
= (X(0), ‖∇X(0)‖, 2θ −Θ + θ′, X11(0), X22(0),−X12(0))
d
= (X(0), ‖∇X(0)‖, 2(θ + θ′/2)−Θ, X11(0), X22(0),−X12(0))
d
= (X(0), ‖∇X(0)‖,Θ, X11(0), X22(0), X12(0)).

Hence we may deduce that the conditional law of Θ knowing (X(0), ‖∇X(0)‖, X11(0), X22(0), X12(0)) is uni-
form on [0, 2π] (see [11] for instance) and therefore Θ is also independent from (X(0), ‖∇X(0)‖, X11(0), X22(0), X12(0)).
Finally, let us mention that for Gaussian random field, invariance under all orthogonal matrices is a direct
consequence from invariance under all rotation matrices. This follows from the fact that its covariance function
must be radial.
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Remark. As we were finishing this paper, we found a similar recent result (see Corollary 2.3 of [20]) that
should rewrite in our stationary setting, under additional assumption on X, as

E
(∫

R
h(t)χ(EX(t, U)) dt

)
= −L(U)E

(
h(X(0))

[
2∑
i=1

1I∇X(0)∈QiXii(0)

]
+ h′(X(0))

[
2∑
i=1

1I∇X(0)∈QiXi(0)2

])
,

for h : R → R a C1 function with compact support, Q1 = {x = (x1, x2);x2 < x1 < 0} and Q2 = {x =
(x1, x2);x1 < x2 < 0}. Under the assumption that X is also isotropic, according to Remark 2.5 of [20],

E
(
h′(X(0))1I∇X(0)∈QiXi(0)2

)
=
π − 2

16π
E
(
h′(X(0))‖∇X(0)‖2

)
.

Note that by stationarity

E
(
h′(X(0))Xi(0)2

)
=

∫ 1

0

E
(
h′(X(tei))Xi(tei)

2
)
dt = E

(∫ 1

0

h′(X(tei))Xi(tei)
2dt

)
= −E

(∫ 1

0

h(X(tei))Xii(tei)
2dt

)
= −E (h(X(0))Xii(0)) ,

integrating by parts and using E (h(X(ei))Xi(ei)) = E (h(X(0))Xi(0)). Moreover, by (32),

E
(
h(X(0))1I∇X(0)∈QiXii(0)

)
= E

(
h(X(0))1IΘ∈π+π

4 (i−1,i)Xii(0)
)

=
1

8
E (h(X(0))Xii(0)) .

It follows that

E
(∫

R
h(t)χ(EX(t, U)) dt

)
= −L(U)

2∑
i=1

(
1

8
− π − 2

8π

)
E (h(X(0))Xii(0)) =

1

2π

∫
R
h(t)ΨX(t, U) dt,

by Theorem 5.

Example. Let X be a stationary isotropic Gaussian random field. Then,

E (X11(0)|X(0)) =
Cov(X(0), X11(0))

Var(X(0))
X(0) =

∂2
1ρX(0)

ρX(0)
X(0) =

−λ2

σ2
X(0),

where ρX(x) = Cov(X(x), X(0)), σ2 = ρX(0) and λ2 denotes the second spectral moment. Hence, we get in
this case that, for almost every t ∈ R,

ΨX(t, U) = L(U)
λ2

σ2
t

1

σ
√

2π
e−

t2

2σ2 .

Let us emphasize that this is exactly the formula obtained for 2πE (χ (EX(t, U))), stated for all t ∈ R, under
additional assumptions on X (see (3.2.8) of [2] for instance).
Examples of such stationary isotropic random fields with comparisons between the theoretical values of
E(ψX(t, U))/2π (corresponding to the mean Euler characteristic of excursion sets) and an empirical estimate
on the square of fixed size [0, 1] are shown on Figure 5 and 6 (with σ2 = 1 and λ2 = 2T 2). The captions of the
figures give the practical and technical details on simulations. Note that in view of the covariance functions a
scaling relation may be set between T and the size of the square.

