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SHORT-TIME REGULARITY FOR DYNAMIC EVOLUTION

PROBLEMS IN PERFECT PLASTICITY

CLÉMENT MIFSUD

Abstract. In this paper, we study the regularity properties of solutions

of dynamic evolution problems in perfect plasticity. We prove that for
any space dimension and for any closed convex set of constraints con-

taining zero as an interior point, the solutions are regular in space during

a short time interval if the data are smooth and compactly supported.
The result is based on the hyperbolic structure of the model, namely

the finite speed propagation property.
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1. Introduction

Elasto-plastic models have been designed in order to mimic permanent
deformations that can appear in a material submitted to a critical stress. From
the experimental and theoretical points of view, one can observe discontinuity
surfaces of the displacement.

To analyze such a phenomena, it has been necessary to introduce a new
function space, namely the space of functions with bounded deformations,
in [18, 20]. This problem was avoided in [13] thanks to a visco-plastic regular-
ization. Unfortunately no information on the regularity of the strain tensor
was proven. Thanks to the functional framework of [18, 20], the dynamical
(in [1]) and the quasi-static case (in [21, 22]) have been studied and the ex-
istence and uniqueness problems have been solved. An important question
remains in these two cases to know if one can expect more regularity for these
solutions when the initial, boundary and source terms are smooth. This paper
addresses the issue of regularity of the solution of the dynamical evolution of
elasto-plastic materials.

To formulate the problem more precisely, we consider a reference configu-
ration of a material, denoted by Ω ⊂ Rn, which is a bounded open set. We
denote by u : [0, T ]×Ω→ Rn the displacement field. In the framework of small
strain elasto-plasticity, the linearized strain tensor, Eu := (Du + DuT )/2, is
the sum of the elastic strain e : [0, T ] × Ω → Mn×n

sym and the plastic strain
1
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p : [0, T ]× Ω→Mn×n
sym i.e.

Eu = e+ p,

with Mn×n
sym the space of real symmetric n × n matrices. The stress tensor

σ : [0, T ]×Ω→Mn×n
sym is defined, thanks to Hooke’s law, as σ := Ce, where C

is the symmetric fourth-order elasticity tensor. When the material is subjected
to an external body force f : [0, T ]× Ω→ Rn, the equation of motion is

ü− divσ = f in [0, T ]× Ω,

in the dynamical case or

−divσ = f in [0, T ]× Ω,

in the quasi-static case. In perfect plasticity, the stress tensor satisfies a
constraint

σ ∈ K,
where K is a fixed closed convex subset of Mn×n

sym and the plastic strain rate
satisfies the flow rule

ṗ ∈ NK(σ),

where NK(σ) is the normal cone to K at σ. Using convex analysis, this flow
rule can be rewritten as Hill’s principle of maximum plastic work

σ : ṗ = H(ṗ) := max
τ∈K

(τ : ṗ). (1)

The function H is called the support function of the set K. Suitable boundary
and initial conditions are supplemented to this set of equations.

In the dynamical case, one can find in [4] a theorem that states that the
problem is well-posed for every K containing zero in its interior (in [1] the
convex set of constraints is supposed to be bounded in the deviatoric direc-
tion). In this case, the only result available, to our knowledge, in the literature
about the regularity of the solutions can be found in [3]. In that reference, the
authors prove that the displacement field of a simplified (scalar) model of the
dynamic elasto-plastic evolution, namely the anti-plane shear model, is H1

regular in space (for small times) if the initial data and the source term are
compactly supported and regular. The argument is based on the hyperbolic
point of view of the evolution of the anti-plane shear model.

The purpose of our paper is to extend the regularity result of [3] to the
general vectorial model of dynamical perfect plasticity. To be precise, our
main theorem can be stated as follows: suppose that (u0, v0, e0, p0) is an
initial data which is compactly supported with σ0 ∈ H1(Ω;Mn×n

sym ), that the

function f ∈ H1(Ω × (0, T );Rn) is such that for all t ∈ [0, T ], f(t) is also
compactly supported in space and that the (Dirichlet) boundary condition is
homogeneous. Then, there exists a critical time T ∗ such that we have, for
every time τ < T ∗, u ∈ W 1,∞([0, τ ];H1(Ω;Rn)), σ ∈ L∞(0, τ ;H1(Ω;Mn×n

sym ))

and p ∈W 1,∞([0, τ ];L2(Ω;Mn×n
sym )).
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To do so we first prove two propositions related to the hyperbolic point of
view (see [3]) that allows us to say that information propagate at a finite speed.
In fact, in the elasticity framework (i.e. without constraint), the existence and
uniqueness of solutions to the classical (linear) elasto-dynamics have already
been obtained thanks to hyperbolic tools (see [16]). For the elasto-plastic
case and following [12, 19], one can prove (see [3, Section 3.3 & 7]) that
the solutions of the dynamical elasto-plastic anti-plane shear model are also
weak solutions of a related hyperbolic constrained problems (and a partial
reciprocal statement holds true).

In the quasistatic case, there exist several works on the regularity of the
stress tensor. In [5, 11], the authors focus on convex set of constraints K
bounded in the deviatoric direction and are able to prove, with different meth-
ods, that σ(t) belongs to H1

loc for almost every t ∈ [0, T ]. For the Norton/Hoff
model, one can also find results about regularity up to the boundary in [14, 17].
In this work, we will not deal with quasistatic models. In fact, our approach
cannot be extended to quasistatic solutions. Indeed, although the solutions
of the quasistatic evolution could be obtained as limits of dynamic processes,
rescaled in time thanks to a small parameter ε, the time T ∗, during which
one can obtain regular solutions for the dynamical evolution if the data are
smooth and compactly supported, would degenerate as ε goes to 0. Conse-
quently, at the limit ε→ 0, one can not hope to control the space derivatives,
on a small time interval, for the solutions of the quasistatic evolution.

The paper is organized as follows: in Section 2, we recall some useful
notations and results about the dynamical elasto-plastic problem. Section 3
is devoted to prove our main theorem. The proof of our main theorem follows
the lines of the regularity result of [3]. Although the comparison principle and
its proof are very similar to Kato’s inequality in [3], the rest of our arguments
needs to be adapted to the general case of perfect plasticity. Indeed, due to
the fact that we are dealing with any closed and convex elasticity sets K,
the dissipation functional H is now a general positively 1-homogeneous and
convex function of the plastic strain measure (in contrast with [3] where the
specific choice of the elasticity set leads to a dissipation functional which is
just the total variation of the plastic strain measure). Thus, a particular
care and measure theoretic arguments (due to the use of convex functions of
a measure) are needed to prove our short-time regularity result. Finally, a
better choice of test functions in the comparison principle allows us to slightly
improve the time regularity of the solution.

2. The mathematical setting

2.1. General notation. If a and b ∈ Rn, we write a · b for the Euclidean
scalar product, and we denote by |a| =

√
a · a the associated norm.
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We write Mn×n for the set of real n × n matrices, and Mn×n
sym for that of

all real symmetric n × n matrices. Given two matrices A,B ∈ Mn×n, we let
A : B := tr(ABT ) (BT is the transpose of B) be the usual Euclidean scalar

product and |A| :=
√

tr(AAT ) its associated norm over Mn×n. We recall that
for any two vectors a and b ∈ Rn, a⊗b ∈Mn×n stands for the tensor product,
i.e., (a⊗ b)ij = aibj for all 1 ≤ i, j ≤ n, and a� b := (a⊗ b+ b⊗a)/2 ∈Mn×n

sym

denotes the symmetric tensor product. One has

∀a, b ∈ Rn,
1√
2
|a| |b| ≤ |a� b| ≤ |a| |b| . (2)

2.2. Function spaces. Let Ω ⊂ Rn be a bounded open set with Lipschitz
boundary. We use standard notations for Lebesgue and Sobolev spaces.

