
HAL Id: hal-01370684
https://hal.science/hal-01370684v1

Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Efficient modeling of entangled details for natural scenes
Eric Guérin, Eric Galin, François Grosbellet, Adrien Peytavie, Jean-David

Genevaux

To cite this version:
Eric Guérin, Eric Galin, François Grosbellet, Adrien Peytavie, Jean-David Genevaux. Efficient mod-
eling of entangled details for natural scenes. Computer Graphics Forum, 2016, 35 (7), pp.257-267.
�10.1111/cgf.13023�. �hal-01370684�

https://hal.science/hal-01370684v1
https://hal.archives-ouvertes.fr

Pacific Graphics 2016
E. Grinspun, B. Bickel, and Y. Dobashi
(Guest Editors)

Volume 35 (2016), Number 7

Efficient modeling of entangled details for natural scenes

Eric Guérin1,2 Eric Galin1,3 François Grosbellet1,4 Adrien Peytavie1,4 Jean-David Génevaux

1 Université de Lyon, CNRS 2 INSA-Lyon, LIRIS, UMR5205, F-69621, France
3 Université Lyon 2, LIRIS, UMR5205, F-69676, France 4 Université Lyon 1, LIRIS, UMR5205, F-69622, France

Input objects Ghost Tile Rocks field

Grass field

Branches field

Figure 1: Our method allows for the automatic generation of ground details such as grass tufts, rock piles, fallen leaves or twigs in natural
landscapes. Given a set of geometric models, our algorithm automatically creates a Ghost Tile structure that stores overlapping candidate
objects and a graph representing collisions between them. Given user-defined control density fields, our method instantiates candidates
according to collision constraints stored in the graph. This control enables us to sculpt complex piles and thick layers of entangled objects.

Abstract
Digital landscape realism often comes from the multitude of details that are hard to model such as fallen leaves, rock piles or
entangled fallen branches. In this article, we present a method for augmenting natural scenes with a huge amount of details such
as grass tufts, stones, leaves or twigs. Our approach takes advantage of the observation that those details can be approximated
by replications of a few similar objects and therefore relies on mass-instancing. We propose an original structure, the Ghost
Tile, that stores a huge number of overlapping candidate objects in a tile, along with a pre-computed collision graph. Details
are created by traversing the scene with the Ghost Tile and generating instances according to user-defined density fields that
allow to sculpt layers and piles of entangled objects while providing control over their density and distribution.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid and object representations I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Modeling realistic landscapes covered with vegetation, rock piles,
fallen leaves and branches is a perennial and important problem in
computer graphics. The challenge stems not only from the com-
plexity and diversity of shapes that need to be modeled, but also
from the huge amount of small entangled objects that exist in a
natural scene. Carefully authoring every detail by hand is a time-
consuming editing task for the artists. Interactive editing tools pro-
vide artists with high level brushes to distribute objects over the
surface of the terrain. To the best of our knowledge none of these
tools allow the user to generate volumetric clusters of entangled
objects. While several specific techniques have been proposed for

generating stones and rocks piles or fallen leaves, those approaches
do not allow the simultaneous placement of different types of ob-
jects in the same scene. Finally, physically-based collision detec-
tion or biologically-inspired ecosystem simulations such as lichen
growth simulation methods can guarantee collision-free placement
of objects, but at the cost of expensive computations.

In this paper, we introduce a unified framework for augmenting
scenes with thick layers and piles of different types of entangled
objects with mass-instancing. Our approach builds from the obser-
vation that these details can be approximated as replications of a
few reference objects.

Our method consists in computing an original generic structure,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

the Ghost Tile, that stores a dense collection of partially overlap-
ping candidate geometric objects in a tile and a collision graph be-
tween those objects. The Ghost Tile structure is computed once
and for all as a pre-processing step. The different details are then
distributed and controlled by a set of field functions that define the
relative density of details in regions of space. Geometric models are
finally created by tiling the scene with the Ghost Tile and instanti-
ating objects according to the density fields and to the constraints
of the collision graph (Figure 1). Moreover, our method allows the
user to use control fields to constrain the instantiation process and
specify the size or the orientation of generated instances. More pre-
cisely, our contributions are as follows:

• We present a generic, simple and efficient model, the Ghost
Tile, for creating a vast variety of entangled details. Our unified
framework not only allows for the generation of entangled rocks,
branches, fallen leaves or grass on the ground, but also permits
to sculpt complex shapes made of clustered details.
• We propose a simple volumetric density field model that allows

us to freely sculpt any kind of shape that will be then filled with
entangled details. Our method provides the user with both local
and global control over the distribution of the different types of
objects.
• Contrary to existing methods, our tiling method is fast and allows

for interactive editing and sculpting. Moreover, our instantiation
scheme can generate hundreds of thousands of objects with a
reduced memory footprint.

Our framework is versatile and can be used in combination with
simulations, procedural generation and interactive editing. Interac-
tive editing is achieved by controlling density fields through stan-
dard primitives, which can be performed in real time. Although our
method relies on tiling, the generated arrangements of details do
not show visible repetition patterns and even though collisions are
not fully avoided, interpenetrations are not noticeable.

2. Related work

Several methods have been proposed to generate realistic distribu-
tions of details in a natural scene. Existing techniques can be or-
ganized into four categories: biologically-inspired and physically-
based simulations, procedural and pattern-based distribution meth-
ods, texture synthesis and interactive editing.

Simulations aim at generating realistic distribution of details ac-
cording to physically or biologically-inspired algorithms. General
multi-body simulations [HK10] generate piles of shapes, but lack
control over the distribution and are computationally demanding.
Ecosystem simulations [DHL∗98, AD05] have been successfully
used for generating vegetation plants competing for resources such
as nutriments, lights or space. Desbenoit et al. [DGAG06] pro-
posed to use a wind simulation coupled with a stochastic aging pro-
cess to generate leaves falling and piling onto the ground. Lichens
were also addressed [DGA04] by introducing the Open Diffusion
Limited Aggregation constrained to the surface of the objects and
taking into account the characteristics of the environment. An im-
portant limitation of simulation approaches is that they provide a
limited user-control over the placement of plants or ground details.
Moreover, they do not scale well with the size of the scene and

cannot be used for modeling large scenes or generating hundreds
of thousands of small objects.

Procedural techniques rely on simple production rules to gen-
erate distributions of objects organized into patterns or structures.
CGA shape grammars [MWH∗06] have been successfully used to
create buildings from a set of user-defined input geometric models.
A similar rule-based approach was used to create brick walls with
procedurally defined patterns [LDG01]. Those techniques are lim-
ited to regular layouts and therefore cannot be used for generating
natural details.

In contrast, stochastic distributions based on tiled Poisson disk
and sphere distributions [LD06] have been successfully used to
create random natural distributions of plants. Aperiodic Wang tiles
were also used to generate trees [AD06]. Poisson distribution
[JZW∗15] approaches generate non overlapping objects distribu-
tions however, and do not lend themselves for modeling dense piles
or layers of entangled objects.

Impostors controlled by density maps is another general two
dimensional-technique frequently used for rendering ground vege-
tation in real-time. While it can efficiently approximate ground de-
tails such as grass tufts as well as bushes [DN04,FUM05,BCF∗05,
BN12], it cannot be used to create piles of leaves or rocks. An im-
portant limitation of those approaches is that consistent contact be-
tween objects cannot be guaranteed. A specific technique was pro-
posed in [PGMG09] for modeling rock piles by combining aperi-
odic tiling and an erosion-based modeling system. This approach
is memory demanding as it requires the generation of hundreds of
different rock models to guarantee consistent contact between piled
rocks. A more general approach [SM14] consists in randomly dis-
tributing objects over a control shape and using a relaxation method
to limit collisions. It becomes more computationally demanding as
the amount of details increases. In contrast, our method can sculpt
piles or thick layers of different kinds of entangled objects with
only a few input models, at the cost of a relaxed collision constraint.

Solid texture synthesis techniques can generate large scale
structured aggregates from a small exemplars [JDR04, DHM13,
ZDL∗11]. Discrete element textures [MWT11] were successfully
used to generate piles of objects by using a three-dimensional tex-
ture synthesis technique. They rely on computationally demanding
energy minimization algorithms and are not adapted for interactive
modelling.