Actually, in the review paper of Adler [2], several “equivalent” definitions of the Euler Characteristic of an
excursion set are given. The equivalence of the different definitions involves deep results of differential geometry,
mainly the Gauss-Bonnet theorem and the Morse theory. We summarize here three definitions of the mean
Euler Characteristic of an excursion set EX(t;U), not taking into account the boundary of U = (0, 1)2. In
the following, we assume that (X(0),∇X(0), D2X(0)) have a joint density of probability on R × R2 × R3,
where here the Hessian matrix D2X(0) is seen as the vector (X11(0), X22(0), X12(0)) in R3. We denote by
p : (t, y1, y2, a, b, c) ∈ R6 7→ p(t, y1, y2, a, b, c) this joint probability density. The additional hypothesis needed
for all the following formulas to be well-defined will be given in the statement of Theorem 6.

(1) Using the recursive formula that consider intersections with horizontal lines, a first way to define the
mean Euler Characteristic of the excursion set of level t is

χ1(t) = −E(X2(0)X11(0)1IX2(0)>0|(X,X1) = (t, 0))pX,X1
(t, 0),

where pX,X1 is the density of (X(0), X1(0)). We can rewrite this as

χ1(t) = −
∫
ay21Iy2>0 p(t, 0, y2, a, b, c) dy2 da db dc.
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Figure 5. Gaussian random field with covariance ρ(x) = e−T
2‖x‖2 for T = 10. This sample

has been obtained using Matlab, with a discretized domain of size 210 × 210 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level t (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (35). Bottom line: Three excursion sets corresponding respectively
from left to right to the level t = −1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and t = 1.

This formula amounts to count the mean number of points that are such that X(x) = t and such that
the set EX(t;U) is locally above the horizontal line passing through x.

(2) The second definition is a consequence of Morse Theorem: it is the signed sum (according the index
of the Hessian matrix) of the number of critical points of X (i.e. points such that ∇X(x) = 0) and
that are above the level t. That gives the second formula, introducing p∇X the density of ∇X(0),

χ2(t) = E(det(D2X(0))1IX(0)≥t|∇X(0) = 0)p∇X(0) =

∫
(ab− c2)1Is≥t p(s, 0, 0, a, b, c) ds da db dc.

(3) The third formula comes from the Gauss-Bonnet theorem, that we have recalled in Section 2.2. Since we
don’t consider boundary terms, the third definition for the mean Euler Characteristic of the excursion
set becomes

χ3(t) = − 1

2π

∫
ay2

2 + by2
1 − 2cy1y2

y2
1 + y2

2

p(t, y1, y2, a, b, c) dy1 dy2 da db dc.

With our notations for the mean level total curvature, this third definition is also

χ3(t) =
1

2π
E(ψX(t, U)).

We now show that these three definitions are equal. This is a known fact, but the interesting point is that
the proof only uses the stationarity of X and doesn’t need any result of differential geometry!

Theorem 6. Let X be a stationary C2 random field on R2, such that X, ∇X and D2X have finite second
order moment. We moreover assume that
(A1) The joint probability density p of (X(0),∇X(0), D2X(0)) exists and is continuous on R6,
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Figure 6. Gaussian random field with covariance ρ(x) = e−T
2‖x‖2 for T = 100. This sample

has been obtained using Matlab, with a discretized domain of size 210 × 210 pixels, using
circulant embedding matrix. Top right figure: empirical Euler Characteristic as a function of
the level t (computed thanks to the Matlab function bweuler), compared with the theoretical
value (red one) of Equation (35). Bottom line: Three excursion sets corresponding respectively
from left to right to the level t = −1, t = 0 (that is the “critical level” where the Euler
Characteristic turns from negative to positive), and t = 1.

(A2) There exists a constant C > 0 such that for all i, j = 1 or 2, and for all t, y1, y2 ∈ R,

E(Xij(0)2 | (X(0), X1(0), X2(0)) = (t, y1, y2))pX,X1,X2
(t, y1, y2) ≤ C

and E(Xi(0)2 | (X(0), Xj(0)) = (t, yj))pX,Xj (t, yj) ≤ C.

Then, the stationarity of X implies that

∀t ∈ R, χ1(t) = χ2(t) = χ3(t).

Proof. Let us first notice that thanks to the hypothesis on X, the three functions χ1, χ2 and χ3 are well-defined
and continuous on R.