For E a locally compact subset of Rn and X an Euclidean space, we write
M(E;X) (or simply M(E) if X = R) for the space of bounded Radon
measures on E with values in X, endowed with the norm |µ|(E), where
|µ| ∈ M(E) is the total variation of the measure µ.

The Lebesgue measure in Rn is denoted by Ln, and the (n−1)-dimensional
Hausdorff measure by Hn−1.

The Hilbert space, denoted H(div,Ω), of functions σ ∈ L2(Ω;Mn×n
sym ) such

that divσ ∈ L2(Ω;Rn) is endowed with the norm

‖σ‖H(div,Ω) =
(
‖σ‖2L2(Ω;Mn×nsym ) + ‖divσ‖2L2(Ω;Rn)

) 1
2

.

The space H(div,Ω) obeys to the following trace theorem (see [7, Lemma
2.3], [23, Chapter 1, Section 1.3] and also [8, Chapter IX, Part A, Section 1.2,
Theorem 1]):

Theorem 2.1. For Ω ⊂ Rn a bounded open set with Lipschitz boundary, we
have

(1) the space C∞(Ω;Mn×n
sym ) is dense in H(div,Ω);

(2) the trace map, γn : σ 7→ σν|∂Ω defined on C∞(Ω;Mn×n
sym ), can be

extended into a continuous linear mapping, still denoted γn, from
H(div,Ω) to the space H−

1
2 (∂Ω;Rn);

(3) the kernel of γn is the closure of C∞c (Ω;Mn×n
sym ) in H(div,Ω) and is

denoted H0(div,Ω).

Remark 2.2. Let Ω′ be a bounded smooth open subset of Rn such that Ω ⊂ Ω′.
One should notice that if σ ∈ H0(div,Ω), the extension of σ by the null-matrix
on Ω′ belongs to H0(div,Ω′).

In addition, we denote, for any function ψ depending on the space variables
(and possibly also on the time variable) and with values in R, by ∇ψ its
(spatial) distributional gradient.
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Finally, BD(Ω) stands for the space of functions of bounded deformations
in Ω. A function u belongs to BD(Ω) if u ∈ L1(Ω;Rn) and Eu := (Du +
DuT )/2 ∈M(Ω;Mn×n

sym ), where Du is the distributional gradient of u (see [23]
for a detailed presentation of this space).

2.3. The elastic energy. Let C be a fourth-order tensor satisfying

∀(i, j, k, l) ∈ {1, 2, . . . , n}4 , Cijkl = Cklij = Cjikl. (3)

We also assume that the operator C is coercive and continuous i.e. there exist
two positive constant αC and βC such that

∀e ∈Mn×n
sym , αC|e|2 ≤ Ce : e, (4)

and

∀e ∈Mn×n
sym , |Ce| ≤ βC|e|. (5)

To shorten notation, we set for e ∈Mn×n
sym

Q(e) := Ce : e, (6)

and for any e ∈ L2(Ω;Mn×n
sym ).

2.4. The set of constraints. Let K be a closed convex subset of Mn×n
sym

containing the origin as an interior point i.e. there exists a positive number
αH such that {

σ ∈Mn×n
sym , |σ| ≤ αH

}
⊂ K. (7)

In this work, we do not assume that K is bounded in the deviatoric direction.

2.5. Sets of admissible displacements and strains. For w ∈ H1(Rn;Rn),
we define the set of admissible displacements and strains, denoted A(w), as

A(w) =
{

(u, e, p) ∈
(
BD(Ω) ∩ L2(Ω;Rn)

)
× L2(Ω;Mn×n

sym )×M(Ω;Mn×n
sym )

s.t. Eu = e+ p in Ω and p = (w − u)� νHn−1 on ∂Ω
}
.

One can prove (following the lines of [7, Lemma 2.1]) that the multi-valued
map w 7→ A(w) enjoys the following closure property

Lemma 2.3. Let (wk) be a sequence in H1(Rn;Rn) and (uk, ek, pk) ∈ A(wk)
such that there exists (u∞, e∞, p∞) ∈

(
BD(Ω) ∩ L2(Ω;Rn)

)
×L2(Ω;Mn×n

sym )×
M(Ω;Mn×n

sym ) satisfying
uk

∗
⇀ u∞ in BD(Ω) ∩ L2(Ω;Rn),

ek ⇀ e∞ in L2(Ω;Mn×n
sym ),

pk
∗
⇀ p∞ in M(Ω;Mn×n

sym ),

and

wk ⇀ w∞ in H1(Rn;Rn).

Then, (u∞, e∞, p∞) ∈ A(w∞).
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Using difference quotients, one can prove a similar result for functions de-
pending on the time variable.

Lemma 2.4. Assume that the functions t 7→ w(t), t 7→ u(t), t 7→ e(t) and
t 7→ p(t) are absolutely continuous from [0, T ] to respectively, H1(Rn;Rn),(
BD(Ω) ∩ L2(Ω;Rn)

)
, L2(Ω;Mn×n

sym ) and M(Ω;Mn×n
sym ) and satisfy

∀t ∈ [0, T ], (u(t), e(t), p(t)) ∈ A(w(t)).

Then, (u̇(t), ė(t), ṗ(t)) ∈ A(ẇ(t)) for a.e. t ∈ [0, T ].

2.6. Generalized stress/strain duality. In order to give a sense to Hill’s
principle of maximum plastic work (1), one has to define a suitable duality
pairing between the stress tensor and the plastic strain rate tensor. Even
though the stress tensor is a squared integrable function and the plastic strain
rate tensor only a measure, one can give a (distributional) sense to this duality
pairing. We briefly mention how one can do that (for more details, see [4,
Section 2.4]).

Definition 2.5. Let σ ∈ H(div,Ω) and p ∈ M(Ω;Mn×n
sym ) be such that there

exist u ∈ BD(Ω) ∩ L2(Ω;Rn), e ∈ L2(Ω;Mn×n
sym ) and w ∈ H1(Rn;Rn) satis-

fying (u, e, p) ∈ A(w). We define the distribution [σ : p] on Rn as, for all
ϕ ∈ C∞c (Rn),

〈[σ : p], ϕ〉 =

∫
Ω

ϕ(w − u) · divσ dx

+

∫
Ω

σ : ((w − u)�∇ϕ) dx+

∫
Ω

σ : (Ew − e)ϕdx.

Remark 2.6. One can check that Definition 2.5 is independent of the choice
of (u, e, w). In addition, since the distribution [σ : p] is supported in Ω, one
can define the duality product 〈σ, p〉 as

〈σ, p〉 = 〈[σ : p], 1〉 =

∫
Ω

(w − u) · divσ dx+

∫
Ω

σ : (Ew − e) dx.

2.7. The dissipated energy. The support function of K is a convex, lower
semicontinuous and positively 1-homogeneous function and is denoted by H :
Mn×n

sym → [0; +∞], and one has

∀q ∈Mn×n
sym , H(q) = sup

τ∈K
τ : q.

Using (7), we know that

∀q ∈Mn×n
sym , αh|q| ≤ H(q).

