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Summary 

 The mucosal barrier comprises a layered defense system including physio-chemical 

and immunological strategies to contain commensal microflora while protecting the host 

against potential pathogens. In contrast to the clearly established and well-characterized role 

for the adaptive immune system in intestinal defense, our knowledge on innate immune 

mechanisms that operate in the gut is much less defined. The recent identification of novel 

innate lymphoid cells (ILC), including ‘NK-like’ cells that naturally produce IL-22 and 

appear to play a role in intestinal defense, demonstrate an unexpected and increasing 

complexity in mucosal innate immunity. 
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Introduction 

 Homeostasis between the intestinal microbiota and the immune system is required for 

efficient energy and metabolite extraction from food, protection from pathogenic microbes, 

degradation of xenobiotics and maintenance of a competent epithelial barrier [1,2]. This 

equilibrium necessitates a constant dialogue mediated by pattern recognition receptors (PRRs) 

on epithelial and immune cells and pathogen-associated molecular patterns expressed by a 

complex (~10
14

 bacteria and 10
3
 species) microbiota [3,4]. The intestinal immune system is a 

dynamic structure that comprises of a vast network of lymphoid tissues, lymphoid cells and 

dendritic cells (DCs) within the epithelium and lamina propria (LP). Lymphocytes reinforce 

the mucoasl barrier via IgA production and epithelial cell activation resulting in production of 

mucus and anti-bacterial peptides. In the LP, DCs capture microbial antigens and drive pro-

inflammatory Th17 cells and regulatory T cell responses [5,6]. Distinct bacterial taxa induce 

the development of lymphoid tissues [7], while Th17 and Treg cell differentiation shape the 

bacterial community demonstrating the reciprocal impact of the intestinal immune system on 

symbiotic microbiota [8,9,10]. 

 In addition to the aforementioned adaptive immune component, innate lymphocytes 

including natural killer (NK) cells [11,12] and mucosal-associated invariant T (MAIT) cells 

[13] are also found in the intestine. While the function of MAIT cells has not yet been fully 

defined [14], it is known that NK cells can rapidly detect and then destroy stressed, 

transformed or infected target cells [15]. As NK cells can be found in lymphoid and non-

lymphoid tissues and circulate in the blood and lymph [16], they may have a role in systemic 

immunosurveillance against various pathogens and tumors. NK cells are also capable of 

prompt secretion of several types of cytokines (including IFN- and TNF-) that play an 

important role in the activation of DC and macrophages, thereby increasing their antigen-

processing and anti-microbial activity, respectively. Chemokine secretion by NK cells can 
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influence inflammatory responses and immune defense through recruitment of hematopoietic 

effector cells [17].  

 The aforementioned biological functions of NK cells fit squarely within the realm of 

‘T-helper 1-like’ (pro-inflammatory) activities of the immune response, supporting the long-

held view that NK cells represent a homogeneous cohort of Th1-polarized innate 

lymphocytes. Still, evidence has accumulated suggesting that NK cells may exhibit 

phenotypic and functional ‘diversity’ [18,19] that operates at the level of cell activation 

(attributes of resting, primed and chronically stimulated NK cells differ; [20,21,22-24] as 

well as at the level of different tissue environments. NK cells that are found in the thymus, 

lymph node, liver, pancreas and uterus have markedly different cell surface phenotypes and 

biological functions [25-27,28,29]. Thus tissue microenvironments may condition the 

ultimate biological effector program of NK cell subsets. 

 A family of natural cytotoxicity receptors (NCR) has been characterized that appear to 

play important roles in NK cell target recognition [30]. NKp46 (encoded at the Ncr1 locus in 

mice) is highly conserved NCR in mammals and has been proposed as an NK cell-specific 

marker [31]. The analysis of NKp46
+
 cells in the intestinal mucosa demonstrated that NKp46 

also delineates a subset of innate lymphoid cells (ILC) that differ from classical NK cells. 

This review will update our current knowledge on IL-22-producing NKp46
+
 cells as well as 

other novel ‘natural’ immune defense pathways that operate at mucosal surfaces. 