Interactive editing tools allow the user to distribute instances by
the mean of smart brushes that automatically adapt the distribution
of details according to the characteristics of the terrain or the en-
vironment. Emilien et al. [EVC∗15] proposed an original method
based on a statistical analysis of input examples to reproduce the
distribution patterns of large scale objects such as trees or terrain
features in a scene. Grosbellet et al. [GPG∗16] introduced environ-
ment sensitive objects that automatically instantiate details such as
fallen leaves or grass according to user-defined environment vari-
ables such as humidity, temperature or accessibility. Our method
also relies on control fields for sculpting the volume and control-
ling the relative density of entangled objects, but can be directly
applied without explicitly programming the behavior of objects.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

Input objects

Ghost Tile

Density fields
Collision graphCandidates

1. Ghost Tile Generation

2. Instantiation

Figure 2: Given input geometric models, the Ghost Tile structure
groups a few hundreds of overlapping candidate models distributed
in the tile, and stores the collision graph between objects in the
reference tile. The instantiation process traverses the scene, selects
and instantiates candidates on the fly from the pre-computed Ghost
Tile according to user-controlled density fields.

3. Overview

Our method is based on the definition of a Ghost Tile structure, re-
ferred to as T , which is defined as a collection of candidate objects
O = {Oi} and a collision graph G embedded in a tile. The Ghost
Tile stores the position of the different candidate objects in the tile.
The collision graph encodes the intersections between the objects
inside the tile and with neighboring tiles. Since the density of can-
didate objects is very high, we are able to produce many different
collision-free configurations by picking only a subset of candidate
objects that do not intersect each other. Our method can be divided
into two steps (Figure 2).

Leaf RockBranch Blend

Figure 3: Several Ghost Tile examples, with only one type of object
(leaf, branch and rock) and with different types of objects.

Ghost Tile generation is a pre-processing step that aims at gener-
ating a collection of candidate objects in a tile and a corresponding
set of constraints defined as a collision graph between these can-
didates. Candidates are generated by distributing input objects at
different positions and orientations in the tile (Figure 3). Note that

Objects O

Frames F

Collision graph G

Ghost Tile T

O 11

O ⊕ −y
1
1

2O 2

O 2
1O1 O2

Candidates O = F (O)j j
i i i

F
1
1 F

2
2F

1
2

O ⊕ −x
2
1

Figure 4: The Ghost Tile structure is created from a set of input
objects O = {Oi}. It is composed of a list of candidate objects
O j

i = F j
i ◦Oi, where F j

i represent frames, and a collision graph G
that encodes intersection relationships between candidate objects.

candidates can partially straddle the tile boundary and overlap sev-
eral tiles.

Instantiation computes the details by traversing the scene with
the Ghost Tile and instantiating candidate objects according to the
user-prescribed control volume and densities. This step can pro-
cess many different control volumes and/or densities with the same
Ghost Tile. Note that we do not need to rely on aperiodic tiling
schemes to avoid tiling artifacts: whenever several candidates have
the same or similar priorities, we randomly select a candidate so as
to avoid such tiling artifacts. Instances are represented as a list of
indexes, which is very efficient in terms of memory when dealing
with complex scenes featuring hundreds of thousands of instances.

4. Ghost Tile generation

In this section, we present the Ghost Tile data structure, useful no-
tations used throughout the paper and we detail the algorithm for
creating it. Figure 4 shows a simplified version of the structure with
only a few objects out of clarity as Ghost Tiles are composed of
hundreds of thousands of candidates.

4.1. Ghost Tile structure

Given an input set of objects O = {Oi} representing the different
details that may be created during the instantiation step, a Ghost
Tile T is composed of a collection of candidatesO j

i and a collision
graph G connecting them. Let {Oi} denote the input set of objects
that will be used in the process. We denote O j

i = F j
i (Oi) the jth

candidate created from objectOi with F j
i referring to its associated

frame. Candidate objects are linked to an axis-aligned cubic tile of
size s. They can partially straddle the cubic tile boundaries however,
and therefore overlap several tiles. The notation T ⊕ t will refer to a
tile T translated by a vector t = sv where s refers to the size of the
tile and v ∈ [−1,0,1]3 is a vector of integers indicating the offset
between two tiles.

