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An Iterative Algorithm for Forward-Parameterized Skill Discovery

We introduce COCOTTE (COnstrained Complexity Optimization Through iTerative merging of Experts), an iterative algorithm for discovering discrete, meaningful parameterized skills and learning explicit models of them from a set of behaviour examples. We show that forward-parameterized skills can be seen as smooth components of a locally smooth function and, framing the problem as the constrained minimization of a complexity measure, we propose an iterative algorithm to discover them. This algorithm fits well in the developmental robotics framework, as it does not require any external definition of a parameterized task, but discovers skills parameterized by the action from data. An application of our method to a simulated setup featuring a robotic arm interacting with an object is shown.

I. INTRODUCTION

Long term planning becomes a difficult problem in robotics when it is performed in the low-level motor control space. An efficient way to reduce its complexity is to introduce higher-level actions that abstract away the low-level difficulties and enable us to work in a smaller and discrete space. For example, in the context of reinforcement learning, [START_REF] Sutton | Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning[END_REF] introduces the concept of options (also called skills), which are high-level actions leading to a known state. In this framework, primitive skills (e.g. joint torques and angles controllers) can be composed into higher-level ones (e.g. picking up an object, going to lunch, traveling to a distant city), forming a repertoire of skills that can be used for planning.

Skill knowledge is what allows an agent to select and chain discrete actions towards a goal, and is therefore crucial for many applications. While this knowledge can be carefully crafted by expert engineers, there has been an effort in recent years in developing methods for skill and parameterized-skill learning ( [START_REF] Kober | Reinforcement learning to adjust parametrized motor primitives to new situations[END_REF], [START_REF] Deisenroth | Multi-task policy search[END_REF], [START_REF] Stulp | Learning compact parameterized skills with a single regression[END_REF], [START_REF] Da Silva | Learning parameterized skills[END_REF]).

A skill can be defined as the knowledge of both an action (usually a policy) and its result (reward, new state of the system, etc), given a specific setup or context (initial state, weights of elements, etc). As such, skills can be understood as instances of forward models. They can also be understood as instances of inverse models, as they contain both the knowledge of a task (i.e. context and desired result) and of an action that solves it.

In the literature, the concept of skills is often generalized to parameterized skills in an inverse sense ( [START_REF] Kober | Reinforcement learning to adjust parametrized motor primitives to new situations[END_REF], [START_REF] Deisenroth | Multi-task policy search[END_REF], [START_REF] Stulp | Learning compact parameterized skills with a single regression[END_REF], [START_REF] Da Silva | Learning parameterized skills[END_REF]): each variation of a parameterized task is associated to an action that solves it (e.g. in the thought experiment presented in Figure 1, a task-parameterized skill could be how to move the cube to a given position, which is defined for a limited domain of (x initial , x edge , x object ) and which associates to each reachable position x object a value of x actuator that produces this result). Fig. 1. Thought experiment: an actuator moves on a table along an horizontal axis x, its action parameterized by its final position xactuator. It is moving towards an object at x initial , in the direction of an edge located further at x edge . (x initial , x edge ) define the context of this setup, and its result is the final position of the object x object .

In this paper, we introduce another way to generalize skills to parameterized skills, this time in a forward sense: the context and action are parameterized, and each of their variations is associated to the corresponding result (e.g. in the former example, a forward-parameterized skill could be pushing the cube without it falling, which is defined for a limited domain of (x initial , x edge , x actuator ) and which associates to each value of x actuator the value of x object resulting from this action). Figure 2 illustrates the difference between both parameterizations. Note that if a given result can be attained by various actions (like the final position x edge which is attained by all values of x actuator superior to x edge in the example), only one can be associated to a task instance by a task-parameterized skill, while a single forward-parameterized skill like pushing the cube off the table can cover all those cases, thus making this representation more versatile. Task-parameterized skills are very practical for industrial applications, with externally given tasks in controlled environments, but limit the adaptability in open-ended learning scenarios where having several ways to reach the same result may prove critical.