 

NKp46 identifies a novel subset of ‘non-NK’ cells in the murine intestine: NCR22 cells 

Whereas NK cells have been documented in the intestinal mucosa [11,12], their 

developmental pathways and biological roles are not fully understood. NK cells, by virtue of 

their rapid cytokine response, might play an important role in intestinal immunity by 

interfacing with intestinal DC to regulate immune responses. Alternatively, NK cells may 
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eliminate stressed or infected cells within the intestinal lamina propria (LP) or epithelium. In 

this way, intestinal NK cells could contribute to the maintenance of epithelial homeostasis.  

Recently, several independent groups have characterized human and murine mucosal 

lymphocytes expressing natural cytotoxicity receptor family members 

[32,33,34,35,36]. In the mouse, NKp46 had been previously shown to be highly 

and specifically expressed in immature and mature NK cells in the mouse [31,37] and ‘knock-

in’ mice bearing a GFP reporter at the Ncr1 locus [38] were used in one study to identify 

these cells in the gut [32]. Unlike splenic NK cells that were relatively homogeneous in 

NK1.1 expression, intestinal NKp46
+
 cells clearly comprised distinct subsets, including a 

large population of CD127
+
NK1.1

–
 cells that lacked many of the markers of mature NK cells 

(Ly49 family members, CD11b, CD27, NKG2D). Moreover, this subset of NKp46
+
 cells in 

the intestine lacked perforin, natural cytotoxicity and did not transcribe IFN-, and thus bore 

little functional resemblance to classical NK cells found in the bone marrow or spleen 

[32,35,36]. In contrast, these unusual gut NKp46
+
 cells expressed the nuclear hormone 

receptor retinoic acid receptor–related orphan
 
receptor gamma t (RORt, encoded at the Rorc 

locus) that plays an essential role in the development of Lymphoid Tissue-inducer (LTi) cells 

[39] and in the differentiation of Th17 cells [5]. Further studies demonstrated that intestinal 

NKp46
+
 cells produced substantial amounts of interleukin (IL)-22, but little IL-17A 

[32,33,35], thereby distinguishing them from Th17 T cell subsets [5,6,40,41]. 

Nevertheless, IL-22
+
NKp46

+
 cells required Rorc for their development [32,35,36] and 

their homeostasis was dependent on the presence of microbial flora, as germ-free mice 

showed a strong decrease in the absolute numbers of NKp46
+
 cells that express Rorc and Il22 

[32,35]. While commensal microbe segmented filamentous bacterium (SFB) induces 

intestinal Th17 T cells [8,9], its role in regulating innate IL-22 production in the gut is 

unknown. In contrast, development of NK1.1
+
 NKp46

+
 intestinal cells was unaffected by 
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Rorc deficiency and these cells developed normally in the absence of microbial flora. Taken 

together, these observations identify a novel subset of intestinal mucosal NKp46
+
 cells that 

can be clearly distinguished from ‘classical’ NK cells in terms of phenotype, function, 

transcription factor dependency and interactions with microbial flora (Figure 1). 

Studies by the Colonna [33] and Spits [34] laboratories using human fetal and 

adult lymphoid tissue identified novel innate lymphocyte subsets characterized by CD127 

(IL-7R), CD56 and NKp44 expression with strong IL-22 production in response to IL-23. 

‘NK22’ cells in humans [33], like their murine counterparts, express Rorc [33,34], and 

the aryl hydrocarbon receptor (Ahr) shown to be critical in the regulation of IL-22 production 

[42]. As the mouse intestinal cells express NKp46 and show robust production of IL-22 

following IL-23 stimulation [43], we have designated these as ‘NCR22’ cells [44], a term 

that could also apply to the human counterparts. While a standard nomenclature for IL-22-

producing innate cells has yet to be defined, we would caution the use of ‘NK’ for these cells 

that thus far have not been shown to exert natural killing.  

Soon after their discovery, the question whether IL-22-producing NKp46
+
 cells were 

more related (developmentally and functionally) to NK cells or to LTi cells was raised 

[45,46]. In the next sections, we will examine recent data that impacts on this debate as well 

as outstanding issues in NCR22 biology that are the subject of ongoing investigation. 