For every input object Oi, we define a list of anchor points (Fig-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

ure 5) denoted as ak
i attached to it. Anchor points will be used dur-

ing the instantiation process for evaluating whether a candidate ob-
ject O j

i should be instantiated or not. This is performed by evalu-
ating user-defined density functions f (ak

i) at the anchor points of
candidate objects (Section 5). In our system, anchor points are de-
fined by the user in the local frame of every objectOi. They can be
also generated procedurally by sampling the volume or the surface
of the objects.

Tree branch O Stone Oi j

iak

ak
j

Figure 5: Anchor points for a branch and a stone. Anchor points
serve for the evaluation of the control density fields during the in-
stantiation process.

The collision graph G = (N ,E) is composed of a set of nodes
N = {Nk} that represent the set of candidate objects and of ori-
ented edges {Ei j}= {(Ni,N j,v)} that represent collision relation-
ships. More precisely, an edge (Ni,N j,v) encodes that the object
at node Ni is in collision with the object at the node N j located in
the tile T ⊕ t.

N j
N i

N ⊕ xi

N ⊕ xj

T ⊕ xGhost Tile T

(N , N , x)ji

(N , N , −x)ij

Figure 6: Notations for nodes and arcs between candidate objects,
candidate objects may intersect other objects located at a different
tile position.

Thus, t = 0 when the two objects are in collision in the same
Ghost Tile (Figure 6). Note that every edge (N j,Nk,v) in the graph
has a symmetric pair (Nk,N j,−v) by construction.

User constraints can be used to prescribe specific orientations for
some objects, which reduces the number of candidates in the Ghost
Tile structure and speeds up the overall process. For instance fallen
branches may have random orientations in the horizontal plane, and
random tilt angle comprised in ±45◦.

4.2. Ghost Tile creation

The Ghost Tile creation algorithm proceeds in two steps: candi-
date object distribution and collision graph computation. Given a
set of input objects O = {Oi}, the first step creates candidates into
the cubic tile by distributing objects Oi into the tile with different

orientations and positions. The second step computes the collision
graph G between the previously generated candidates. The overall
algorithm is as follows:

1. For all objectsOi, compute a random frame F j
i according to the

user constraints, and add the new candidate O j
i = F j

i (Oi) to the
set of nodes:N ←N ∪O j

i .
2. Compute the intersection between the nodes Nk in the tile T

with offset tiles T ⊕ v and the new node O j
i . If an intersection

occurs, add the two arcs (Nk,O
j
i ,v) and (O j

i ,Nk,−v) to the
graph G.

Candidates O j
i are generated by distributing objects in the tile.

The user can control different types of distribution according to the
type of the objects.

Preferred horizontal orientationRandom orientations

Figure 7: Comparison of different results obtained by controlling
the distribution of the orientation of candidate objects: left image
shows random orientations and right image shows 75% almost hor-
izontal (0◦−30◦) and 25% with inclined orientation (45◦−60◦).

In our system, we implemented different strategies for comput-
ing the orientation of the distributed objects. Random orientation
lends itself for piles or thick layer where objects can have totally
different orientations, such as pile of rocks or pebbles. Constrained
orientation strategies rely on a user-controlled distribution of ori-
entations, and lends itself for controlling fallen leaves, branches or
even grass tufts. Figure 7 shows different kinds of effects obtained
by modifying the statistics of the orientation of candidate objects.
Note that the orientation can also be constrained during the instan-
tiation process (see section 5.3).

4.3. Graph computation

For every candidate O j
i , we add a nodeNk into the graph. We then

compute the possible intersections between pairs of nodes and store
those intersections as edges in the graph.

At the end of this step, we have obtained a collision graph G
between the candidates O j

i . A brute-force collision detection be-
tween all pairs of candidates would be computationally demanding
because the complexity would be in O(#N 2) and in our case #N
can be really large (up to tens of thousands of candidate objects).
Therefore, we optimize collision detection by using a grid as an
accelerating data structure.