Forward-parameterized skills are particularly relevant to the field of developmental robotics where, without any external definition of parameterized tasks, a robotic agent is expected to discover sensorimotor contingencies, how to control its own body and how to interact with its environment [START_REF] Asada | Cognitive developmental robotics: A survey[END_REF]. Discovering forward-parameterized skills is a way to make representations of actions emerge that can be manipulated and chained at a symbolic level. Furthermore, similar forward models have already been shown to be very usable for planning [START_REF] Ghadirzadeh | Selflearning and adaptation in a sensorimotor framework[END_REF].

In this paper, we introduce a formalism that reduces forward-parameterized skill learning to discovering and learning the smooth components of a locally smooth function.

We propose an iterative algorithm to solve it by performing the constrained minimization of a complexity measure, and apply our method to a simulated setup featuring a robotic arm interacting with an object.

II. RELATED WORK

A. Task-parameterized skills

While we focus on forward-parameterized skills, other researchers have investigated task-parameterized skills and how to build a function a = f (τ ), where τ and a are vectors of parameters respectively representing a task and an action solving that task.

In [START_REF] Deisenroth | Multi-task policy search[END_REF], the usual Reinforcement Learning approach for a single task, i.e. to learn a policy of the form u = π a (s) (where s represents the state and u the control), is extended into a search for a general policy u = π a (s, τ ) which solves all variations of the task. This approach enables an agent to learn a given task-parameterized skill, but does not address the problem of discovering and learning of several parameterized skills simultaneously.

In [START_REF] Da Silva | Learning parameterized skills[END_REF], parameterized skills are discovered through explicit learning of the function a = f (τ ). Some hypotheses enable the authors to ensure that each τ corresponds to a unique a, that f is locally smooth and that all values of a lie on disjoint manifolds in the action space. They then learn those manifolds, train an approximator on each one and map them to the task space. Discovering and learning the smooth components of f in such a way is expected to be of lower complexity and dimensionality than learning a global model covering the entire task space. While we share this idea of learning locally smooth low-complexity functions, applying the approach to forward models (discovering manifolds in the result space, learning approximators on each one and mapping them to the contextaction space) cannot be done as there is not a one-to-one correspondence between possible manifolds in the result space and parameterized skills: a single result may be reachable by a variety of forward-parameterized skills, or even by an infinity of instances of a single parameterized skill.

B. Locally smooth function approximation

Our approach relies on approximating a locally smooth function and identifying its smooth components. From an algorithmic point of view, the idea of performing a regression to approximate a function that may not even be fully continuous has been explored in several learning algorithms.

In Locally Weighted Regression (LWR) [START_REF] Atkeson | Memory-based neural networks for robot learning[END_REF], no explicit model is learned from the training data. When the value of the function at a given point x is needed, a local linear model is trained through linear weighted least square regression, with weights given by a kernel centered on x (generally a Gaussian kernel), giving more importance to data in the neighbourhood of x than to points far from it. That local model is then used to approximate the value of the function at x. Locally Weighted Projection Regression (LWPR) [START_REF] Vijayakumar | Locally weighted projection regression: Incremental real time learning in high dimensional space[END_REF] improves on LWR by performing a low-dimensional affine projection before fitting the linear model, allowing the regression to focus on the relevant dimensions. While both LWR and LWPR approximate functions that are not smooth and that are possibly only piecewise continuous, no explicit model is learned, making those methods impractical for our purpose. Furthermore, the locality of the regression also makes them data-inefficient.

