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learning

Yuxin Chen Jean-Baptiste Bordés David Filliat
U2IS, ENSTA ParisTech, Inria FLOWERS team, Univegsitaris Saclay, Palaiseau, France
YEcole Polytechnique, Palaiseau, France

Abstract—Humans can learn word-object associations from
ambiguous data using cross-situational learning and have been
shown to be more ef cient when actively choosing the learning l \
sample order. Implementing such a capacity in robots has been *
performed using several models, among which are the latent-topic
learning models based on Non-Negative Matrix Factorization and
Latent Dirichlet Allocation. We compare these approaches on the
same data in a batch and in an incremental learning scenario
to analyze their strength and weaknesses and furthermore show
that they can be the basis for ef cient active learning strategies.
The proposed modeling deals with both the referential ambiguity
and the noisy linguistic descriptions and is grounding meanings
of object's modal features (color and shape) and not only the Fig. 1. Example of an ambiguous teaching situation presenting referential
object identity. The resulting active learning strategy is briey and linguistic ambiguities.
discussed in comparison with active cross-situational learning of
object names performed by humans.
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treated by latent topic discovery approaches [8] that will nd
the underlying element (the object or feature) that will generate
Learning new words describing objects and their meaheoth the visual perception and the associated word. Among
ings during direct interaction between a robot and a humémese approaches, we focus in this paper on comparing Non
is a challenging task. This problem, related to the symbblegative Matrix Factorization (NMF) [9] and Latent Dirichlet
grounding problem [1], faces several sources of ambiguitiesllocation (LDA) [10] that have been used to model cross-
Linguistic ambiguityexists in the words to be learned as thsituational learning in different setups [11], [12].
human pronounces complex sentences where not all the word&nother strategy used by humans to improve learning is
are relevant for describing an object (such as pronouns amtive learning, where learners choose the learning samples so
verbs).Referential ambiguitys present in the described objects to improve learning speed. Implementation of active learn-
when the robot is facing a complex scene where multiplag may rely on intrinsic motivations and computational mod-
objects appear in its eld of view (Figure 1). els with this capacity have been proposed in developmental
When learning word-object associations, human use sevewabotics [13] and studied for the problem of language learning
strategies to reduce these ambiguities. Tinguistic ambiguity [14]. However, the de nition of the intrinsic motivation often
may be reduced by taking advantage of the grammar that wikpends on the task and the particular learning algorithm. In
highlight the relevant nouns and adjectives in a sentence [@Ur case, it is therefore not clear if both NMF and LDA would
The referential ambiguitynay be reduced by the use of jointbe well suited to implement active learning.
attention that makes both teacher and learner focus on the sam@ur main contribution is a detailed comparison of the
object [3]. Nevertheless, it has been shown that humans gretformances of NMF and LDA for the task of learning
infants, as young as 12 months old, can learn in ambiguai® meaning of nouns and adjectives describing objects in
situations by relying on cross-situational learning [4], i.e, bgmbiguous setups. We focus on their performance evolution
analyzing the common factors between several ambiguowhile incrementally learning from a limited set of examples
situations displaying various objects and associated words.dind explore whether they are well suited to de ne a value
this paper, we therefore focus on the problem of learning frofunction for active learning. Unlike most models of cross-
ambiguous data, rather than studying the techniques that cositdiational learning [4], [5], [6], [7], [12], [15], we moreover
reduce this ambiguity, while in complete application scenarifgcus on the learning of object's descriptive features instead of
both approaches should obviously be applied. only its identity and deal with the linguistic ambiguity besides
Several models of cross-situational learning have been ptbe classical referential ambiguity in experimental settings.
posed (e.g., [5], [6], [7]). In particular, this problem can b&ackling both these ambiguities, our model lays the basis for

I. INTRODUCTION



interactive learning of concept for developmental robots. recognition). To highlight the importance of these factors, we
In the remainder of the paper, we review the related wodesigned two cases for the object ambiguity where either one

in the next section, then present our application of NMF arat three objects are presented simultaneously to the system

LDA to cross-situational and active learning before presentifjgamed respectivelysingleé’ and “triple”) and two cases for

a quantitative comparison of these approaches on a datasaheflanguage ambiguitykéywords onlywhere the language

objects described by human teachers. channel has been manually corrected to contain only relevant

words and full sentencé where raw full sentences were

used. Note that even in thaihgl€',“ keywords onlyyscenario,
Several models of cross-situational learning have been peonbiguity is present in the keyword-feature association as the

posed using different techniques such as hypothesis testing keywords may correspond to shape or color.