Collision detection We process the intersection between candi-
date objects O j

i by approximating the shape of input objects using
sphere sets (Figure 8). This representation can be computed either
automatically [WSL∗06,SKS12] or optimized manually with a ge-
ometric editor.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

LeafStone

Figure 8: Some input objects approximated by unions of spheres.

δ = −0.3 δ = 0 δ = 0.3

Figure 9: The interpenetration threshold δ provides control over
the density of instances either by allowing a slight interpenetration
(δ < 0) or forcing a minimum distance between instances (δ > 0).

The union of spheres model lends itself for our Ghost Tile gen-
eration algorithm as rotations, translation and uniform scaling used
in the definition of the frames F j

i of candidate objects O j
i can

be directly applied to union of spheres. Note that the union of
spheres lends itself for the automatic generation of anchor points.
The intersection test consists in computing an approximation of
the interpenetration distance d between two sphere-sets and com-
pare it to a user-defined threshold δ. Let S(c,r) denote a sphere
of center c and radius r. Let A = {S(ai,ri)}, i ∈ [0,n− 1] and
B = {S(b j,r j)}, j ∈ [0,m− 1] two sphere-sets with their corre-
sponding centers and radii. We define the interpenetration distance
d(A,B) as:

d(A,B) = min
i, j
‖b j−ai‖− (ri + r j)

We consider that two candidates intersect if d(A,B)≤ δ. Figure 9
illustrates the influence of the threshold parameter δ: a positive
value can be used to force objects to be placed at a minimum dis-
tance, whereas a negative value allows instances to interpenetrate.
Small negative distance thresholds are recommended with a view
to generating dense piles of objects: although instances may in-
tersect, their interpenetration remains almost invisible providing a
good approximation for objects into contact (Figure 22).

Grid-based acceleration We speed-up the overall collision graph
generation process by using a grid-based decomposition of space
which is adapted to our dense candidate object distributions in the
Ghost Tile. Objects are first projected on the grid and collision de-
tection is performed on the instances that have common voxels.
Every voxel of the grid stores a list of identifiers that define which
candidates O j

i intersect the voxel. We use (i, j,v) as the identifier,
where i, j refer to candidate O j

i and v represents the integer offset
vector to a neighboring tile which is necessary to process objects
straddling outside of the tile (Figure 10).

T⊕ xT⊕ −x Ghost Tile T

Figure 10: Objects that are out of the reference tile boundaries are
taken into account by storing an offset index.

5. Instantiation

The instantiation is controlled by a set of density fields f = { fi}
that prescribes the relative density and the orientation of the differ-
ent details in space. The algorithm tiles space with the Ghost Tile
structure and instantiates candidates according to the value of the
density field fi at their anchor points and to the collision graph. The
two sets of rejected and instantiated candidates will be denoted as
R and I respectively.

Density fields are mathematically defined as functions fi : R3 →
R. Any kind of function can be used, provided that it is continu-
ous. In our implementation, we rely on density functions created
from skeletal primitives and combination operators as in the Blob-
Tree [WGG99]. This primitive-based model allows us to control
the density of details in different regions of space efficiently. More
precisely, our approach enables us to define volumetric densities
which enables us to freely sculpt any kind of shape, piles or thick
layers which will be then filled with details.

Candidates of type i should be instantiated only in regions of
space where the corresponding density function fi is strictly posi-
tive. Moreover, the values of the fields fi define the relative density
of each kind of object. If the sum of densities is less than 1, the
instantiation process fills only a fraction space with details. Other-
wise, we create as many details as possible according to the average
density.

The overall process is performed in three steps: tiling and in-
stance culling, priority management between candidate objects, and
finally selection and propagation of constraints.

5.1. Tiling and instance culling

The first step of the instantiation process consists in tiling the entire
scene volume with the Ghost Tile. Recall that anchor points are
defined in the local frame of every object Oi. Therefore, the world
coordinates of the anchor point ak

i in a Ghost Tile translated by a
vector t are defined as t+F j

i ak
i .