In the following we will denote by φ the Gaussian function on R, given by

∀s ∈ R, φ(s) =
1√
2π
e−s

2/2.

And we will denote by Φ its primitive given by Φ(s) =
∫ s
−∞ φ(v) dv. (This notation Φ is also the same as the

notation of the Poisson Point Process, but we believe the context is clear and there is no danger of confusion).
The two functions φ and Φ will be used, with a rescaling of parameter ε > 0 to approximate respectively the
Dirac distribution at 0 and the indicator function of R+.

Let h be a bounded continuous function on R and let H denote a primitive of h. We consider the three
following integrals: I1, I2 and I3, given by Ii =

∫
h(t)χi(t) dt, and we will show that they are equal (we drop

the point notation (0) in the following for sake of conciseness). Since the χi are continuous, this will imply
that they are equal on R.
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We start, thanks to the hypothesis (A1) and (A2), by rewriting I1 as a limit:

I1 =

∫
h(t)ψ1(t) dt = −

∫
h(t)ay21Iy2>0 p(t, 0, y2, a, b, c) dy2 da db dc dt

= − lim
ε→0

E
[
h(X)X2X11Φ

(
X2

ε

)
1

ε
φ

(
X1

ε

)]
In the same way we can rewrite I2 as a limit:

I2 :=

∫
h(t)ψ2(t) dt =

∫
h(t)(ab− c2)1Is≥t p(s, 0, 0, a, b, c) ds da db dc dt

= lim
ε→0

E
[
H(X)(X11X22 −X2

12)
1

ε2
φ

(
X1

ε

)
φ

(
X2

ε

)]
And we recall that I3 is given by:

I3 :=

∫
h(t)ψ3(t) dt = − 1

2π

∫
ay2

2 + by2
1 − 2cy1y2

y2
1 + y2

2

p(t, y1, y2, a, b, c) dy1 dy2 da db dc dt

= − 1

2π
E
[
h(X)

X11X
2
2 +X22X

2
1 − 2X12X1X2

X2
1 +X2

2

]
.

For ε > 0, let us denote

Iε1 = E
[
h(X)X2X11Φ

(
X2

ε

)
1

ε
φ

(
X1

ε

)]
and Iε2 = E

[
H(X)(X11X22 −X2

12)
1

ε2
φ

(
X1

ε

)
φ

(
X2

ε

)]
.

We first notice that we can also write

Iε2 = E
[
H(X)

∂

∂x1
φ

(
X1

ε

)
∂

∂x2
Φ

(
X2

ε

)]
− E

[
H(X)

∂

∂x2
Φ

(
X1

ε

)
∂

∂x1
Φ

(
X2

ε

)]
.

Then, by stationarity of X, we have that

0 =
∂

∂x2
E
[
H(X)

∂

∂x1
Φ

(
X1

ε

)
Φ

(
X2

ε

)]
and 0 =

∂

∂x1
E
[
H(X)

∂

∂x2
Φ

(
X1

ε

)
Φ

(
X2

ε

)]
.

Computing these two partial derivatives, and considering their difference, some terms cancel and we get

Iε2 = E
[
X1h(X)

∂

∂x2
Φ

(
X1

ε

)
Φ

(
X2

ε

)]
− E

[
X2h(X)

∂

∂x1
Φ

(
X1

ε

)
Φ

(
X2

ε

)]
= E

[
X1h(X)X12

1

ε
φ

(
X1

ε

)
Φ

(
X2

ε

)]
+ Iε1 .

Now, as ε goes to 0 the first term of the right-hand side goes to 0, and thus

I1 = I2.

In the definition of χ1(t), the idea was to consider horizontal sections of the excursion set. But it is natural
to consider also the sections in any other direction. For α ∈ [0, 2π), we first introduce the partial derivatives
in the direction α and α⊥ = α+ π

2 by:

∂

∂eα1
= cosα

∂

∂x1
+ sinα

∂

∂x2
and

∂

∂eα2
= − sinα

∂

∂x1
+ cosα

∂

∂x2
.