and associative learning [7], Expectation-Maximisation [6] or

measures of co-occurences and m.utuql information [5]. K‘ Data representation

this paper, we focus on latent topic discovery approaches

[8] that are well suited to this problem. The main idea is As input for our models, we have a corpusof vectorsV;

to nd a limited number of hidden topics that explain thei = 1;2;:::;n) representing the appearance of an object and

data. In our case, tpic would be an object or a colour thatan associated sentence pronounced by a human partner (Figure

would generate both its visual perception and its associat®d The rst part of each vector is a continuous channel that

name. This de nition is closely related woncept ie. mental represents features obtained through computer vision. These

representation of patterns in a ow of multimodal perceptiofeatures are currently constructed to represent colP'T )

(see [16] for a more in-depth discussion). and shape\(*"*®) of the object (see section IV-A), but they
Among the existing topic discovery algorithms, two haveould be the results of a more generic feature computation
been used for cross-situational learning: Non Negative Matridgorithm. The features are encoded as vectors of constant size,
Factorization in [16], [11] and Latent Dirichlet Allocation inand multiple objects of interest are represented by summing
[12], [17]. However, they are applied in different settings anthe description of each individual object, thanks to the fact
it is not clear which one is better-suited for this task. Wthat the features are histograms, which can be added. The
propose here a direct comparison to highlight their strengsecond part of each vector is a binary vector of the size of

and weaknesses, particularly in the case where the numbethef dictionary of all known words"°™ ) and represents the

training samples is limited as when they are acquired througlord occurrences in the sentence. The dictionary is created

direct interaction between a human and a robot. incrementally, starting from an empty dictionary and adding
Active learning by the use of intrinsic motivations has beegach new word encountered in sentences at the end.

proposed as a way to control the complexity of learning For the application of LDA and Term Frequency-Inverse

situations so as to improve learning speed and coverage of thgcument Frequency (TF-IDF, see below), the non symbolic

learnable space [13]. It has been applied to many sensorymqt@sual) channel in the observation vectors\Mnneeds to be

skills, and has also been argued as one of the important hig@intized. The clustering is performed by a simple incremental

for learning language [18]. Indeed, active learning has beelustering that puts each observation in the same cluster as a

shown to be a factor strongly improving learning quality ihrevious observation if its distance is smaller than a threshold

cross-situational learning for humans [15]. Several speci@e used0:7 in all subsequent experiments), or creates a

strategies have also been proposed for the application of actiegv cluster otherwise. We use thé distance which is well

learning to language learning computational models in [14] kydapted for histogram features :

controlling the exploration of new objects based on the current

success rate in a haming game. Following this idea, we will s

study if NMF and LDA can support the de nition of intrinsic 2(x;y) = Xk Yi)2=(Xk + Vi)

motivation based on the current knowledge of objects and can k=1

provide improvement in the learning speed.

Il. RELATED WORK

Each of the resulting shape cluster will be labelled as
st 2 S, while all member vectors within a cluster will be

In order to compare NMF and LDA for object-word assoaveraged as/s, 2 Vs, thenS and Vs act as entries and
ciation learning, we use experimental data consisting of tvemrresponding contents of the shape dictionary. The same
channels: symbolic information for the language and contiprocedure takes place for the formation of the color dictionary
uous data for the visual perception that represents objet@G : Vcg. A corpus D) of vector-quantized sampled,
and the description of their shapes and colors. Noise afid=1;2;:::;n) is then established by nding the itenss 2 S
ambiguity exist in both channels since the visual presentatiandc; 2 C whose member vectors are most similai\/ﬁ:f1ape
is sensitive to the changes in environmental conditions (e.gnd V" respectively by applying ? distance. Using the
lighting conditions) and may contain several objects, while theordsw; whose corresponding indices ¥"°"® are positive,
language description may contain words not related to the ab-indicates a collection of symbols, containing all words in
ject identities or features (e.g., pronouns or errors from speagh plus s; andg;.

Ill. PROPOSED APPROACHES



0.0

0.0005
= (0012
0.0015
0.1431
0.1481
01314
0.1040

Look , a nice
-> red lego ->

(=) o o)

Fig. 2. lllustration of the data representation used in our experiments.

B. Language channel Itering For this, we use the algorithm based on multiplicative

In the “full sentence” scenario, LDA will Iter keywords Updates proposed by Lee and Seung [20]. This method con-
thanks to its statistical properties, but NMF will provide betteferges to a local minima, so the initialization is important. In
performance after an initial Itering of keywords [11]. order to favor the solution with one word for each reference

The ltering method (see details in [11]) relies on statistic§lement [11], we initialize th&Vwoq matrix to the identity
on the word occurrences through the Term Frequency-Invefsed Wshape Weoior ) to random values.