For every tile of coordinate t, every object Oi, every instance of
this object O j

i , and every anchor point ak
i , we evaluate the density

function fi(t + F j
i ak

i). If ∃k | fi(t + F j
i ak

i) = 0, then the instance
O j

i ⊕ t is considered outside of the control volume and discarded.
Otherwise, the instance is added to the prioritized list of candidates
(Figure 11). Anchor points may be used to control how the details
may straddle or lie strictly inside the control volume (Figure 12).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

T ⊕ xGhost Tile T

f > 0

f = 0

f (a) = 0k
j

ak
i

ak
j

f (a + t) > 0k
i

Figure 11: Culling discards candidates O j
i such that the density

function at their anchor points f (t+F j
i ak

i) = 0.

One anchor point inside object Seven anchor points

Figure 12: Anchor points provide user-control over volume fill-
ing. When only anchor points are inside the control volume, in-
stances may straddle out of the control volume (left). By placing a
few anchor points on the surface of the object, such instances are
discarded which provides a tighter volume control (right).

When using a single anchor point located at the center of the object,
it can straddle outside of the control volume. In contrast, constraints
are better enforced when using several anchor points distributed
inside and at the surface of the objects.

5.2. Priority strategy

When a candidate is selected, it is placed in a priority list. Every
type of object stores its associated priority list. We compute the
priority value for every anchor point of the candidate and apply the
maximum found. The priority lists are managed according to three
different user-specified strategies (Figure 13).

Random priority simply selects a random candidate from the list.
Random priority lends itself for the generation of thin layers of
objects or sparse objects randomly distributed over the terrain, such
as a few scattered rocks or a few leaves fallen (Figure 1,19). In
contrast this strategy is not appropriate for the generation of piles
of objects such as rock or leaf piles as the random selection does not
generate the most dense distribution of objects almost into contact.

Elevation-based priority is directly computed as the opposite of
the z-component of translation associated to F j

i . It fills control vol-
umes with details starting with lower altitudes candidates. In con-
trast, the elevation-based priority efficiently approximates compact
piles of objects that are into contact by incrementally instancing
successive layers.

Random

Distance to boundary

Elevation-based

Figure 13: Overview of different strategies for instancing can-
didate objects. Random priority may produce space between ob-
jects, whereas elevation-based and distance-to-boundary priority
schemes always select a candidate close to already instantiated ob-
jects, which produces more compact piles.

Distance-to-boundary priority starts placing instances on the
boundary before filling the interior of the control volume. The den-
sity fields fi that describe the control volumes provides us with an
approximation of the distance to the boundary of the volume. The
algorithm sorts candidates according to the distance to the bound-
ary, and iteratively selects the nearest instance to the boundary
while invalidating candidates that are in collision with it. Moreover,
this strategy allows to reduce the number of instantiated objects by
only generating a few layers and leaving the interior of the density
field volume empty.

5.3. Candidate selection and constraint propagation

In order to respect the relative densities of each objects in the tile,
we first evaluate the densities at the center of the tile and choose
an object Oi randomly according to the probability. We select the
candidate O j

i with the highest priority. Because the density func-
tion is not constant inside the tile, we evaluate the density func-
tions at the anchor positions f (t+F j

i ak
i)). Let ‖ f‖ denote the L1

norm of the column vector of density function values. If ‖ f‖ > 1
then instance will be selected. Otherwise, let u denote a random
number uniformly generated on unit interval, the candidate will be
instantiated only if u ≤ ‖ f‖. This allows us to control the density
of details, and create mixed objects distributions as prescribed by f
(Figure 15).

We then update the list of candidates in the considered tile by
querying the collision graph G. We also update in the neighboring
tiles the list of candidates that need to be discarded because they
intersect the selected instance (Figure 16).

Control Some parameters such as the orientation can be con-
strained in order to modify the instantiation rules and achieve spe-
cial effects. Given a user-prescribed direction field u : R3 → R3,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

Figure 14: Volumetric density fields guide the generation of heterogeneous piles of entangled details very efficiently and intuitively by
controlling the relative contributions.

19k instances 18k instances23k instances

Figure 15: Our system can fill complex volumes with many small
instances. Here, the rock and branches density fields were defined
using skeletal implicit field functions to represent a statue.