Then, the equivalent of Iε1 in the direction α is given by

Iε1(α) = −E
[
h(X)

∂X

∂eα2

∂2X

∂e2
α1

Φ

(
∂X

∂eα2

)
1

ε
φ

(
1

ε

∂X

∂eα1

)]
.

The same computations as above with the partial derivatives in the directions α and α⊥ show that

I1(α) = lim
ε→0

E
[
det(D2

αX)H(X)
1

ε2
φ

(
1

ε

∂X

∂eα1

)
φ

(
1

ε

∂X

∂eα2

)]
= I2.

Indeed, computing the partial derivatives in the directions α et α⊥ amounts to apply a rotation of angle α to
the gradient of X, and this doesn’t change the norms, nor the determinant of the Hessian.
Therefore we also have

I2 =
1

2π

∫ 2π

0

I1(α) dα.
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To end the proof, we show that the integral on the right-hand side is equal to I3. Indeed, we have

I1(α) = −
∫
y1Iy>0h(t)(a cos2 α+ b sin2 α+ 2c sinα cosα)p(t,−y sinα, y cosα, a, b, c) dt dy da db dc.

Then, integrating on α, and making the polar change of variable y1 = −y sinα and y2 = y cosα, we get∫ 2π

0

I1(α) dα =

∫
h(t)

ay2
2 + by2

1 − 2cy1y2

y2
1 + y2

2

p(t, y1, y2, a, b, c) dt dy1 dy2 da db dc = 2πI3.

�

4.2. Smooth shot noise random fields. As in Section 3, we consider here a shot noise random field defined
on R2 by

∀x ∈ R2, XΦ(x) =
∑
i∈I

gmi(x− xi),

where Φ = {(xi,mi)}i∈I is a Poisson point process on R2 × Rd of intensity λL × F , with λ > 0 real, L the
Lebesgue measure on R2 and F a probability measure on Rd. In order to get explicit formulas we have to make
an assumption of isotropy. Moreover, since smooth shot noise random fields do not always admit a probability
density (we have discussed this through several examples in our first paper [9]) we have to work with their
characteristic functions.

Theorem 7. Let assume that g : R2×Rd → R is a measurable function such that for F -almost every m ∈ Rd
the functions gm := g(·,m) are C3 on R2 satisfying

(33)

∫
R2×Rd

|Djgm(x)| dxF (dm) < +∞,

for all j = (j1, j2) ∈ N2 with |j| = j1 + j2 ≤ 3 and where Djgm = ∂|j|gm

∂x
j1
1 ∂x

j2
2

. Then XΦ is a.s. a stationary C2

field such that D2X has finite expectation, ensuring the assumptions of Theorem 5.
We assume moreover that m = (m̃, θ) ∈ Rd−1× [0, 2π] ⊂ Rd and F (dm) = G(dm̃)FΘ(dθ), with FΘ the uniform
law on [0, 2π], and

g(· , m) = g(· , (m̃, θ)) = g̃(Rθ· , m̃),

for F -a.e. m, with g̃(S0· , m̃) = g̃(· , m̃), recalling that S0 =

(
1 0
0 −1

)
and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. Then

XΦ is isotropic and the Fourier transform of ΨXΦ
(·, U) is given for all u ∈ R by, for all j = 1, 2,

Ψ̂XΦ(u, U) = −λL(U)E
(
eiuXΦ(0)

)(∫
Rd

∫
R2

∂2
j gm(x)eiugm(x) dxF (dm)

)
,

where the notation ∂2
j stands for ∂2

∂x2
j
.

Remark: Note that when g(A· , m) = g(· , m), for all orthogonal matrix A, XΦ has the same law as the
shot noise random field given with marks m̃ ∈ Rd−1 of law G(dm̃).

Proof. Following similar arguments as in Proposition 3 of [9], (33) will ensure that XΦ is a.s. a stationary
C2 field such that D2X has finite expectation, and we can differentiate under the sum. In particular, for all
j = 1, 2,

∂2
jXΦ(x) =

∑
i∈I

∂2
j gmi(x− xi).

Hence the general formula of Theorem 5 is valid for XΦ.