In Kernel Ridge Regression (KRR) [START_REF] Saunders | Ridge regression learning algorithm in dual variables[END_REF], also known as Kernel Regularized Least Squares, a global model is learned as a linear combination of basis functions, under the form:

f (x) = M i=1 w i • k(x, x i )
where the (x i ) i≤M are the input values of the datapoints and k is a kernel function (for example a Gaussian kernel). Gaussian Process Regression (GPR) is very similar to KRR with a Gaussian kernel, but slightly differs in the way the weights are computed during the regression [START_REF] Stulp | Many regression algorithms, one unified model: A review[END_REF]. Although KRR and GPR explicitly learn a model (unlike LWR and LWPR), it is a global model and not a collection of local models, which makes those methods impractical for discovering discrete components of a locally smooth function. Furthermore, the locality of the regression induced by the kernels makes those methods datainefficient as well.

In Mixture of Experts (ME) [START_REF] Jacobs | Adaptive mixtures of local experts[END_REF], several approximators (generally neural networks) called experts are trained. The input space is split by a gating network that determines for each input the expert or blend of experts most likely to approximate the output. This approach seems to be what we need but, to the best of our knowledge, existing ME methods all fall short on one point: the number of experts and their complexity are not both automatically determined. Some adaptative approaches built on ME find ways to grow either the complexity or the number of experts after setting the other, like in [START_REF] Oudeyer | Intrinsic motivation systems for autonomous mental development[END_REF] where there is only one expert at first and the number of experts increases as datapoints become more numerous, but to the best of our knowledge those approaches still require to set either the complexity or number of the experts before any learning occurs. Because of this, two or more experts might be needed to represent a single complex parameterized skill, while simple parameterized skills may be approximated by overly complex models. This makes the method datainefficient and lowers its probability of generalizing well to new, unseen data.

C. Constrained complexity minimization

The idea of a constrained complexity minimization has been successfully applied to other problems in other fields of research. Rate-distortion theory [START_REF] Shannon | Coding theorems for a discrete source with a fidelity criterion[END_REF] is a branch of information theory that deals with the question of representing a signal with as few bits by symbol as possible (complexity minimization) so that it can be reconstructed without exceeding a given distortion (constraint on the error). In motion planning, [START_REF] Lemme | Self-supervised bootstrapping of a movement primitive library from complex trajectories[END_REF] approximate observed trajectories through a library of Dynamic Motion Primitives (DMP), using as few DMPs as possible under the constraint that the error must stay under a given threshold. The library itself is grown in such a way that it does not contain high-complexity DMPs if simpler ones have performed well on the past trajectories. While those approaches bear similarities to our own, they are applied to fundamentally different problems and are not usable for forward-parameterized skill learning.

III. FORWARD-PARAMETERIZED SKILLS

Let us use c ∈ R Nc , a ∈ R Na and R ∈ R N R as notations for vectors of parameters respectively representing contexts, actions and results. We formally define a forward-parameterized skill as a deterministic function f , smooth over a subdomain of the context-action space, such that R = f (c, a) + δ with δ a stochastic noise function. This assumes that f is unimodal and that stochasticity is entirely due to noise, which is a relatively common assumption. Similarly to [START_REF] Da Silva | Learning parameterized skills[END_REF], we expect parameterized skills to be of low complexity, compared to a global model covering the entire context-action space, and to each use only a subset of relevant dimensions from the contextaction space.

Let us now consider the forward model of the robot's capabilities, describing all of its possible interactions with the world. Such a model would be of the form:

R = F (c, a) + ∆(c, a)
where F is a deterministic function and ∆ a stochastic noise function.

A parameterized skill can thus be seen as a restriction of F to one of the subdomains of the context-action space on which it is smooth. Learning parameterized skills is therefore equivalent to learning the smooth components of the locally smooth function F .

An intuition of this can be gained by looking at the simple thought experiment in Figure 1, where an actuator moves on a table along an horizontal axis towards an object. The result one would expect from such an experiment (represented in Figure 3) would show F smooth over three subdomains A, B and C, corresponding to three parameterized skills where the object is respectively left untouched, pushed forward on the table or pushed off the edge of the table. The frontiers between the subdomains reflect sudden changes in the context of the action (reaching the object or the edge of the table ).