Ghost Tile TT ⊕ −x
O

3
1

T ⊕ x

O ⊕ −x
4
1

O
2
1

O
1
1

O
4
1

Figure 16: The candidate with the highest priority (O3
1 in green)

is selected and the collision graph G discards candidates in colli-
sion in the current tile (O2

1 in orange) as well as candidates in the
neighboring left tile (O4

1⊕−x in orange).

constraints are taken into account during the selection step by com-
puting the dot product z(F j

i) · u(t+F j
i 0) between the z-vector of

the frame F j
i of the candidate and the direction field evaluated at

the origin of the frame. The candidate is selected if the dot prod-
uct is greater than a given threshold. Figure 17 shows two spheres
covered with grass tufts instantiated from the same Ghost Tile. Left
image shows a vertical constraint with a constant field u(p) = z.
Right image was computed using a procedural constraint by defin-
ing u as the gradient of the density function u =∇ fi. Note that the
tile contains grass tufts distributed in all directions; the selection
process selects the right ones.

6. Results

Our method has been implemented in C++/OpenGL and tested on
Intel Core i7 with 16 GB of RAM. High quality renderings were
produced by directly ray tracing mass-instantiated details.

Vertical alignment Surface normal alignment

u(p) = z u(p) = ∇ f (p)

Figure 17: Normal constraints allows the user to control details
orientations. Instances can be selected either with a constant ori-
entation prescribed by the user (left) or with arbitrary rotations
around the gradient of the density field (right).

6.1. Creation and control

Ghost Tiles can be used as a detail generation tool in combina-
tion with simulations, procedural generation and interactive edit-
ing. Moreover, our method provides both local and global control
over the generation of details. Figure 14 shows that our method
can be used to generate piles of different materials efficiently, in-
cluding with different entangled objects. Density fields allow us to
sculpt the shape of complex piles and control the relative density of
entangled objects easily.

Parameters are set so that the size of the Ghost Tile ranges from
1 to 3 times the size of the largest objects in it. In several examples
shown throughout the paper, grass tufts and leaves were set to ∼
10cm, rocks and stones were set to ∼ 10− 20cm and branches to
∼ 20−30cm. The Ghost Tile size was set to ∼ 50cm.

Figure 18: Undergrowth scene showing very complex stacking and
entangling between grass tufts, fallen leaves and mushrooms. Com-
plex layers featuring different types of objects were created by com-
bining several partially overlapping density fields.

Figure 18 shows a closeup of an undergrowth scenery. Our

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

Rocks field

Grass field

Figure 19: The grass and fallen leaves layers and the rock piles of the meadow were authored in a few minutes using our interactive editor.
∼ 50k objects were instantiated.

Name Figure #O #N #E/2 #E/(2#N) Time (s) Storage (kB)

Rocks 22 1 0.32k 14k 44 0.17 80

Branches, rocks 21 3 1.12k 990k 901 93.0 4770

Autumn leaves 14 4 0.32k 102k 319 31.0 454

Mushrooms 23 2 0.17k 137k 1370 87.5 559

Pine needles, leaves 18 2 0.85k 941k 1107 138 4290

Table 1: Statistics for the Ghost Tile creation step, reported time is in seconds and memory in kilobytes. The tile size was ∼ 50cm whereas
the size of the objects was ∼ 10cm for rocks and leaves, ∼ 15cm for mushrooms and ∼ 30cm for branches.

Figure 20: Haystacks were created using cylinder-shaped density
fields. Orientation constraints were prescribed by using a rota-
tional field. The scene features ∼ 4260k instances.

method takes into account the complex shape of input objects. The
ground is covered with different small objects, including leaves,
pine needles and grass tufts that do not intersect each other. Small
mushrooms were automatically instantiated below the cap of larger
ones and are partially covered by leaves and needles in very com-
plex entanglements which would be difficult to obtain with other
existing techniques.

Interactive painting and sculpting is made possible by the per-
formance of the instantiation process, which allows to use the
Ghost Tile in an interactive editing environment. We have imple-
mented a simple painting and sculpting tool to edit the density
function primitives (see accompanying video). The Ghost Tile is
pre-computed once and for all and stored in memory. During the
interactive editing session, density fields are edited in real time ac-
cording to the user input strokes. Details are generated only inside
the tiles where the density fields were modified. Primitives are com-

bined together using blending and Boolean operators as described
in [WGG99]. Finally, density fields are modified by computing the
difference with the other solid objects in the scene such as the tree
and the terrain in order to avoid interpenetration with details.