Document Frequency (TF-IDF) approach [19] popular in te
processing. In the current paper, we computed the TF-I
values using the clusters de ned by the passd) described LDA is used to infer statistical correlation between visual
in section Ill-A as documents. We improved the methoghannel and keywords. Every sampti is thus seen as
by using an adaptive threshold on the Inverse Documehtcollection of exchangeable discrete iteis (which can
Frequency value whose goal is to remove too common or tB§ colorsci, shapess; or words w;) and is modeled as

rare words. Thus we only retain words whose IDF value f 9enerative mixture model over a set Kf hidden topics
betweenid o, andidf ngn de ned as : fz1;:::;z¢ g de ned by a probability distribution on the items

p(!j;zc; ). The likelihood of a sample is thus given by (see

Learning through LDA

idfiow = idFmin + tow (iFmax  IcF min ) (1) [10] for details):

ik high = iF min + high (idF max icF min )
whereid nin andidf o are the maximum and minimum of Z 0 Y X 1
idf values for all words. For the reported experimenis, Lioa ()= p(j)@ p(zej )p(tjize; YA (4)
and nhgn values are optimized to reach the highest possible iz

nal performance in each scenario. oL . o . :
where p( j ) is a Dirichlet distribution de ning the topic

C. Learning using NMF mixture, p(z«j ) the probability of the topiczc for this
Using theV; samples with the Itered linguistic part (or raw mixture andp(! j jzx; ) the probability of the item for a given
samples in the “keywords only” scenario), we use NMF [9bpic. The parameters= f; g of the model which have
in order to discover reference vectors that explain data as stonbe estimated includes the parameterof the Dirichlet
of these vectors with positive weights. More precisely, NMHistribution, and the parameter de ning the probabilities

will nd matrices W andH so that: p(!jjzc; ) we are ooking for. is estimated by maximizing
the likelihood of the corpus
2 :\,)/m n ¥Vm kHk % \d
Vshape Wshape (2) Lipa (D) = Lipa (di)
4 Veolor 5 4 Weolor S [Hi,Ho i Hale i=1
Viword 1y Wword 1y using Collapsed Gibbs Samplihgn practice, we observe that

whereV is the matrix containing the observations in columng@r a givenk, the distributionp(:; z«; ) is only signi cant for
W, H are the matrices computed by NMA, containing the a couple(c ;w;) or a couple(s;;w; ).
k latent topics we are looking for artd being the weights to

reconstruct the observations from the topics.
The W and H matrices are found by minimizing the In our tests, both NMF and LDA should deal with incre-

following Kullback-Leibler divergence: mental learning, where new observations are added to the
matrix V. While dedicated incremental learning algorithms

E. Incremental learning

Vij
(WHi)j

X
Dk VKWH)= (VjIn
ij

Vij +( WHi)j) (3) IWe use the implementation from https://github.com/ariddell/lda with all
parameters initialized with default settings



For testing, we simulate the situation where the teacher
utters a textual description encoded as a binary format
about an objecf and the learner has to choose the right
object from the pool of all 36 testing objects. For NMF,
we rst compute the coef cient vector of hidden topids;
associated with the visual description of each testing ob-
ject i by minimizing the distanceDy, (V"¢ ;V.clor | k
[W shape - y\scolor 1T H.) " and reconstruct the textual description
of each objectV;,"od = wWWword H; We then nd the object
in the testing set whose textual description is the closesf to
by computing 2(T;;V;*°'®) for all i. We nally count the

could be used, in the current paper, we simply Comp|eter&grcentage of all right answers among the 36 tgstipg objects.
retrain the models using all the data of the updated matrix _of LDA, we estimate the hidden topic distribution asso-
and the correspondirg corpus. This approach therefore give§iated 10 T; 0 P(2jTj), and recopstruct the associated vision

an upper bound of the performance an incremental learnifRgilre channelusing(!jT;) = P(!jz Tj) P(zdTj)
algorithm could achieve. where! ; 2 S[ C. Then for every festing samptk, we com-
pute the log-likelihood.(d;jT;) = Cnt(!y) InP(14jTy),