According to [15], for any p ∈M(Ω;Mn×n
sym ), we define the nonnegative Borel

measure on Ω by

H(p)(B) =

∫
B

H

(
dp

d|p|

)
d|p|, (8)
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for any Borel set B ⊂ Ω. This measure is, in general, not locally finite. In
the case when H(p) has a finite mass, we set

H(p) := H(p)(Ω),

and in this case, one can use the results about convex functions of measures
of [9, 10] to derive the following duality formula

H(p) = sup
σ∈C∞(Ω;K)

∫
Ω

σ : dp.

For any p ∈ M(Ω;Mn×n
sym ) such that H(p)(Ω) < +∞ and that there exists

u ∈ BD(Ω) ∩ L2(Ω;Rn), e ∈ L2(Ω;Mn×n
sym ) and w ∈ H1(Rn;Rn) satisfying

(u, e, p) ∈ A(w), we have for all ϕ ∈ C∞(Ω) with ϕ ≥ 0 (see [4, Equation
(2.12)]), ∫

Ω

ϕdH(p) = sup
σ∈L2(Ω;K)

with divσ∈L2(Ω;Rn)

〈[σ : p], ϕ〉 . (9)

Remark 2.7. In particular, for every τ ∈ L2(Ω;K) ∩ H(div,Ω) and every
p ∈M(Ω;Mn×n

sym ) such that H(p)(Ω) < +∞ and that there exists u ∈ BD(Ω)∩
L2(Ω;Rn), e ∈ L2(Ω;Mn×n

sym ) and w ∈ H1(Rn;Rn) satisfying (u, e, p) ∈ A(w),
one has

H(p) ≥ [τ : p] in M(Ω).

2.8. Well-posedness of the dynamical elasto-plastic problem. We re-
call here one of the results of [4] that states that the dynamic elasto-plastic
evolution problem is well-posed.

Theorem 2.8 (Theorem 5.1 in [4]). Assume (3), (4), (5) and (7). Let f ∈
AC([0, T ];L2(Ω;Rn)), w ∈ H2([0, T ];H1(Rn;Rn)) ∩ H3([0, T ];L2(Rn;Rn)),
u0 ∈ BD(Ω) ∩ L2(Ω;Rn), e0 ∈ L2(Ω;Mn×n

sym ), p0 ∈ M(Ω;Mn×n
sym ) and v0 ∈

H1(Ω;Rn) satisfying: the additive decomposition

Eu0 = e0 + p0 in Ω,

the boundary condition

p0 = (w(0)− u0)� νHn−1 on ∂Ω,

and the compatibility conditions

v0 = ẇ(0) Hn−1 − a.e on ∂Ω and − divσ0 = f(0), a.e in Ω,

with σ0 := Ce0 ∈ K. Then there exist a unique (u, e, σ, p) such that
u ∈ AC([0, T ];BD(Ω)) ∩W 2,∞([0, T ];L2(Ω;Rn)),
e, σ ∈W 1,∞([0, T ];L2(Ω;Mn×n

sym )),

p ∈ AC([0, T ];M(Ω;Mn×n
sym )),
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and satisfying, for every t ∈ [0, T ], the additive decomposition

Eu(t) = e(t) + p(t) in Ω,

the boundary condition

p(t) = (w(t)− u(t))� νHn−1 on ∂Ω,

the stress constraint

σ(t) ∈ K a.e in Ω with σ(t) = Ce(t),

the equation of motion

ü− divσ = f, a.e in (0, T )× Ω,

the initial condition

(u(0), u̇(0), e(0), p(0)) = (u0, v0, e0, p0),

and for a.e. t ∈ [0, T ] the distribution [σ(t) : ṗ(t)] is a measure in M(Ω)
satisfying the flow rule

H(ṗ(t)) = [σ(t) : ṗ(t)] in M(Ω).

3. Short-time regularity for dynamic elasto-plastic problems

The goal of this section is to state and prove our main result, Theorem 3.1,
about short-time regularity of elasto-plastic solutions in the dynamical case.

Theorem 3.1. Under the same assumptions as in [4, Theorem 5.1], recalled
in Section 2.8, if, in addition, the boundary source term w = 0, and if there
exists a compact set K ⊂ Ω such that

supp(u0, v0, σ0, p0, f(t)) ⊂ K for all t ∈ [0, T ], (10)

and that

σ0 ∈ H1(Ω;Mn×n
sym ), f ∈ H1((0, T )× Ω;Rn).

Then the solution (u, e, σ, p) of the elasto-plastic problem given in Section 2.8
for the initial condition (u0, v0, σ0, p0) and the source terms w and f satisfies

the following regularity properties: setting T ∗ := min
(√

αC
βC

dist(K , ∂Ω), T
)

,

we have for all τ ∈ (0, T ∗){
u̇ ∈ L∞(0, τ ;H1(Ω;Rn)),

σ ∈ L∞(0, τ ;H1(Ω;Mn×n
sym )).

Moreover, if p0 ∈ L2(Ω;Mn×n
sym ) and u0 ∈ H1(Ω;Rn), we obtain{

u ∈W 1,∞([0, τ ];H1(Ω;Rn)),

p ∈W 1,∞([0, τ ];L2(Ω;Mn×n
sym )).
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To prove Theorem 3.1, we establish two intermediate results. The first
one, Proposition 3.2, is a reminiscence of Kato’s inequality of [12] (and its
proof closely follows the lines of [3, Proposition 5.12]) and allows us to get a
comparison principle between two solutions of the elasto-plastic problem (see
Remark 3.3). This result is obtained under the hypothesis that the boundary
source term does not depend on the time variable. This hypothesis will be
assumed in the whole section.

The second one, Proposition 3.4, shows that if the initial velocity v0 and the
initial stress σ0 are compactly supported in space, and also if the source term
f(t) is compactly supported in space (for all t ∈ [0, T ]) then there exists a time
T ∗ such that the velocity and the stress will remain compactly supported in
space in [0, T ∗]. As explained in Section 1, this part needs non trivial technical
adaptations of the result of [3] because of the presence of the general support
function H of K (instead of simply the total variation).

Using these two results and since all functions involved here are null in a
neighborhood of the boundary, one can apply the so-called method of trans-
lations (see [6]) to get the short-time regularity result. This regularity result
is, as we previously said in Section 1, slightly improved with respect to the
time regularity compared to the regularity result of [3].

3.1. Comparison principle. In the sequel, we suppose that the boundary
terms do not depend on the time variable.

Proposition 3.2. Let (u, e, σ, p) and (ũ, ẽ, σ̃, p̃) be two solutions of the elasto-
plastic problem associated with the initial data (u0, v0, e0, p0) (respectively

(ũ0, ṽ0, ẽ0, p̃0)) and the source terms w and f (respectively w̃ and f̃). Then
for all ϕ ∈W 1,∞((0, T )× Ω) with ϕ ≥ 0,

∫ T

0

∫
Ω

∣∣u̇− ˙̃u
∣∣2 ϕ̇dxdt+

∫ T

0

∫
Ω

Q(e− ẽ)ϕ̇dxdt

− 2

∫ T

0

∫
Ω

(σ − σ̃) :
((
u̇− ˙̃u

)
�∇ϕ

)
dx dt+ 2

∫ T

0

∫
Ω

(f − f̃) · (u̇− ˙̃u)ϕdxdt

+

∫
Ω

|v0 − ṽ0|2 ϕ(0) dx+

∫
Ω

Q(e0 − ẽ0)ϕ(0) dx ≥ 0. (11)

Proof. Let (u, e, σ, p) (resp. (ũ, ẽ, σ̃, p̃)) be a solution of the elasto-plastic prob-
lem associated with the initial condition (u0, v0, e0, p0) (resp. (ũ0, ṽ0, ẽ0, p̃0))

and the source terms f and w (resp. f̃ and w̃). Thanks to the equations of
motion, we know that