The goal of the algorithm we present in this work is to automatically discover forward-parameterized skills from the experimental data (i.e. to group together instances of the same In this work, we make the strong assumption (whose validity shall be discussed later on) that there is a known deterministic bound ε on ∆, such that for each dimension i and each value of (c, a), we have:

|∆ i (c, a)| ≤ ε i (c, a)
Each datapoint p in the training data is of the form (R p , c p , a p , ε p ), where ε p = ε(c p , a p ) can be interpreted as a precision on the value of R p .

IV. COCOTTE ALGORITHM

A. Constrained complexity minimization

At the heart of our approach is the idea of approximating F , which is a function that is only locally smooth. Functions that are not smooth can be approximated by smooth functions (most approximators are actually C ∞ ), but this generally comes at the cost of an increased complexity of the model (given a sensible measure of complexity).

The idea behind our algorithm is to explicitly minimize the overall complexity of a collection of models approximating F . As approximating this function with one model for each domain on which it is smooth should lead to a lower complexity than using a single model, we expect those domains to spontaneously emerge from the complexity minimization.

The quality of a model is also known to depend on how well that model's complexity reflects the complexity of the underlying reality it describes. Models that are too simple are generally unable to give good predictions, even on the training data (underfitting). Conversely, models that are too complex will have a low probability of generalizing well to new, unseen data [START_REF] Vapnik | The nature of statistical learning theory[END_REF] (overfitting). Given some constraints to prevent the models from being too simple, (i.e. to guarantee that good enough predictions can be given on the training data), we expect the collection of model resulting from a complexity minimization to have good generalization properties. We can also expect the algorithm to be data-efficient, as simple models need fewer datapoints to be trained.

B. Some definitions

We assume given (S f , comp), where S f is a set of families of approximator functions (e.g. the set containing the family of all first-order Fourier series, the family of all second-order Fourier series...), and comp : S f → N is a complexity measure over this set (e.g. with the set from the previous example, the function associating each family of Fourier series to their order of approximation).

We define the complexity of a function f , as:

comp(f ) = min s ∈ S f s f comp(s) Further given a set S d of M datapoints (R i , c i , a i , ε i ) i≤M , we define the normalized error of a function f on S d the vector E(f ) ∈ R M ×N R such that: ∀i ≤ M, ∀j ≤ N R , E(f ) i,j = R i j -f j (c i , a i ) ε i j A function f is said to explain S d if it verifies: ∀i ≤ M, ∀j ≤ N R , |R i j -f j (c i , a i )| ≤ ε i j that is to say if: E(f ) ∞ ≤ 1
Using this definition, we define the complexity of a set of datapoints as:

comp(S d ) = min f explains S d comp(f ) = min s ∈ S f s.t. ∃f ∈ s f explains S d comp(s)

C. An iterative algorithm for complexity minimization

We now introduce COCOTTE (COnstrained Complexity Optimization Through iTerative merging of Experts), an iterative algorithm to determine a collection of domains on which F is smooth and to learn explicit models approximating F on each of those domains. COCOTTE first assimilates those domains to sets of datapoints, proceeding in two steps:

1) It relies on constrained complexity minimization to determine, over all possible partitions of the datapoints, the one with the lowest sum of complexities and its associated models, 2) It then trains a classifier to determine the actual domains, i.e. to map every point of the context-action space to a set of datapoints and its associated model. In step 1, trying all possible partitions of the datapoints and estimating their complexity has a high computational cost. Instead of exploring all those possibilities, we use a greedy iterative approach (see Algorithm 1), illustrated on Figure 4 on the case of a simple step function. This approach works in three phases:

1) The search is initiated in a state of high overall complexity, where each datapoint is in its own set and associated to a model that predicts it perfectly. This is the most granular partition of the datapoints.