Under the additional assumption on the kernel, we can prove isotropy. Actually, for any k ≥ 1, u1, · · · , uk ∈
R and y1, · · · , yk ∈ R2, one has

E
(
ei

∑k
j=1 ujXΦ(yj)

)
= exp

(
λ

∫
Rd

∫
R2

(eiu
∑k
j=1 ujgm(yj−x) − 1) dxF (dm)

)
.

Hence, for any orthogonal matrix A, by the change of variables x = Ay,

E
(
ei

∑k
j=1 ujXΦ(Ayj)

)
= exp

(
λ

∫
Rd

∫
R2

(eiu
∑k
j=1 ujgm(A(yj−y)) − 1) dy F (dm)

)
Note that there exists θ0 ∈ [0, 2π) such that A = Sθ0 or A = Rθ0 but for m = (m̃, θ),

gm ◦ Sθ0 = g̃m̃ ◦RθSθ0 = g̃m̃ ◦ S0RθSθ0 = g̃m̃ ◦R−θ−θ0 .
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Figure 7. Hexagonal tiling restricted to a square domain (0, T )2. The centers (set Cε) of the
hexagons are the black stars, and the vertices (set Rε) are the points marked by a red circle.

The distance between two neighbouring centers is
√

3ε and the side length of the hexagons is
ε.

Since, FΘ is the uniform law, we may assume without loss of generality that

E
(
ei

∑k
j=1 ujXΦ(Ayj)

)
= exp

(
λ

∫
Rd

∫
R2

(eiu
∑k
j=1 ujgm(Rθ0 (yj−y)) − 1) dy F (dm)

)
= exp

(
λ

∫
Rd

∫
R2

(eiu
∑k
j=1 ujgm(yj−y) − 1) dy F (dm)

)
= E

(
ei

∑k
j=1 ujXΦ(yj)

)
using the fact that RθRθ0 = Rθ0+θ and FΘ uniform.

It follows that by Theorem 5, for any h bounded continuous function on R, one has∫
R
h(t)ΨXΦ

(t, U) dt = −L(U)E
(
h(XΦ(0))∂2

jXΦ(0)
)
, ∀j = 1, 2.

Taking h = eiu· for u ∈ R we obtain

Ψ̂XΦ
(u, U) = −L(U)E

(
eiuXΦ(0)∂2

jXΦ(0)
)

= iL(U)
∂

∂v
ϕXΦ,∂2

jXΦ
(u, 0),

where ϕXΦ,∂2
jXΦ

is the characteristic function of (XΦ(0), ∂2
jXΦ(0)) given by, for (u, v) ∈ R2

ϕXΦ,∂2
jXΦ

(u, v) = E
(
ei[uXΦ(0)+v∂2

jXΦ(0)]
)

= exp

(
λ

∫
Rd

∫
R2

(eiugm(x)+iv∂2
j gm(x) − 1) dxF (dm)

)
.

Then,

Ψ̂XΦ
(u, U) = −L(U)λ

(∫
Rd

∫
R2

∂2
j gm(x)eiugm(x) dxF (dm)

)
ϕXΦ

(u),

with ϕXΦ
= ϕXΦ,∂2

jXΦ
(·, 0) the characteristic function of XΦ(0). �

Let us also mention that in the recent paper [20] such a formula is also proposed in a similar isotropic
framework in Theorem 3.3.

4.3. Link with discretization of a smooth Gaussian field. In the previous sections of this paper, we have
considered two types of functions: the elementary (piecewise constant) ones and the smooth ones. Now, given
a regular tiling of the plane, one may consider a discretization of a smooth function f by taking it constant
on each tile. This is a classical setting when doing numerical simulations where functions are seen as images
discretized on pixels. But using pixels (that are small squares) is not very convenient since at each point of
the dual grid, we have to order the 4 neighbouring values to be able to compute the level total curvature. In
the following, we will consider a more convenient tiling given by regular hexagons (since here there will be
only 3 neigbouring values).
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Let us first introduce some notations for the tiling with hexagons. Let ε > 0 and for θ ∈ R, let us denote
by eθ the unit vector of coordinates (cos θ, sin θ). Let us consider a regular tiling with hexagons of “size” ε
where the set of the centers of the hexagons is given by

Cε = {k1

√
3εe0 + k2

√
3εeπ/3 ; k1, k2 ∈ Z} = {((k1 +

1

2
k2)
√

3ε,
3

2
k2ε) ; k1, k2 ∈ Z}

The distance between the centers of two neighbouring hexagons is
√

3ε, the side length of the hexagons is ε

and the area of each hexagon is 3
√

3
2 ε2. The vertices of the hexagons is the set of points Rε given by

Rε = Cε + {εeπ
6 +nπ3

; 0 ≤ n ≤ 5}.