ü− ¨̃u− (divσ − divσ̃) = f − f̃ , a.e in (0, T )× Ω.
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Taking the scalar product with the function (u̇ − ˙̃u)ϕ ∈ L2(0, T ;L2(Ω;Rn))
for ϕ ∈W 1,∞((0, T )× Ω) with ϕ ≥ 0, we infer that∫ T

0

∫
Ω

(ü− ¨̃u) · (u̇− ˙̃u)ϕdx dt−
∫ T

0

∫
Ω

(divσ − divσ̃) ·
(
u̇− ˙̃u

)
ϕdxdt

=

∫ T

0

∫
Ω

(
f − f̃

)
·
(
u̇− ˙̃u

)
ϕdx dt. (12)

Using Definition 2.5 along with Lemma 2.4 and since the functions w and w̃
do not depend on the time variable, we get that, for a.e. t ∈ [0, T ],〈

[σ(t) : (ṗ(t)− ˙̃p(t))], ϕ(t)
〉

= −
∫

Ω

ϕ(t)(u̇(t)− ˙̃u(t)) · divσ(t) dx

−
∫

Ω

σ(t) :
(
(u̇(t)− ˙̃u(t))�∇ϕ(t)

)
dx−

∫
Ω

σ(t) : (ė(t)− ˙̃e(t))ϕ(t) dx, (13)

and similarly,〈
[σ̃(t) : (ṗ(t)− ˙̃p(t))], ϕ(t)

〉
= −

∫
Ω

ϕ(t)(u̇(t)− ˙̃u(t)) · divσ̃(t) dx

−
∫

Ω

σ̃(t) :
(
(u̇(t)− ˙̃u(t))�∇ϕ(t)

)
dx−

∫
Ω

σ̃(t) : (ė(t)− ˙̃e(t))ϕ(t) dx. (14)

Subtracting (13) and (14), we have〈
[(σ(t)− σ̃(t)) : (ṗ(t)− ˙̃p(t))], ϕ(t)

〉
= −

∫
Ω

(σ(t)− σ̃(t)) :
(
ė(t)− ˙̃e(t)

)
ϕ(t) dx

−
∫

Ω

ϕ(t)(u̇(t)− ˙̃u(t)) · (divσ(t)− divσ̃(t)) dx

−
∫

Ω

(σ(t)− σ̃(t)) :
((
u̇(t)− ˙̃u(t)

)
�∇ϕ(t)

)
dx. (15)

We integrate in time the previous equality and use the relation between σ and
e (respectively σ̃ and ẽ) to get

−
∫ T

0

∫
Ω

(divσ − divσ̃) ·
(
u̇− ˙̃u

)
ϕdx dt

=

∫ T

0

∫
Ω

(σ − σ̃) :
((
u̇− ˙̃u

)
�∇ϕ

)
dxdt

+

∫ T

0

∫
Ω

(e− ẽ) : C
(
ė− ˙̃e

)
ϕdx dt+

∫ T

0

〈
[(σ − σ̃) : (ṗ− ˙̃p)], ϕ

〉
dt. (16)

On the one hand, by the flow rule we have for a.e. t ∈ [0, T ],

[σ(t) : ṗ(t)] = H(ṗ(t)) and [σ̃(t) : ˙̃p(t)] = H( ˙̃p(t)),



SHORT-TIME REGULARITY IN PERFECT PLASTICITY 11

as measures on Ω. On the other hand, the stress constraint and Remark 2.7
imply that for a.e. t ∈ [0, T ]

[σ̃(t) : ṗ(t)] ≤ H(ṗ(t)) and [σ(t) : ˙̃p(t)] ≤ H( ˙̃p(t)) in M(Ω).

Consequently, since ϕ is non-negative, the integral term of (16)∫ T

0

〈
[(σ − σ̃) : (ṗ− ˙̃p)], ϕ

〉
dt,

is non-negative. It implies that

0 ≤ −
∫ T

0

∫
Ω

(ü− ¨̃u) · (u̇− ˙̃u)ϕdxdt−
∫ T

0

∫
Ω

(e− ẽ) : C
(
ė− ˙̃e

)
ϕdxdt

−
∫ T

0

∫
Ω

(σ − σ̃) :
((
u̇− ˙̃u

)
�∇ϕ

)
dxdt+

∫ T

0

∫
Ω

(f − f̃) · (u̇− ˙̃u)ϕdxdt.

(17)

Since u̇− ˙̃u ∈W 1,∞([0, T ];L2(Ω;Rn)) and σ−σ̃ ∈W 1,∞([0, T ];L2(Ω;Mn×n
sym )),

we can integrate by parts with respect to the time variable to get that

−
∫ T

0

∫
Ω

(ü− ¨̃u) · (u̇− ˙̃u)ϕdx dt−
∫ T

0

∫
Ω

(e− ẽ) : C(ė− ˙̃e)ϕdx dt

=
1

2

(∫ T

0

∫
Ω

∣∣u̇− ˙̃u
∣∣2 ϕ̇dx dt+

∫ T

0

∫
Ω

Q(e− ẽ)ϕ̇dx dt

+

∫
Ω

|v0 − ṽ0|2 ϕ(0) dx+

∫
Ω

Q(e0 − ẽ0)ϕ(0) dx

−
∫

Ω

∣∣u̇(T )− ˙̃u(T )
∣∣2 ϕ(T ) dx−

∫
Ω

Q(e(T )− ẽ(T ))ϕ(T ) dx

)
, (18)

and substituting (18) into (17) leads to

0 ≤ 1

2

(∫ T

0

∫
Ω

∣∣u̇− ˙̃u
∣∣2 ϕ̇dxdt+

∫ T

0

∫
Ω

Q(e− ẽ)ϕ̇dx dt

+

∫
Ω

|v0 − ṽ0|2 ϕ(0) dx+

∫
Ω

Q(e0 − ẽ0)ϕ(0) dx

)
−
∫ T

0

∫
Ω

(σ − σ̃) :
((
u̇− ˙̃u

)
�∇ϕ

)
dxdt+

∫ T

0

∫
Ω

(f − f̃) · (u̇− ˙̃u)ϕdxdt,

since ϕ(T ) ≥ 0. �
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Remark 3.3. Thanks to Proposition 3.2 with the test function ϕ(t, x) = T−t
T ,

we get that∫ T

0

∫
Ω

∣∣u̇− ˙̃u
∣∣2 dxdt+

∫ T

0

∫
Ω

Q(e− ẽ) dxdt

≤ T
∫

Ω

|v0 − ṽ0|2 dx+T

∫
Ω

Q(e0−ẽ0) dx+2T

∫ T

0

∫
Ω

(f−f̃)·(u̇− ˙̃u)ϕdxdt,

from which we deduce that there exists a constant C depending only on T such
that the following comparison principle holds∫ T

0

∫
Ω

∣∣u̇− ˙̃u
∣∣2 dxdt+

∫ T

0

∫
Ω

Q(e− ẽ) dxdt

≤ C

(∫
Ω

|v0 − ṽ0|2 dx+

∫
Ω

Q(e0 − ẽ0) dx+

∫ T

0

∫
Ω

∣∣∣f − f̃ ∣∣∣2 dx dt

)
.

3.2. Finite speed propagation property.

Proposition 3.4. Let (u, e, σ, p) be the solution of the elasto-plastic problem
given in Section 2.8 for the initial condition (u0, v0, σ0, p0) and the source
terms w and f . Suppose that there exists a compact set K ⊂ Ω such that

supp(v0, σ0, f(t)) ⊂ K for all t ∈ [0, T ].