2) Then sets of datapoints in this initial partition are iteratively merged into larger sets, decreasing the granularity and complexity of the partition. Candidate pairs of sets for merging are selected in a greedy manner, starting with the closest sets (the reason for this shall be discussed later on). If merging a pair of sets increases the overall complexity of the partition, they are left separate and the next candidate pair of sets is considered. 3) Finally, artifacts of the merging process are removed.

They are sets of datapoints which appear early on in the merging phase at the frontiers between smooth components of F . We consider that a set whose points can all be distributed into other sets (also trying the closest ones first) without inducing a jump in complexity is an artifact, and that distributing its points should reduce the overall complexity of the partition.

As for step 2 of the algorithm, we use a standard Random Forest classifier. Though we did not explore the choice of classifier, other supervised classifiers should also work. 

D. Dealing with multidimensionality

When R is multidimensional or of unknown dimension, it may be more practical to use one-dimensional approximator functions over each dimension than to use multi-dimensional approximator functions over all dimensions at once. In this case, the complexity of f = (f 0 , ..., f N R ) is the multidimensional complexity (comp(f 0 ), ..., comp(f N R )) and the condition for merging two sets s 0 and s 1 is:

∀j ≤ N R , comp(s 0 ∪ s 1 ) j ≤ comp(s 0 ) j + comp(s 1 ) j

E. Implementation of COCOTTE

We implemented COCOTTE in C++ 1 , using multivariate polynomial functions as one-dimensional approximators over each dimension. Given d available dimensions, the family of all polynomials of degree N using those dimensions is associated to the complexity N × d + 1. As the complexity of a family of functions increases with d, the families using irrelevant dimensions are of higher complexity and discarded during the constrained complexity minimization, ensuring relevant variables selection.

Let s 0 and s 1 be two sets of datapoints that we are trying to merge, explained on a given dimension by polynomial functions of respective complexities c 0 and c 1 . We know that if a merge is possible, on this dimension the complexity of the union of the sets falls between max(c 0 , c 1 ) and c 0 + c 1 . This allows us to use a binary search to search for function leading to the minimum complexity.

The distance between two sets of datapoints that we use to select pairs of candidates during the merging phase is the smallest Euclidian distance between a point of the first set and a point from the second set.

Determining if a given family of polynomial functions can explain the datapoints is done by searching for the function f within that family that minimizes the error E(f ) ∞ and checking if this error is below 1. This search can be formulated as a linear program and performed by an adequate solver.

In order to greatly improve the speed of our implementation, we introduced a heuristic to reduce the number of families of polynomial functions that we have to consider: if we call V 0 and V 1 the sets of available dimensions in the families of functions used to respectively explain the formerly mentioned sets s 0 and s 1 , we only consider families of polynomial functions using at most one dimension not in V 0 ∪ V 1 to determine the complexity of s 0 ∪s 1 . This heuristic ensures that the algorithmic complexity is linear in the number of irrelevant dimensions during each merge without harming the quality of the results.

1 https://github.com/AdrienMatricon/cocotte V. EXPERIMENTS In order to demonstrate our algorithm capabilities, we report first experiments where datapoints are generated from variations of two manually defined policies on a robotic arm, and show that our algorithm can discover meaningful skills from this data.

A. Simulation environment

We use the simulation environment from [START_REF] Ecarlat | Learning a high diversity of object manipulations though an evolutionary-based babbling[END_REF], which features a robotic arm fixed to a table on which lays a cubic object. The robotic arm configuration is completely determined by the angles of its 6 joints and the gripper, and is described by 7 real parameters between 0 and 1. In this environment, the arm always starts in the same configuration (see Figure 5), then performs a policy defined by a succession of waypoints. We consider policies of the form π a = [q 0 , q 1 ], equivalent to policies defined by q 1 from initial configurations given by q 0 , so that in the previous notations c = q 0 and a = q 1 .