|
where! | 2 S[ C andCnt(! ) is number of occurrence of
For active learning, we want to see if NMF and LDA can bgisual cluster | from the testing samplé;. The object whose
used to de ne an ef cient value function for the choice of thdikelihood is the highest is taken as the answer and we compute
next samples. This value should estimate how well a sampldlie overall percentage of correct answers.
currently known, so we naturally use its reconstruction errgy Experimental results

estimated by the Kullback-Leibler divergence for NMF (eq. 3) Th d del t tested for thei I
and by its likelihood for LDA (eq. 4). e proposed models are rst tested for their overall learn-

ing abilities through abatch learningexperiment given the

for all the training samples and randomly select a samq -gg;eﬁesﬁter?fef/raalggt]g tﬁg?gzrsm\g'th rlt()e)gvsosr(\j/\?hg:?/ra(if}ienc.
among the 6 samples with the highest values. This SIaﬁ%a ére chosen incrementall fror?1 ptheg set in a randor%
strategy has been chosen to ensure some diversity in y

object choice and was found important to improve the overfgan“?elz’ |nnt:16n k?yworr:jsrior}lr)]/ srge??rlob(?tecr. IV—B;Z) ahncri ml
performances. For the “triple” scenario we select three objeI ?? iﬁt rse ti\E/E ce iC(:i ario OIV(ESO We teh arllpg ?ﬁcn t?at-
among the ones with the top 12 values. st interactive scenarios (sec. ). We then demonstrate

the effect of active learning strategy compared with random
V. EXPERIMENTAL RESULTS learning performance in the nal experiment (sec. 1V-B4).

1) Batch learning In order to validate the overall per-
formance and set the algorithm parameters (the number of
The experiment is conducted with a camera installed owv@pics), we use all “keywords only” data in the “single” and

a table, facing down to capture objects, and a microphorigiple” scenario. We were able to read®0% performance

39 objects (Figure 3) are used, one at a time for recordirig,all cases. The ambiguity in multi-object cases (“triple”) do
while a human teacher is describing it with complex sentencé®t decrease performance; showing that both approaches are
The objects exist in 5 colors and 10 shapes, thus giving @ble to perform cross-situational learning ef ciently with the
keywords. number of samples considered.

We used the image processing approach presented in [11ffor this, we set the number of topics in NMF to the number
which segments the object, then produces a 900 elemeditsotal keywords (i.e.15) as it achieves the best performance.
shape descriptor, and a 80 elements color descriptor. THer LDA, the best performance occurs when its topic number
speech-text conversion uses Google speechtapconvert a is higher (i.e.20). However, the optimal number of topics was
sentence into a word occurrence vector. observed to depend on the data. Therefore, in the subsequent

We recorded 153 samples with the help of ten volunteers, §¥Periments, the number of topics is incrementally adapted by
which every object is described at least three times and mos6fting this number equal to the number of detected clusters
them four times. Each object is described by two keywords, biiem S[ C and then, at each learning step, letting it increase
the mean sentence length is 4.026, thus containing in aver&yel if the training withnipics +1 produces larger overall log-
2.026 irrelevant words. We create a training set by selectindielihood than that withpics . This simple policy leads to
samples for each of the 39 objects (a total of 117 samples) &fimal performances in our experiments despite the fact that
keep the remaining 36 samples, which cover all the keywordge added topic do not correspond to keywords but account for
as testing data to monitor the performance of learning. @ few noisy samples in the training data, representing either a

feature description associated with a non-keyword symbol or
2https://github.com/gillesdemey/google-speech-v2 a feature description without symbols.

Fig. 3. The 39 objects used for the experiments.

F. Active learning

In the “single” scenario, we estimal®, (V;) orL pa (di)

A. Experimental setup



Fig. 4. Incremental learning with “keywords only” data. Fig. 5. Incremental learning with “full sentence” data.

2) Incremental learning with “keywords only” data This performance reached by NMF remains lower than those of
experiment simulates the incremental learning scenario whelBA that achieves nal almost perfect performances in all
a teacher randomly chooses an object (or a triple of objectsjses (see also table 6 below). We can also observe that
and describes it (or them) with their associated keywords. Wee gain of active learning for LDA, compared to “single”
report the testing performance as a function of the number sfenario, is greater in the more ambiguous “triple” scenario,
samples used for training, up to the total number of samplezaching full performance with only 60 samples.
of 117. The curves display thé&y, , 50, and25;, percentile
of performance among 50 repetitions of the experiments.
Figure 4 shows that despite a similar nal performance of