Then, for all T ∗ ∈ (0, T ] be such that T ∗ <
√
αC
βC

dist(K , ∂Ω), there exists a

compact set K ∗ ⊂ Ω such that supp(u̇, σ) ⊂ [0, T ∗]×K ∗.

Remark 3.5. Since C is invertible, the elastic tensor e, which is such that
σ = Ce, is also compactly supported due to Proposition 3.4 and supp(e) ⊂
[0, T ∗]×K ∗.

Moreover, if one assumes that supp(u0) ⊂ K ∗, one obtain, thanks to
Proposition 3.4, that supp(u) ⊂ [0, T ∗]×K ∗. Indeed, we have, as a Bochner
integral in L2(Ω;Rn), for all t ∈ [0, T ],

u(t) = u0 +

∫ t

0

u̇(s) ds,

since u ∈ W 2,∞([0, T ];L2(Ω;Rn)). Consequently, if we assume that the sup-
port of u0 is a subset of K ∗, the measure Eu is also compactly supported in
[0, T ∗]×K ∗ and we deduce, thanks to the additive decomposition of Eu, that
supp(p) ⊂ [0, T ∗]×K ∗.

Proof. By assumption, we know that for all x ∈ ∂Ω, we have
√
αC
βC

dist(x,K ) >

T ∗, so that we can find some rx > 0 such that dist(x,K ) = rx + T∗βC√
αC

.
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Using the fact that ∂Ω is compact, we obtain the existence of p ∈ N and
x1, . . . , xp ∈ ∂Ω such that

∂Ω ⊂
p⋃
i=1

B
(
xi,

rxi
4

)
,

and we define η = min1≤i≤p rxi/4 > 0, and the boundary layer

Lη = {y ∈ Ω : 0 < dist(y, ∂Ω) < η} ⊂
p⋃
i=1

B
(
xi,

rxi
2

)
∩ Ω.

First, we prove that v0 = 0, σ0 = 0 and f(t) = 0 in the boundary layer Lη
for all t ∈ [0, T ]. Indeed, for every y ∈ B

(
xi,

rxi
2

)
where 1 ≤ i ≤ p, we have

|dist(y,K )− dist(xi,K )| ≤ |y − xi| ≤
rxi
2
,

and consequently,

dist(y,K ) ≥ T ∗βC√
αC

+
rxi
2
> 0, (19)

which implies that v0 = 0, σ0 = 0 and f(t) = 0 in Lη ⊂ ∪pi=1B (xi, ri/2) for
all t ∈ [0, T ] by definition of K .

Let us show that u̇ = 0 and σ = 0 on (0, T ∗)× Lη. To this aim, we choose
x0 ∈ Lη, and, since the set Lη is open, one can find ρ0 ∈ (0, η/2) such that
B(x0, ρ0) ⊂ Lη. Then we define the function ϕ ∈W 1,∞((0, T ∗)× Rn) as

ϕ(t, x)=



T ∗ − t+
√
αC
βC

(ρ0 − |x− x0|) if

{
t ∈ [0, T ∗],

ρ0< |x− x0|< ρ0 + βC
T∗−t√
αC
,

T ∗ − t if

{
t ∈ [0, T ∗],

|x− x0| < ρ0,

0 otherwise.

The function ϕ is non-negative and its support is contained in (0, T ∗) ×
B(x0, ρ0 + T∗βC√

αC
). Consequently, using Proposition 3.2 (with (u, e, σ, p) and

the null solution) it follows that

2

∫ T∗

0

∫
Ω

f · u̇ϕdxdt+

∫
Ω

|v0|2 ϕ(0) dx+

∫
Ω

Q(e0)ϕ(0) dx ≥∫ T∗

0

∫
Ω

− |u̇|2 ϕ̇−Q(e)ϕ̇+ 2σ : (u̇�∇ϕ) dx dt. (20)

Now, we are going to show that the integral part of the right-hand side of the
inequality is non-negative i.e. that we have almost everywhere in (0, T ∗)×Ω

−|u̇|2ϕ̇−Q(e)ϕ̇+ 2σ : (u̇�∇ϕ) ≥ 0. (21)
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Differentiating the function ϕ, it yieldsϕ̇ = −1{(t,x): t∈[0,T∗], |x−x0|<ρ0+βC
T∗−t√
αC
},

∇ϕ = −
√
αC
βC

x−x0

|x−x0|1{(t,x): t∈[0,T∗], ρ0<|x−x0|<ρ0+βC
T∗−t√
αC
}.

Consequently, on {(t, x) : t ∈ [0, T ∗], |x− x0| ≤ ρ0}, we have

−|u̇|2ϕ̇−Q(e)ϕ̇+ 2σ : (u̇�∇ϕ) = |u̇|2 +Q(e) ≥ 0.

While on {(x, t) : t ∈ [0, T ∗], ρ0 < |x− x0| < ρ0 + βC
T∗−t√
αC
}, we have

−|u̇|2ϕ̇−Q(e)ϕ̇+2σ : (u̇�∇ϕ) = |u̇|2 +Q(e)−2

√
αC

βC
σ :

(
u̇�

(
x− x0

|x− x0|

))
.

Using (2), we obtain

−2

√
αC

βC
σ :

(
u̇�

(
x− x0

|x− x0|

))
≥ −2

√
αC

βC
|σ||u̇|.

Since σ = Ce, it yields on {(x, t) : t ∈ [0, T ∗], ρ0 < |x− x0| < ρ0 + βC
T∗−t√
αC
}

−|u̇|2ϕ̇−Q(e)ϕ̇+ 2σ : (u̇�∇ϕ) ≥ |u̇|2 +Q(e)− 2

√
αC

βC
|Ce||u̇|.

Property (5) implies

|u̇|2 +Q(e)− 2

√
αC

βC
|Ce||u̇| ≥ |u̇|2 +Q(e)− 2

√
αC|e||u̇|,

and by the coercivity property (4), Inequality (21) is satisfied a.e in (0, T ∗)×Ω.
Consequently, Inequalities (20) and (21) imply∫

Ω

− |u̇|2 ϕ̇−Q(e)ϕ̇+ 2σ : (u̇�∇ϕ) dx

≥
∫
B(x0,ρ0)

− |u̇|2 ϕ̇−Q(e)ϕ̇+ 2σ : (u̇�∇ϕ) dx. (22)

Using the definition of ϕ, (20) and (22), we obtain

−
∫ T∗

0

∫
B(x0,ρ0)

(|u̇|2 +Q(e))ϕ̇dxdt+ 2

∫ T∗

0

∫
B(x0,ρ0)

σ : (u̇�∇ϕ) dxdt

≤
∫

S

(|v0|2 +Q(e0))ϕ(0) dx+ 2

∫ T∗

0

∫
S

|f ||u̇|ϕdxdt,
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where S ⊂ Ω is such that supp(ϕ) ⊂ [0, T ∗]×S . Since the spatial derivative
of ϕ vanishes on B(x0, ρ0), we get that∫ T∗

0

∫
B(x0,ρ0)

(|u̇|2 +Q(e)) dxdt ≤
∫

S

(|v0|2 +Q(e0))ϕ(0) dx

+ 2

∫ T∗

0

∫
S

|f ||u̇|ϕdxdt. (23)

We now show that the right-hand side of (23) is null due to the definitions of

x0, ρ0 and Lη. Indeed, we obtain that for every y ∈ S ⊂ B
(
x0, ρ0 + T∗βC√

αC

)
(by definition of ϕ),

|dist(y,K )− dist(x0,K )| ≤ ρ0 +
T ∗βC√
αC

,

and thanks to (19) and by definition of η, we have for any x0 ∈ Lη

dist(x0,K ) >
T ∗βC√
αC

+ η,

thus,

dist(y,K ) >
T ∗βC√
αC

+ η − ρ0 −
T ∗βC√
αC

>
η

2
> 0.