 

Relationship of NCR22 cells to classical NK cells 

 In addition to the phenotypic and functional differences between NK cells and NCR22 

cells, several aspects of the developmental process suggested that these two cell types were 

distinct (Figure 1). Unlike intestinal NK1.1
+
 cells, NCR22 cells were unaffected by the 

absence of IL-15 signaling [32,35]. Still, since immature NK cell precursors are also IL-

15-independent [47] and NCR22 have attributes of immature NK cells, it was possible that 
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NCR22 cells expressing Rorc might represent precursors to more mature classical NK cells. 

Moreover, previous studies demonstrated that fetal Rorc
+
 LTi cells could develop into lytic 

NK1.1
+
 NK cells following culture in vitro [48], while immature NK cells in the secondary 

lymphoid tissue of humans and mice were shown to express Rorc [49,50]. 

 A recent series of papers addressed the developmental relationship of human and 

mouse Rorc-expressing NKp46
+
 cells to classical NK cells [44,51]. Our group showed 

that NCR22 cells shared a developmental relationship with NK cells and LTi cells by 

expressing and requiring the transcriptional repressor Id2 for normal development and 

homeostasis [44,52]. We further demonstrated that IL-7 was critically required for NCR22 

development. Finally, we used a fate-mapping approach to follow the destiny of Rorc-

expressing cells and found that the vast majority of classical NK cells (in the bone marrow, 

liver, lymph node, spleen and intestine) were not descendants of Rorc
+
 precursors [44]. In 

an independent study from the Spits’ laboratory [51], human lineage-negative RORC
+
 

precursors in fetal and adult lymphoid tissues were shown to acquire CD56 and NCR 

expression, but failed to develop functional characteristics of mature NK cells (these cells 

remained IL-22
+
 and lacked perforin and granzyme B expression). Collectively, these studies 

clearly exclude a major role for Rorc-expressing hematopoietic precursors as developmental 

intermediates in the differentiation of classical NK cells, and reinforce the notion that NCR22 

and NK cells derive from distinct developmental pathways. Along these lines, it has been 

recently shown that the transcription factor E4bp4/Nfil3 is a critical determinant of NK cell 

development [53,54] and might provide a ‘signature’ to dissect classical NK cell 

differentiation [55]. While E4bp4/Nfil3-deficient mice do not appear to have defects in 

formation of secondary lymphoid tissue (suggesting normal LTi function), it is not yet 

reported whether NCR22 differentiation in these mice is affected. 
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Relationship of NCR22 cells to Lymphoid Tissue inducer (LTi) cells 

 LTi cells are classically defined as CD3
-
CD4

+
 hematopoietic cells that promote the 

formation of lymphoid tissues (including LN, PP and intestinal isolated lymphoid follicle, 

ILF) via a cross-talk with stromal cells that results in the recruitment of B and T lymphocytes 

to functionally distinct zones [56]. Several signals have been identified that are critical to this 

process. LTi cells from Rorc-deficient mice are not generated and stromal cells in lymphoid 

tissue anlagen from Rorc
-/-

 mice fail to express VCAM and ICAM resulting in abortive 

lymphoid tissue genesis [39]. LTi cells express CD127 and IL-7 is required for the activation 

of LTi cells to express membrane-bound lymphotoxin LT12 heterotrimer that activates 

stromal cells through the LTR [57]. Chemokine/chemokine receptor interactions (oprating 

through CCR7 and CXCR5) also play a critical role in LTi localization and subsequent 

lymphoid tissue development [57,58]. 

 While LTi and intestinal NCR22 cells share Rorc and Il7 dependency for their 

development (Figure 1), the chemokine/chemokine receptor interactions that dictate tissue 

localization of NCR22 cells are not yet identified. Moreover, there has been some debate 

about where NCR22 cells localize as two groups identified these cells in cryptopatches (CP) 

using NKp46 antibodies [35,36], while another group found Ncr1-GFP expressing cells 

in the LP and in ILFs, but not in CP [32]. One possible explanation might involve the 

distinction between CP and ILF (that represent a continuum) [59]. However, their localization 

in the LP might be more consistent with their role in IL-22 production to stimulate epithelial 

function. Nevertheless, LTR signals appear dispensable for the development of NCR22 cells 

(Satoh-Takayama, unpublished), whereas these signals are critical for lymphoid tissue 

organogenesis suggesting that CP/ILF structures are not obligatory for NCR22 differentiation. 