TABLE |
AREA UNDER THE LEARNING CURVES OF FIGURES

100% t_he IIearnihng Frogr.ess.of rt}he“r'n.elthf)ds appears different. Active Learning Random Learning
First it is clear that learning in the “triple” case requires more singlecase _triple case _singlecase _triple case
samples than learning in the single case where a performance NwvF 0.92 0.72 0.87 0.56
above90% is reached already after 50 samples. We can also  LDA 1 0.86 0.96 0.71

see that NMF consistently outperforms LDA regarding the

learning speed in all cases, showing its adaptation to the casén order to quantify the differences between the cases, we
of limited ambiguities in the language part. computed the areas under t58;, percentile learning curves

3) Incremental learning with “full sentence” data This from gure 6. Table | shows these values relative to the best
experiment is similar to the previous one, but using the fulerformance obtained by LDA in the “single” case, with active
sentences. In gure 5, we observe that due to much mokgarning. We observe that the overall worst approach is the
ambiguities in data compared to that of “keywords only'use of NMF with random samples, and that the gain of using
the performances are not guaranteed at the end of trainigive learning with NMF is smaller than the gain of using
to reach100% although this performance is still reached in DA with random samples in “single” case, thus showing the

the “single” case. Contrary to the previous scenario usingportance of the learning approach over the learning strategy
only keywords, LDA learns much faster than NMF couple¢h our experiment.

with the statistical TF-IDF ltering and achieves higher nal
performances. This illustrates the better adaptation of the V. DISCUSSION AND CONCLUSION
probabilistic model of LDA to this problem compared to NMF We compared two models of cross-situational learning of
which requires a more complex pre-processing. word meanings based on topic discovery algorithms, NMF
4) Active learning vs. random learning The last experi- and LDA. Both models achieved high performance in every
ment measures the performance of active learning compare@xperimental cases when there is a set of suf cient learning
the random choice of samples. For this experiment, contrarydamples. They proved to be robust to both linguistic and
the previous ones, the training samples can be selected mubtferential ambiguities and both models were able to support
ple times because all the 117 training samples are consideagtive learning which was shown to accelerate the learning
for the choice of the next sample using either the randospeed by comparison with random sample selection.
or active strategy. This was made to highlight the ability of Each algorithm has its own better-suited scenario. NMF
active learning to ef ciently ignore the already known samplesvould be more adapted when dealing with only visual ambigu-
Figure 6 shows the resulting performances for NMF and LDAties and raw visual data (“keywords only” scenario), resulting
We observe that active learning makes it possible to improire precise mono-modal concepts, once a correct number of
learning speed and performance in all scenarios, for both NMBmponents is provided. LDA shows better adaptability and
and LDA, showing that a criterion relevant for active learningobustness with clustered visual data when linguistic ambiguity
(section IlI-F) can be de ned in both cases. However, thand noise are involved (“full sentence” scenario) due to its



Fig. 6. Comparison between active learning and random learning by applying NMF (left) or LDA (right) with “full sentence” data

statistics-based nature. Contrary to this embedded mechani§m L. Gleitman, “The Structural Sources of Verb MeaningkAnguage

of keywords selection in LDA, NMF has to be associated with3
a language ltering mechanism but is not able to reach simila“

performances in the “full sentence” scenario.

While our work is not intended at computational modeling!4!
of human performances, it is interesting to compare the active
learning strategies implemented in our model to those usds|
by humans. Kachergis et al. [15] shown that humans u
various active strategies, but mainly rely on immediate sampl
repetition to facilitate learning. Yet from our implementation,
the resulting strategy is different: random sample choices i
the “triple” scenario led to a mean repetition of 2.42 words
in successive steps, while the active choice led to a medsi
repetition of 1.89 words. Two basic reasons could be used
explain such a difference in applying the repetition strateg
On one hand, in [15], each trial consists of four mutuallfto]
different objects thus no “within-trial repetition of objects’
is allowed, however in our “triple” scenario experiment, th
same features (shape or color) from different objects could
appear in a triple and this gives rise to a “within-triple featuré?!
repetition” which can simply reduce the complexity of each
triple. In fact, the number of repeated features inside a triple[is]
0.86 with the random strategy and 2.06 with the active choice.

On the other hand, unlike computational models, humans

less ef cient at keeping a long-term memory of the past co-
occuring records and hence the successive repetition facilit

learning for humans but not for our model.

In future work, a better vision descriptor could be considi6]
ered to record shape information, since the current pixel based
method will obviously be limited in more realistic scenariogs7]
We also plan to extend our approach to deal with homonyms,
both for the language part and for the visual part, where an
object can present different visual appearances depending g

the observation point of view.
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