Consequently, the right-hand side of (23) vanishes and∫ T∗

0

∫
B(x0,ρ0)

(|u̇|2 +Q(e)) dx dt ≤ 0,

which implies that both u̇ and e vanish in (0, T ∗) × Lη. Since σ = Ce, the
conclusion thus follows by setting K ∗ = Ω \ Lη. �

3.3. Short time regularity result. In the sequel, we suppose that the
boundary source term w is identically equal to zero on (0, T )× Rn.

Proof of Theorem 3.1. Let T ∗ = min
(√

αC
βC

dist(K , ∂Ω), T
)

and τ < T ∗. We

consider (u, e, σ, p) the solution on [0, τ ] × Ω of the elasto-plastic problem
given in Section 2.8 for the initial condition (u0, v0, σ0, p0), the source term
f and the null boundary source term. Thanks to Proposition 3.4 and also to
Remark 3.5, we know that there exists a compact set, K ∗ ⊂ Ω such that

supp(u, e, σ, p) ⊂ [0, τ ]×K ∗. (24)

Since K ∗ is a compact subset of Ω, there exists δ > 0 such that for all h ∈ Rn
with |h| < δ, the sets K ∗ + h are also compactly embedded in Ω. Let Ω′ be
a bounded smooth open subset of Rn such that Ω ⊂ Ω′, and for all h ∈ Rn
with |h| < δ, Ω + h ⊂ Ω′.



16 C. MIFSUD

Step 1: Extension on (0, τ) × Ω′. Since the boundary source term is null
on (0, T )× Rn, we extend (f, u, e, p) by zero on (0, τ)× Ω′ and we denote by
(f̄ , ū, ē, p̄) these extensions. We also extend by zero the initial data u0, v0, e0,
σ0 and p0 and denote by ū0, v̄0, ē0, σ̄0 and p̄0 these extensions.

Firstly, we check that these extensions are as regular as the solution on
(0, τ)× Ω.

The displacement field ū belongs to W 2,∞([0, τ ];L2(Ω′;Rn)), the elastic
strain ē to W 1,∞([0, τ ];L2(Ω′;Mn×n

sym )) and the plastic strain p̄ to the space

AC([0, τ ];M(Ω′;Mn×n
sym ). The source term f̄ belongs to H1([0, τ ] × Ω′;Rn).

We also define the extension of the stress σ̄ := Cē ∈W 1,∞([0, τ ];L2(Ω′;K)).
In addition, for all t ∈ [0, τ ], since the (inner) trace on ∂Ω of u(t) vanishes

and since we have extended u by zero, [23, Chapter 2, Proposition 2.1] ensures
that the function ū(t) ∈ BD(Ω′) and

Eū(t) = Eu(t) on Ω,
Eū(t) = 0 on Ω′ \ Ω.

Hence, we get that ū ∈ AC([0, τ ];BD(Ω′)).
Now we show that these extensions (and their time derivatives) satisfy the

additive decomposition and the boundary condition in Ω′. Indeed, we know
that for every t ∈ [0, τ ], since we extend u, e and p by zero outside Ω,

Eū(t) = ē(t) + p̄(t) in Ω′, (25)

and

p(t) = 0 = −u(t)� νHn−1 on ∂Ω′. (26)

These regularity properties together with (25) and (26) ensure, thanks to
Lemma 2.4, that for a.e. t ∈ [0, τ ] we have,

˙̄p(t) = E ˙̄u(t)− ˙̄e(t) on Ω′,

and
˙̄p(t) = 0� νHn−1 on ∂Ω′.

Remark also that, since the support of σ is contained in [0, τ ] × K , we
deduce that σ(t) belongs to H0(div,Ω) for all t ∈ [0, τ ] and consequently (see
Remark 2.2) σ̄(t) ∈ H0(div,Ω′) for all t ∈ [0, τ ]. Consequently, it allows us
to define for a.e. t ∈ [0, τ ] the distribution [σ̄(t) : ˙̄p(t)] as in Definition 2.5.
Clearly

[σ̄(t) : ˙̄p(t)] = [σ(t) : ṗ(t)] in D′(Rn). (27)

Then we are going to prove that for a.e. t ∈ [0, τ ], H( ˙̄p(t)) is inM(Ω′) and
that we have

H( ˙̄p(t)) = [σ̄(t) : ˙̄p(t)] in M(Ω′).

First, observe that we only need to prove that

H( ˙̄p(t))(Ω′) < +∞,
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for a.e. t ∈ [0, τ ] to get that H( ˙̄p(t)) ∈M(Ω′) (see Subsection 2.7). Since for
a.e. t ∈ [0, τ ],

supp ( ˙̄p(t)) = supp (ṗ(t)) ⊂ Ω,

and by definition of H( ˙̄p(t)) (see (8)), the support of H( ˙̄p(t)) is also a subset
of Ω. Hence, we have

H( ˙̄p(t))(Ω′ \ Ω) = 0,

and consequently

H( ˙̄p(t))(Ω′) = H( ˙̄p(t))(Ω) +H( ˙̄p(t))(Ω′ \ Ω)

= H( ˙̄p(t))(Ω) = H(ṗ(t))(Ω) < +∞. (28)

Remark 2.7 ensures that

[σ̄(t) : ˙̄p(t)] ≤ H( ˙̄p(t)) in M(Ω′). (29)

Due to the definition of [σ̄(t) : ˙̄p(t)] and using (27), we have

[σ(t) : ṗ(t)](Ω) = [σ̄(t) : ˙̄p(t)](Ω′). (30)

By (28) and (30), we get that

H( ˙̄p(t))(Ω′) = H(ṗ(t))(Ω) = [σ(t) : ṗ(t)](Ω) = [σ̄(t) : ˙̄p(t)](Ω′). (31)

Gathering (29) and (31), we obtain for a.e. t ∈ [0, τ ],

H( ˙̄p(t)) = [σ̄(t) : ˙̄p(t)] in M(Ω′). (32)

Step 2: Spatial translation. For every h ∈ Rn be such that |h| < δ, we
define the translation operator τh of a generic function F : (0, τ) × Ω′ → X
(where X is an Euclidean space) by

τhF (t, x) = F (t, x+ h) for all (t, x) ∈ (0, τ)× Ω.

Note that τhF is a function from (0, τ)× Ω to X.
As in the previous step, we check that the translated functions τhū, τhē, τhσ̄

and τhf̄ have the same regularity as the extended functions. First, observe
that the translated source term τhf̄ is in H1([0, τ ];L2(Ω;Rn)), the translated
displacement τhū in W 2,∞([0, τ ];L2(Ω;Rn)) and the translated elastic strain
τhē belongs to W 1,∞([0, τ ];L2(Ω;Mn×n

sym )). We also define τhσ̄ := Cτhē ∈
W 1,∞([0, τ ];L2(Ω;K)).

It remains to show that τhū ∈ AC([0, τ ];BD(Ω)). To do so, observe that
for all t ∈ [0, τ ] and all ϕ ∈ C∞c (Ω;Mn×n

sym ), one has thanks to a change of
variable ∫

Ω

τhū(t, x)�∇ϕ(x) dx =

∫
Ω+h

ū(t, y)�∇ϕ(y − h) dx.