On Figure 7, we show such a tiling with regular hexagons. The points of Cε are plotted with black stars and
the points of Rε are the vertices of the hexagons marked by small red circles. For z ∈ Cε we will denote by
D(z, ε) the (open) hexagon of center z and size ε. Notice that the distance between a vertex x ∈ Rε and the
centers of its three neigbouring hexagons is equal to ε.

Let f be a function defined on R2, and let us consider a tiling with regular hegaxons of size ε > 0. We then
consider a discretized version fε of f defined by

(34) ∀x ∈ R2, fε(x) =
∑
z∈Cε

f(z)1ID(z,ε)(x).

The function fε is piecewise constant, and the set of its discontinuity points is given by the hexagons edges,
such that κfε = 0. Each vertex x ∈ Rε separates three values of fε and therefore can not be seen as a corner
point or as an intersection point, as defined in Definition 3. However we can still compute the level total
curvature of fε following the same line as for elementary functions. If we denote for each vertex x ∈ Vε, its

three ordered neighbouring values by f
(1)
ε (x) ≤ f (2)

ε (x) ≤ f (3)
ε (x), we obtain the following proposition.

Proposition 4. Let U ⊂ R2 be open and bounded, and let f be defined on U . Then for all ε > 0, the function
fε is of finite level total curvature integral with

LTaCfε(U) =
π

3

∑
x∈Vε∩U

[f (3)
ε (x)− f (1)

ε (x)].

Moreover, for h a bounded continuous function on R, and H a primitive of h, the level total curvature integral
of fε is given by

LTCfε(h, U) =
π

3

∑
x∈Vε∩U

[H(f (3)
ε (x)) +H(f (1)

ε (x))− 2H(f (2)
ε (x))].

In particular,

LTCfε(U) =
π

3

∑
x∈Vε∩U

[f (3)
ε (x) + f (1)

ε (x)− 2f (2)
ε (x)].

When f is a smooth function, we may hope that LTCfε(h, U) will converge, as ε goes to 0 to some limit.
Now, because of the ordering of the three neighbouring values of each vertex, such a result is difficult to obtain
in general. Now, if we consider that f is in fact a smooth random field X, assuming moreover Gaussianity
and isotropy, one can compute the level total curvature in expectation, and find its limit as ε goes to 0. This
is the aim of the following theorem.

Theorem 8. Let X be a Gaussian stationary isotropic random field on R2 admitting a finite spectral moment
of order 2: λ2 = −∂2

1ρX(0) = −∂2
2ρX(0), where ρX(x) = Cov(X(x), X(0)) for x ∈ R2. Let T > 0 and

U = (0, T )2. For any ε > 0, let us denote Xε the discretized field defined by (34). Then (ω, t) 7→ ψXε(ω)(t, U) ∈
L1(Ω× R). Let us denote

ΨXε(t, U) = E(ψXε(t, U)) = E(TC(∂EXε(t, U) ∩ U).

Then, for a.e. t ∈ R,

(35) ΨXε(t, U) −→
ε→0

ΨX(t, U) = L(U)λ2σ
−2 t

σ
√

2π
e−

t2

2σ2 ,

with σ2 = ρX(0) = VarX(0).
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Remark. Let us recall that according to Theorem 3.2.2 of [2], when X satisfies strong additional properties,
for all level t ∈ R, the mean Euler Characteristic of excursion set is given by

E (χ (EX(t, U))) =
1

2π
L(U)λ2σ

−2 t

σ
√

2π
e−

t2

2σ2 .

See also Figure 5 and 6 for illustration.