 Do LTi and NCR22 cells subserve similar biological functions? Like NCR22 cells, 

both human and mouse LTi cells have been shown to express IL-22 and also IL-17 
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[34,58,60]. Nevertheless, IL-17 and IL-22 are not required for the development of 

lymphoid tissues, suggesting other roles for IL-17/IL-22-producing LTi and NCR22 cells, 

including inflammation and immunity to infection (see below). The analysis of lymphoid 

tissue induction in vivo is technically challenging, although elegant studies have shown bona 

fide lymphoid tissue organogenesis following transfer of purified LTi cells [61]. In vitro 

surrogates of this process include assays that measure induction of VCAM and ICAM 

expression on stromal cells using co-culture systems. While human CD56
+
IL-22

+
 cells show 

activity in this assay [34,51], it remains to be shown that murine NCR22 cells have LTi-

like activity in vitro or in vivo. In the absence of demonstrable LTi activity, the use of the 

term ‘NKR-LTi’ [35] could be cautioned. Furthermore, since only a fraction of LTi or 

NCR22 cells produce IL-22 after stimulation, it is not clear whether IL-22 production and 

LTi-like activity are exerted by the same cell or by functionally distinct subsets within LTi 

and NCR22 cell populations being analyzed. Defining the functional relationship of IL-22 

producing NKp46
+
 cells to classical LTi cells remains an area of further investigation. 

 

Roles for NCR22 cells in intestinal immune defense and tissue homeostasis 

IL-22 was initially identified as a member of the IL-10 family and is expressed by 

Th17 and Th22 T cells, NK cells, NKT cells and  T cells subsets [62]. IL-22 exhibits both 

anti-inflammatory as well as pro-inflammatory properties, depending on the tissue context 

[63]. A protective role for IL-22 in immune defense has been demonstrated at mucosal 

surfaces using lung and intestinal infection models [64,65]. While the cellular source of 

mucosal IL-22 remains a matter of debate, IL-22 production is retained in Rag-deficient mice 

consistent with an innate immune cell origin [64]. Considering the prompt production of 

IL-22 by NCR22 cells, we hypothesized that intestinal NCR22 cells were involved in immune 

defense against the pathogen Citrobacter rodentium. Using Rag-deficient mice lacking the c 
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chain, we found that the complete absence of NCR22 cells was correlated with accentuated 

susceptibility to C. rodentium [32]. In contrast, mice lacking classical NK cells showed 

partial susceptibility [33,43] consistent with a minor role for NK1.1
+
 cells in defense 

against this pathogen. Surprisingly, Ncr1-deficient mice showed no increased susceptibility to 

C. rodentium [43] suggesting that Ncr1 ligand-driven signals (if present) are not essential for 

the anti-microbial response. In a separate set of studies, the Flavell lab demonstrated that 

intestinal IL-22 production from innate cells also was required for immune protection in the 

dextran sulfate-induced (DSS) colitis model [66]. In both C. rodentium and DSS models, 

increased IL-23 production (likely via PRR-triggered DCs) was upstream of the enhanced IL-

22 production. The likely cellular target of IL-22 was the intestinal epithelium, since IL-22 

was shown to stimulate epithelial cells to promote secretion of anti-microbial proteins (-

defensins, RegIII family members and lipocalin 2) that reinforce mucosal barrier function 

[64,65]. Accordingly, RegIII and RegIII transcripts are strongly reduced in epithelial 

cells from mice lacking intestinal NKp46
+
 cells [32,35], and while these mice still 

maintain the capacity to restrict entry of commensal microflora, their susceptibility to 

pathogenic micro-organisms is accentuated. In this way, intestinal NKp46
+
 cells provide a 

form of ‘pre-emptive’ immune defense that operates to strengthen the epithelial barrier. 