Using (24), it yields∫
Ω

τhū(t, x)�∇ϕ(x) dx =

∫
Ω

ū(t, y)�∇ϕ(y − h) dx. (33)
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The integration by parts formula in BD(Ω) (see [2, Theorem 3.2]) and the
fact that the trace of ū is null on ∂Ω imply that∫

Ω

ū(t, y)�∇ϕ(y − h) dx. = −
∫

Ω

ϕ(· − h) dEū(t). (34)

Then, the definition of the push-forward of the measure Eū(t) by the mapping
x 7→ x− h, denoted by τ−h#Eū(t), tells us that

−
∫

Ω

ϕ(· − h) dEū(t) = −
∫

Ω

ϕdτ−h#Eū(t). (35)

Combining (33), (34) and (35), we obtain that for all t ∈ [0, τ ],

E(τhū)(t) = τ−h#Eū(t) in M(Ω;Mn×n
sym ). (36)

It implies that τhū ∈ AC([0, τ ];BD(Ω)).
Finally, we show that the translated functions τhū and τhē, and the push-

forward measure τ−h#p̄(t) ∈M(Ω;Mn×n
sym ) satisfy the additive decomposition

in Ω and the boundary condition associated to the null (translated) boundary
source term. Thanks to (25) and (36), the push-forward measure τ−h#p̄(t) ∈
M(Ω;Mn×n

sym ) satisfies for all t ∈ [0, τ ]

τ−h#p̄(t) = Eτhū(t)− τhē(t) in Ω, (37)

and due to the fact that for all t ∈ [0, τ ], the measure p̄(t) is null on an
h-neighborhood of ∂Ω, we also have for all t ∈ [0, τ ]

τ−h#p̄(t) = 0� ν dHn−1. (38)

These two previous points (37) and (38) and the regularity of τhū and τhē
ensure that τ−h#p̄ ∈ AC([0, τ ];M(Ω;Mn×n

sym )).

Step 3 : The translation of the solution is a solution. We define
the translation of the solution (uh, eh, σh, ph) := (τhū, τhē, τhσ̄, τ−h#p̄), the

translated source term fh := τhf̄ , the translated null boundary source term
wh := 0 and finally the translated initial data (τhu0, τhv0, τhe0, τhσ0, τhp0) :=
(τhū0, τhv̄0, τhē0, τhσ̄0, τ−h#p̄0).

Our goal is to prove that the quadruple (uh, eh, σh, ph) is the solution as-
sociated to the initial data (τhu0, τhv0, τhe0, τhσ0, τhp0) and the source terms
(fh, wh).

First, we make sure that this initial data (τhu0, τhv0, τhe0, τhσ0, τhp0) and
the source terms fh and wh satisfy the hypotheses of [4, Theorem 5.1] (recalled
in Section 2.8).

Indeed, since we assume that (10) is satisfied and also since we extend the
source term f and the initial data u0, v0, e0, σ0 and p0 by zero outside of
Ω, we have, by the same reasoning as in the previous step, τhu0 ∈ BD(Ω) ∩



SHORT-TIME REGULARITY IN PERFECT PLASTICITY 19

L2(Ω;Rn), τhe0 ∈ L2(Ω;Mn×n
sym ), τhp0 = τ−h#p̄0 ∈ M(Ω;Mn×n

sym ) and τhv0 ∈
H1(Ω;Rn) satisfying the additive decomposition

Eτhu0 = τhe0 + τhp0 in Ω,

and

τhp0 = 0� νHn−1 on ∂Ω. (39)

Moreover, the translated initial data satisfies the compatibility conditions

τhv0 = 0 Hn−1 − a.e on ∂Ω and − divτhσ0 = τhf(0), a.e in Ω,

where τhσ0 := Cτhe0 ∈ K. To prove that the translated initial data satisfies
the boundary condition

τhp0 = (wh(0)− τhu0)� νHn−1 = −τhu0 � νHn−1 on ∂Ω,

we only need to prove that the trace of τhu0 is null on ∂Ω, since we already
know that τhp0 satisfies (39). But, due to the definition of δ (and since
|h| < δ), since u0 satisfies (10) and since the trace of a function in BD(Ω) can
be recovered by taking limits of averages of this function on balls centered
on the boundary (see [2, Proposition 3.5]), we obtain that the trace of τhu0

is null on ∂Ω and as a consequence that the translated initial data satisfies
the boundary condition. Lastly, we remark that we already know (from the
previous step) that fh ∈ H1([0, τ ];L2(Ω;Rn)) ⊂ AC([0, τ ];L2(Ω;Rn)).

Now that we know that (τhu0, τhv0, τhe0, τhσ0, τhp0) and the source terms
(fh, wh) satisfy the hypotheses of Theorem 2.8, let us show that (uh, eh, σh, ph)
is a solution of the dynamical elasto-plastic problem associated to these data,
i.e. (uh, eh, σh, ph) satisfies the following conditions

(1) Regularity properties: we have
uh ∈ AC([0, τ ];BD(Ω)) ∩W 2,∞([0, τ ];L2(Ω;Rn)),
eh, σh ∈W 1,∞([0, τ ];L2(Ω;Mn×n

sym )),

ph ∈ AC([0, τ ];M(Ω;Mn×n
sym )),

(2) Equation of motion: üh − divσh = fh a.e in (0, τ)× Ω,
(3) Additive decomposition: for every t ∈ [0, τ ],

Euh(t) = eh(t) + ph(t) in Ω,

(4) Stress constraint: for every t ∈ [0, τ ], σh(t) ∈ K a.e. in Ω with
σh(t) = Ceh(t),

(5) (Homogeneous) Boundary condition: for every t ∈ [0, τ ],

ph(t) = −uh(t)� νHn−1 on ∂Ω,

(6) Flow rule: for a.e. t ∈ [0, τ ], the distribution [σh(t) : ṗh(t)] is a
measure in M(Ω) satisfying

H(ṗh(t)) = [σh(t) : ṗh(t)] in M(Ω),
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(7) Initial conditions:

uh(0) = τhu0, u̇h(0) = τhv0, σh(0) = τhσ0, ph(0) = τ−h#p0.

• Item 1 has already been proved in step 2.
• Now, we explain how to derive item 2: Using the extension on Ω′, we

know that

¨̄u− divσ̄ = f̄ , a.e. in (0, τ)× Ω′.

From which, we deduce the equation of motion by definition of the
translation operator.
• Equation (37) is equivalent to item 3 and has already been obtained

in the step 2.
• The stress constraint (item 4) is immediate from the definition of τhσ̄

in the step 2.
• Let us examine the point 5. Using the definition of uh and the fact

that the trace of a function in BD(Ω) can be recovered by taking
limits of averages of this function on balls centered on the boundary
(see [2, Proposition 3.5]), we obtain that for all t ∈ [0, τ ]

uh(t) = 0 a.e on ∂Ω. (40)

Since in the step 2, we have already proven that (see Equation (38))

ph = 0� νHn−1 on ∂Ω. (41)

Using Equations (40) and (41), we get the boundary condition.
• We now turn to the flow rule (item 6). Since (uh, eh, σh, ph)(t) satisfies

the hypotheses of Lemma 2.4 (thanks to items 1, 3 and 5), we can
apply Definition 2.5 and we know that for a.e. t ∈ [0, τ ] and for all
ϕ ∈ C∞0 (Ω),

〈[σh(t) : ṗh(t)], ϕ〉 = −
∫

Ω

ϕu̇h(t) · divσh(t) dx

−
∫

Ω

σh(t) : (u̇h(t)�∇ϕ) dx−
∫

Ω

σh(t) : ėh(t)ϕdx.