B. Experimental setup

For visualization purposes, we choose to artificially make the underlying structure of the problem 2-dimensional. To that effect we manually determine two distinct behaviours A and B with policies π A a = [q A 0 , q A 1 ], where q A 0 and q A 1 are configurations respectively to the left and right of the cube so that the arm moves to the right towards the cube, and π B a = [q B 0 , q B 1 ], where q B 0 and q B 1 are this time respectively to the right and left of the cube so that the arm moves to the left towards the cube. We then introduce variations of π A a by making both the context and action vary:

π = [q A 0 + t 0 × (q A 1 -q A 0 ), q A 0 + t 1 × (q A 1 -q A 0 )] with t 0 ∈ [-1, 0] and t 1 ∈ [t 0 , 1.5].
We introduce similar variations of π B a and gather the data from all simulations, with R being the final position of the cube, to which we add a uniform noise of amplitude 1cm on each coordinate, and ε being the sum of the estimated amplitudes of the simulation noise and added noise. We randomly perform variations of π A a or π B a , and gather a training set of 300 datapoints as well as a test set of 10000 datapoints that we will use to visualize what has been learned.

We expect COCOTTE to discover the structure of the data by itself, and to identify discrete parameterized skills such as pushing the cube to the left and pushing the cube to the right. We expect it to group most variations of π A a together, most variations of π B a together, and to learn a general model for each parameterized skills. We also expect it to learn models that are at most 2-dimensional, as each variation of π A a or π B a is by construction entirely determined by (t 0 , t 1 ), and to identify relevant dimensions.

C. Results

After the training, for each datapoint (R p , c p , a p , ε p ) of the test set, we ask the algorithm to assign (c p , a p ) to a parameterized skill and to predict the final position of the cube R p . As can be seen on Figure V-C, which shows those predictions for the y-coordinates, four models have been learned. Those are meaningful and correspond to parameterized skills: pushing the cube on the table to the left (in green), pushing the cube on the table to the right (in orange), pushing the cube off the table to the right (in blue), and not moving the cube (in red). Fig. 6. Predictions of the y-coordinate of R on the test set. In grey: actual values from the simulation. In blue, green, red, orange: predictions from the 4 models. The green model is of complexity 4 (degree 3, 1 relevant dimension q 1,0 ), the orange model of complexity 3 (degree 2, 1 relevant dimension q 1,0 ), while the other two models are constant polynomials (complexity 0). See text for more information.

More quantitative results are displayed on Figure 7, which shows the evolution of the total complexity and error rate over the y-coordinate as COCOTTE is run on random subsets of the training set of increasing cardinality. At first, there are few constraints and the overall complexity of models is low. It then increases with the number of points, i.e. of constraints, before going down as the density of points becomes high enough for the local structure to emerge and for the constraints to avoid wrong merges (artifacts). It finally converge to the complexity of the model presented in Figure . As for the error-rate, it steadily goes down as more points are added, which seems to confirm that our approach is not prone to overfitting and leads to good generalization properties.

D. Discussion

As argued in the introduction, our approach does not suppose the external definition of parameterized tasks, but is able to discover parameterized skills from data, thus being applicable in a developmental scenario beyond the initial controlled experiments reported in this paper. From a developmental Fig. 7. Evolution of the total complexity and error-rate over the y-coordinates when running COCOTTE over random subsets of the training set of increasing cardinality (showing mean and standard deviation over 80 executions of the algorithm). Above: evolution of the total complexity over the y-coordinates (sum of the one-dimensional approximator complexities over all models). Below: evolution of the error-rate (percentage of points in the test set with prediction error above the precision treshold). See text for more information.

perspective, it would therefore be interesting to have the robot actively gather new datapoints by exploring the parameter space of previously discovered skills so as to check their limits of validity. It would also be interesting to associate this procedure with motor and goal babbling in order to explore the space of possible effects and discover new skills.