Proof. We first assume that X is a centered stationary isotropic Gaussian random field, with unit variance
(σ2 = 1) and with covariance function given by

∀t, s ∈ R2, ρX(t) = Cov(X(t+ s), X(s)) = ρ(‖t‖2),

for ρ : R → R, a C2 function on R and note that λ2 = −2ρ′(0). Let ε > 0 and consider Xε defined by (34)
with X instead of f . For T > 0 we will consider the level total curvature of Xε on U = (0, T )2. Note that, by
stationary and isotropy, for any x ∈ Vε,

(X(1)
ε (x), X(2)

ε (x), X(3)
ε (x))

d
=

(
X(1)(ε

√
3

3
e), X(2)(ε

√
3

3
Re), X(3)(ε

√
3

3
R2e)

)
,

where e ∈ S1 is a unit vector of R2 and R is the rotation of angle 2π
3 . Our assumptions imply that the

3-dimensional random vector (X1
ε , X

2
ε , X

3
ε ) := (X(ε

√
3

3 e), X(ε
√

3
3 Re), X

(3)(ε
√

3
3 R

2e) is a centered Gaussian
vector with covariance matrix given by  1 ρ(ε2) ρ(ε2)

ρ(ε2) 1 ρ(ε2)
ρ(ε2) ρ(ε2) 1

 .

Hence, it is a correlated Gaussian vector with equal correlation and hence exchangeable. Since ρ(0) = σ2 = 1,
we may choose ε in such a way that ρ(ε2) > 0. In this case, denoting as usual φ the standard normal density
and Φ its cumulative distribution, marginal densities of order statistics are given for 1 ≤ i ≤ 3 by: (see
Corollary 6.1.1 of [27])

g(i)(x) =

∫
R

1√
1− ρ(ε2)

f(i)

(
x+

√
ρ(ε2)z√

1− ρ(ε2)

)
φ(z)dz,

with
f(1)(y) = 3Φ(−y)2φ(y), f(2)(y) = 6Φ(y)Φ(−y)φ(y), and f(3)(y) = 3Φ(y)2φ(y),

corresponding to the marginal densities of the ordered statistics of an i.i.d. standard Gaussian vector. It
follows that the random variable LTaCXε(U) has finite expectation and we can define the L1(R) function

ΨXε(t, U) = E(ψXε(t, U)) = E(TC(∂EXε(t, U) ∩ U)).

Moreover, by Fubini Theorem, for any function h continuous and bounded, the random variable LTCXε(h, U)
is integrable and∫

R
h(t)ΨXε(t, U)dt = E (LTCXε(h, U)) =

π

3
# (Vε ∩ U)E

(
H(X(3)

ε ) +H(X(1)
ε )− 2H(X(2)

ε )
)
,

with

E
(
H(X(3)

ε ) +H(X(1)
ε )− 2H(X(2)

ε )
)

=

∫
R
H(x)[g(3)(x) + g(1)(x)− 2g(2)(x)]dx

= 3

∫
R

∫
R
H(y

√
1− ρ(ε2)−

√
ρ(ε2)z)[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)φ(z)dydz,

after the change of variables y =
x+
√
ρ(ε2)z√

1−ρ(ε2)
. Note that, integrating by parts, we have∫

R
Φ(y)Φ(−y)φ(y)dy =

1

2

∫
R

Φ(y)2φ(−y)dy.

Hence by parity of φ,

(36)

∫
R

[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)dy = 0.

Moreover, by odd parity we get

(37)

∫
R

[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]yφ(y)dy = 0.
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It follows that for h = 1,

E (LTCXε(U)) =

∫
R

ΨXε(t, U)dt = 0.

Now let u 6= 0 and consider the functions t 7→ ju(t) = eiut and Ju(t) = eiut−1
iu . Then, denoting by φ̂ the Fourier

transform of φ, we have

E
(
Ju(X(3)

ε ) + Ju(X(1)
ε )− 2Ju(X(2)

ε )
)

= 3

∫
R

∫
R

eiu[y
√

1−ρ(ε2)−
√
ρ(ε2)z] − 1

iu
[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)φ(z)dydz

= 3φ̂(u
√
ρ(ε2))

∫
R

eiu[y
√

1−ρ(ε2)]

iu
[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)dy,

using (36). By Taylor-Lagrange and assumption on ρ, assuming that ε < 1, we get that∣∣∣∣∣eiu[y
√