Using a change of variables and the fact that for all t ∈ [0, τ ], the
support of ˙̄u(t) and ē(t) is a subset of the compact set K ∗ ⊂ Ω, we
get that

〈[ṗh(t) : σh(t)], ϕ〉 = −
∫

Ω

ϕ(· − h) ˙̄u(t) · divσ̄(t) dx

−
∫

Ω

σ̄(t) : ( ˙̄u(t)�∇ϕ(· − h)) dx−
∫

Ω

σ̄(t) : ˙̄e(t)ϕ(· − h) dx,

and again thanks to Definition 2.5, we obtain

〈[σh(t) : ṗh(t)], ϕ〉 = 〈[σ̄(t) : ˙̄p(t)], ϕ(· − h)〉 = 〈H( ˙̄p(t)), ϕ(· − h)〉 , (42)
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where we used that ϕ(· − h) ∈ C∞0 (Ω′) and H( ˙̄p(t)) = [σ̄(t) : ˙̄p(t)] in
M(Ω′) (according to (32)). To show item 6, it remains to prove that

∀ϕ ∈ C∞0 (Ω), 〈H( ˙̄p(t)), ϕ(· − h)〉 = 〈H(ṗh(t)), ϕ〉 ,

which is equivalent, by definition of the push-forward measure, to

H(ṗh(t)) = τ−h#H(ṗ(t)) in M(Ω). (43)

In order to derive (43), we use (thanks to [15]) that for any Borel
subset E of Ω

H(ṗh(t))(E) = sup

{
N∑
i=1

H(ṗh(t)(Ei)) with N ∈ N and

N⊔
i=1

Ei = E

}
,

where the supremum is taken over all pairwise disjoint partitions
⊔
iEi

of E into Borel sets. By definition of the push-forward measure, we
obtain

H(ṗh(t))(E) = sup

{
N∑
i=1

H( ˙̄p(t)(Ei + h)) with N ∈ N and

N⊔
i=1

Ei = E

}
.

Now since τh is a homeomorphism, one can associate to a pairwise dis-
joint partition of E into Borel sets a unique pairwise disjoint partition
of E + h into Borel sets. It implies that

H(ṗh(t))(E) = sup

{
N∑
i=1

H( ˙̄p(t)(Ei + h)) with N ∈ N and

N⊔
i=1

Ei = E

}
= H( ˙̄p(t))(E + h) = H( ˙̄p(t))((τ−h)

−1
(E)) = τ−h#H(ṗ(t))(E).

From which, we deduce (43) and it gives item 6.
• Due to the definition of τh, item 7 is automatically satisfied.

Since items 1–7 are satisfied, it shows that the translation of the solution is a
solution (associated to translated data).

Step 4 : Regularity. Since (uh, eh, σh, ph) is a solution on (0, τ)× Ω as-
sociated to the initial condition (τhu0, τhv0, τhe0, τhσ0, τhp0), the source term
fh and the null boundary source term, we can use the comparison principle
(i.e. Proposition 3.2) applied to (u, e, σ, p) and (uh, eh, σh, ph) with the test
function ϕ defined as

ϕ(t, x) =


1 if 0 ≤ t ≤ t0,
t0+ε−t

ε if t0 < t < t0 + ε,

0 if t0 + ε ≤ t ≤ τ,
(44)
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with t0 ∈ [0, τ) and ε > 0 such that (t0, t0 + ε) ⊂ [0, τ ]. Thus, Proposition 3.2
yields

1

ε

(∫ t0+ε

t0

∫
Ω

|u̇h − u̇|2 dxdt+

∫ t0+ε

t0

∫
Ω

Q(eh − e) dxdt

)
≤
∫

Ω

|v0 − τhv0|2 dx+

∫
Ω

Q(e0− τhe0) dx+ 2

∫ τ

0

∫
Ω

|fh− f ||u̇h− u̇|dxdt,

since 0 ≤ ϕ ≤ 1. Since u̇h and u̇ belong to W 1,∞([0, τ ];L2(Ω;Rn)) and eh
and e belong to W 1,∞([0, τ ];L2(Ω;Mn×n

sym )), we can pass to the limit ε → 0+

in the previous inequality and we get∫
Ω

|u̇h(t0)− u̇(t0)|2 dx dt+

∫
Ω

Q(eh(t0)− e(t0)) dxdt

≤
∫

Ω

|v0 − τhv0|2 dx+

∫
Ω

Q(e0− τhe0) dx+ 2

∫ τ

0

∫
Ω

|fh− f ||u̇h− u̇|dxdt,

for every t0 ∈ [0, τ).
According to Young’s inequality, to (4) and (5), and since we have v0 ∈

H1(Ω;Rn), σ0 ∈ H1(Ω;Mn×n
sym ), f ∈ H1((0, τ) × Ω;Rn), we get that for any

|h| < δ the following inequality holds

ess sup
t∈[0,τ ]

‖(u̇h − u̇)(t)‖2L2(Ω;Rn) + αC ess sup
t∈[0,τ ]

‖(eh − e)(t)‖L2(Ω;Mn×nsym )

≤ C(T ∗)|h|2
(
‖Dv0‖2L2(Ω;Mn×n) + ‖Dσ0‖2L2(Ω;Rn×Mn×n)

+

∫ T∗

0

‖Df(t)‖2L2(Ω;Mn×n) dt

)
,

from which we get that u̇ ∈ L∞(0, τ ;H1(Ω;Rn)). It also yields, due to the
relation σ = Ce, σ ∈ L∞(0, τ ;H1(Ω;Mn×n

sym )).

Step 5 : Additional regularity. In the following, we suppose that
p0 ∈ L2(Ω;Mn×n

sym ) and u0 ∈ H1(Ω;Rn). Writing for all t ∈ [0, T ],

u(t) = u0 +

∫ t

0

u̇(s) ds,

as a Bochner integral in L2(Ω;Rn), we obtain, thanks to the regularity of the
velocity field derived in step 4, that u ∈W 1,∞([0, τ ];H1(Ω;Rn)).

Finally, due to Theorem 2.8, we know that σ ∈W 1,∞([0, τ ];L2(Ω;Mn×n
sym ))

and consequently, from the additive decomposition, we get p = Eu − σ ∈
L∞(0, τ ;L2(Ω;Mn×n

sym )) and ṗ = Eu̇− σ̇ ∈ L∞(0, τ ;L2(Ω;Mn×n
sym )) which gives

the desired regularity for the plastic strain. �



SHORT-TIME REGULARITY IN PERFECT PLASTICITY 23

Acknowledgements

The author wishes to express his thanks to Jean-François Babadjian for
many stimulating conversations.

References

[1] Anzellotti, G., Luckhaus, S.: Dynamical evolution of elasto-perfectly plastic bodies.

Appl. Math. Optim. 15(2), 121–140 (1987)
[2] Babadjian, J.F.: Traces of functions of bounded deformation. Indiana Univ. Math. J.

64(4), 1271–1290 (2015)

[3] Babadjian, J.F., Mifsud, C.: Hyperbolic structure for a simplified model of dynamical
perfect plasticity. Arch. Ration. Mech. Anal. 223(2), 761–815 (2017)

[4] Babadjian, J.F., Mora, M.G.: Approximation of dynamic and quasi-static evolution

problems in elasto-plasticity by cap models. Quart. Appl. Math. 73(2), 265–316 (2015)
[5] Bensoussan, A., Frehse, J.: Asymptotic behaviour of the time dependent Norton-Hoff

law in plasticity theory and H1 regularity. Comment. Math. Univ. Carolin. 37(2),
285–304 (1996)
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