In the experiments we performed, our algorithm managed to discover parameterized skills and to learn an explicit model for each of them. Those parameterized skills seem meaningful and correspond to parameterized skills that humans could intuitively identify, like pushing the cube off the table to the right. The collection of models that has been learned constitutes a repertoire of discrete parameterized skills, which can be used for planning. Although the robotic agent was made to explore variations of two externally given policies π A a and π B a , one must note that the parameterized skills that were discovered do not directly reflect those policies: the parameterized skill not moving the cube generalizes instances of both π A a and π B a , while the other instances of π A a lead to the two distinct parameterized skills pushing the cube on the table to the right and pushing the cube off the table to the right.

The merging phase of our algorithm is performed in a greedy manner, selecting the pair of closest sets first as candidate for merging. The reason for this is to have local structures emerge first, especially in the areas dense with datapoints. Local structure manifests itself as a decrease in complexity: when merging the sets s 0 and s 1 , local structure causes comp(s 0 ∪ s 1 ) < comp(s 0 ) + comp(s 1 ). This decrease in complexity makes it harder to merge s 0 ∪ s 1 with any other set s 2 , as it needs to verify:

comp(s 0 ∪ s 1 ∪ s 2 ) ≤ comp(s 0 ∪ s 1 ) + comp(s 2 ) < comp(s 0 ) + comp(s 1 ) + comp(s 2 )
We therefore constrain the models we learn to comply with the local structures, which makes it much harder for wrong merges to happen. In practice, as soon as a certain density of datapoints is reached, the only wrong merges we see happening during experiments are those at the frontiers between two smooth components of F , where the merges do not reflect a local structure and do not reduce the complexity. The resulting sets are then removed during the artifact elimination phase of our algorithm, and their datapoints distributed among other sets.

The main assumption we make in this work is that of the existence of a known deterministic bound ε on the stochastic noise function ∆, an assumption that we use to define the ability of a function to explain a set of datapoints, which is at the core of COCOTTE. This assumption strongly contrasts with the usual hypothesis of a Gaussian noise, and may seem like a strong assumption because it does not allow for any outlier. Let us first note that if there are indeed no outliers, our assumption is actually much weaker than the hypothesis of a Gaussian noise, because it does not assume any distribution for ∆ at all. This being said, the reason why we allow ourselves to make this assumption is that we have other ways we could use to deal with outliers. For example, adding outliers to a set of datapoints should cause a jump in complexity, because they are inconsistent with the inliers. If they are relatively low in number, they should stay within small sets during the merge phase, and interfere very little with the emergence of the good models. We should therefore be able to devise a filtering method to discard them after the merge phase, similarly to what we did for artifact elimination.

An easily overlooked aspect of our iterative algorithm is that it does not involve hand-tuning any parameter or hyperparameter. We do rely on estimates of ε in the data we use as input for our algorithm, which does behaves like a parameter if chosen by hand (too low and some sets will not be merged, too high and the models will underfit the data), but those estimates have a real-world meaning and are not meant to be handtuned. For example, if R i is a value measured by a sensor, the corresponding ε i should be the precision on that sensor given by the manufacturer.

VI. CONCLUSION

We have presented a method to discover and learn explicit models for parameterized skills. The key idea is that parameterized skills can be seen as smooth components of a locally smooth global model of the robotic agent's capabilities. Framing the problem as a constrained complexity minimization, we proposed an iterative algorithm to solve it and reported promising results, discovering meaningful parameterized skills within a robotic agent's experiences. In future work, we intend to apply our algorithm in real developmental robotics conditions, where the robotic agent gathers data by itself through motor and goal babbling.
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 3 Fig. 3. Expected results of the thought experiment presented in Figure 1 x object = F (xactuator) + ∆(xactuator), with F (in blue) smooth on 3 subdomains A, B and C (see text for details)
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 4 Fig. 4. Algorithm illustration on a simple step function: each point starts in its own set, then sets are iteratively merged together (starting with the closest ones), and finally artifacts at the frontiers between smooth components of F are removed and their point distributed into other models.
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 5 Fig. 5. Initial configuration of the simulation
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