1−ρ(ε2)] − 1− iu[y
√

1− ρ(ε2)] +
(uy)2

2

∫ ε2

0

(−ρ′(s))ds

∣∣∣∣∣ ≤ |uy|33!
max
[0,1]
|ρ′|3/2ε3,

Using (36) and (37), it follows that∣∣∣ ∫
R

eiu[y
√

1−ρ(ε2)]

iu
[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)dy

− iu

2

(∫ ε2

0

(−ρ′(s))ds

)∫
R
y2[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)dy

∣∣∣
≤ u2 max

[0,1]
|ρ′|3/2ε3

∫
R
|y|3φ(y)dy.

But, denoting by Hk the Hermite polynomial of order k defined by Hk = (−1)kφ(k)φ−1, since H2(y) = y2− 1,
by (36) we get∫

R
y2[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)dy =

∫
R
H2(y)[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ(y)dy

=

∫
R

[Φ(y)2 + Φ(−y)2 − 4Φ(y)Φ(−y)]φ′′(y)dy

= −
∫
R

[6Φ(y)− 6Φ(−y)]φ(y)φ′(y)dy

= 12

∫
R
yφ(y)2Φ(y)dy,

by integration by parts. But

12

∫
R
yφ(y)2Φ(y)dy =

6

π

∫
R
ye−y

2

Φ(y)dy =
3

π

∫
R
e−y

2

φ(y)dy =
3√
3π
,

integrating again by parts and recognizing the density of a centered Gaussian variable with variance 1/3.
Hence,

E
(
Ju(X(3)

ε ) + Ju(X(1)
ε )− 2Ju(X(2)

ε )
)

=
32iu

2
√

3π

(∫ ε2

0

(−ρ′(s))ds

)
φ̂(u
√
ρ(ε2)) + o(ε2).

Now since U = (0, T )2, the number of vertices in U is about two times the number of hexagons centers, such
that # (Vε ∩ U) = 2T 2 2√

3
ε−2 + o(ε−2). Therefore, since L(U) = T 2,

E (LTCXε(ju, U)) =
π

3
2L(U)

2√
3

32iu

2
√

3π
(−ρ′(0))φ̂(u) + o(1) = L(U)(−2ρ′(0))Ĥ1φ(u) + o(1).

It follows that we have the pointwise convergence

̂ΨXε(·, U) −→
ε→0
L(U)(−2ρ′(0))Ĥ1φ(u).

But we can bound ̂ΨXε(·, U) uniformly on ε by a function in L1(R) such that by inverse Fourier transform,
they are also pointwise convergent according to Lebesgue Theorem. Fourier transform injectivity in L1(R)
gives the conclusion for a.e. t ∈ R, once we have noticed that λ2 = −2ρ′(0).
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For the general case, since σ2 = Var(X(x)), the Gaussian random field X/σ is itself unit variance with
covariance ρX/σ

2. The assumption on spectral moment, due to isotropy, implies that ρX is C2 on R2 and
satisfies ∂1ρX(0) = ∂2ρX(0) = ∂1∂2ρX(0) = 0, while ∂2

1ρX(0) = ∂2
2ρX(0) = λ2. It follows that, for e ∈ S1, the

function ρ(t) = 1
σ2 ρX(

√
|t|e) is C1 on R and satisfies Cov(X(x)/σ,X(0)/σ) = ρ(‖x‖2) with ρ′(0) = −λ2

σ2 . But

ΨXε(t, U) = E(TC(∂EXε(t, U) ∩ U) = E(TC(∂EXε/σ(t/σ, U) ∩ U).

By the previous proof we know that

E(TC(∂EXε/σ(t/σ, U) ∩ U) −→
ε→0
L(U)(−2ρ′(0))(H1φ)(t/σ),

and conclude for the proof since L(U)(−2ρ′(0))(H1φ)(t/σ) = L(U)λ2

σ2
t
σ e
− t2

2σ2 . �
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[18] R. Lachièze-Rey. Bicovariograms and Euler characteristic I. Regular sets. Technical report, MAP5, Univ. Paris Descartes,
2015. https://arxiv.org/abs/1510.00501.
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