Since IL-22 has also been shown to have pro-inflammatory properties [63], it is 

possible that NCR22 cells may be involved in intestinal pathologies under certain conditions. 

Infection by Toxoplasma gondii in mice causes an ileitis that is associated with increased 

local IL-22 production [67]. While CD4
+
 T cells appear to be the major IL-22 producers in 

this context, the residual IL-22 production in Rag-deficient mice infected with T. gondii 

suggests additional potential pathological roles for NCR22 cells or LTi cells. Recently, innate 

IL-23-responsive colitis-promoting cells that appear hardwired for IL-17 production have 

been identified [68]. These Rorc-dependent cells appear functionally distinct from NCR22 
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cells, but share several phenotypic (CD127, CD90) and developmental characteristics (Figure 

1). Whether these innate cells represent unique lineages or differentiation states within a 

single innate cell lineage is unknown. 

 

Roles for NCR22 or NCR22-like cells at other tissue sites 

These observations suggest that an intestinal ‘niche’ conditions the differentiation of 

diverse NKp46
+
 cell subsets that are important for mucosal immunity. An obvious next 

question is whether NKp46
+
 cells are present at other mucosal sites or in other tissues under 

steady-state conditions (where they might be involved in tissue homeostasis) or recruited to 

these sites following infection or inflammation. Sites where IL-22 has been shown to play an 

important role in immune defense or in inflammation (such as liver, skin, and lung) could be 

considered. Increased epithelial turnover that is a hallmark of certain skin disorders, including 

psoriasis [69] may be driven by local hyper-secretion of IL-22. While NCR22 cells are poorly 

represented in normal skin [36], inflammation may result in recruitment of NCR22 cells. 

Subsequent IL-23 stimulation could then lead to increased IL-22 production and exacerbation 

of epithelial pathology. As IL-22 polymorphisms have been associated with susceptibility to 

certain types of intestinal cancer [70], it is interesting to consider the role for NCR22 cells in 

the initiation and progression of intestinal tumors. 

 

Conclusions 

 The identification of NCR22 cells that are ‘naturally’ programmed for IL-22 

production identifies a novel cellular immune defense mechanism in the gut. In addition to 

classical NK cells (IFN-
+
), LTi cells (IL-17

+
/IL-22

+
) and Thy1

+
 cells (IL-17

+
/IFN-

+
) [68], 

NCR22 constitute a novel emerging family of innate lymphoid cells (ILC) that have prompt 

cytokine production capacity and unique roles in immune defense, especially at mucosal 
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surfaces. Very recently, two additional ILCs were identified in mice: IL-13-producing cells in 

‘fat associated lymphoid clusters’ (FALC), and IL-13 and IL-5-producing ‘nuocytes’ (both of 

these cell types are implicated in immune protection against Nippostrongylus brasiliensis) 

[71,72]. Collectively, these novel ILC demonstrate a remarkable range of functional 

capacities (Figure 1) that resemble that of differentiated T cell subsets. Understanding the 

mechanisms governing innate diversity may provide evidence for an evolutionary relationship 

to those operating in T cells.  
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Figure 1. Diversity of Innate Lymphoid Cells. Several distinct innate lymphoid cells 

(ILC) have been recently identified that have diverse roles in innate immunity. NK cells were 

the first described ILC, followed by IL-22-producing NKp46+ cells (NCR22) and lymphoid 

tissue inducer (LTi) cells. ILC development relies on distinct cytokine and transcription 

factors as indicated. NCR22 cells require interactions with commensal flora for their 

homeostasis. See main text for further details. 

 



‘Th1’

IFN-

‘Th22’

IL-22

‘Th17’

IL-17A

IFN-

IL-17

IL-22

‘Th2’

IL-5

IL-13

Id2+

precursor

Diversity of Innate Lymphoid Cells

Nfil3/E4bp4 Gata3 ?

Rorc, Ahr

FALC

nuocytes

LTi

NK

NCR22

Il15
Il7

Thy1+

Flora

Figure