Figure 19 shows a meadow where the terrain is entirely covered
with stones, grass and fallen leaves instantiated from a single Ghost
Tile. The scene was authored in a few minutes, and features ∼ 50k
instances.

Procedural generation is another approach to generate the den-
sity functions that are used to define details. Figure 20 shows
a procedurally generated terrain with haystacks. The dried grass
density field was automatically computed from the input height
field, whereas the haystacks were sculpted by randomly distribut-
ing cylinder primitives over the terrain.

Figure 21 shows a river scenery with a beaver dam that was
sculpted using generalized cylinder implicit primitives. Entangled
branches were automatically created from this very simple control
volume authored by the designer. In contrast, the density fields for
the grass tufts and rocks were automatically generated from the
river skeleton.

6.2. Performance

Recall that our method performs in two separated steps. First, the
Ghost Tile is pre-computed once and for all and stored in mem-
ory. Then the details are generated by traversing the scene with
the Ghost Tile and instantiating candidates according to the density
fields.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

Branches field

Rock field

Sparse rock field

Figure 21: The beaver dam was authored in less than one minute by sculpting a density field combined with a Ghost Tile full of branches of
different sizes and orientations. The shape of the dam was obtained by assembling sphere and generalized cylinder implicit primitives. The
control fields for grass tufts and rocks were procedurally generated according to the distance to the water body.

Name Figure #I #R Time (s)

Meadow 19 0.11k 58k 0.3
Meadow 19 0.75k 320k 1.2

L
oc

al

Meadow 19 2.0k 577k 3.4
Mushrooms 23 48 219k 0.9

Field 20 1990k 35000k 54.6
Beaver 21 36k 26300k 10.7

G
lo

ba
l

Haystack 20 81k 10400k 6.8
Borie 22 63k 33800k 16.8

Table 2: Instantiation statistics: reported time is given in seconds.
Recall that #R and #I represents the number of candidates that
have been rejected and instantiated respectively during the colli-
sion detection step of the instantiation process.

Ghost Tile generation The performance of this step depends on
the number of candidates #N in the tile and on the number of
collision arcs #E . An important statistic is the average number
of collisions per candidate denoted as ρ = #E/2#N . Note that
0≤ #E ≤ #N (#N −1) where the upper bound represents the case
when all candidates are intersecting each other (complete graph).
Table 1 reports statistics and timings for computing different Ghost
Tile setups. Note that the memory footprint of the collision graph
G is small, ranging from less than one hundred kilobytes for sim-
ple arrangements with few collisions between objects, to a few
megabytes for complex Ghost Tiles.

Given a few input objects (#O ≤ 4), we create Ghost Tiles with
hundreds of candidates (300 ≤ #N ≤ 1200) that partially overlap
and intersect each other (average number of intersections per can-
didate 35≤ ρ≤ 1400). Generation is the more computationally de-
manding as ρ is high and as objects have complex shapes. This ex-
plains that the pre-processing time is high for leaves and branches
as those objects are approximated by many spheres.

Instantiation cost is directly related to the size of the scene. Ta-
ble 2 reports statistics for the instantiation process. Timings show
that local editing tools that only operate on a few tiles in the scene

perform at interactive rates as demonstrated in the meadow (Fig-
ure 19) and for a small scene such as Figure 18. In contrast, pro-
cessing time increases when generating details over an entire scene,
as the number of rejected candidates #R increases as demonstrated
in the Beaver dam and Hut scenes (Figure 21,22). Timings show
that even for a large number of instances, the generation time is
less than a minute.

6.3. Comparison with other techniques

Our method resembles in spirit the aperiodic tiling [PGMG09] pro-
posed for generating rock piles. While our method does not guar-
antee consistent contact points between objects, our experiments
show that visually plausible piles can be created by tuning the in-
terpenetration distance parameter δ. Although both approaches rely
on similar instantiation algorithms, our method compares favorably
in terms of versatility, control and efficiency. Our framework allows
us to create piles with different types of objects such as grass tufts
of branches or rocks or even mushrooms. Moreover, the combina-
tion of several density fields allows for a better control over the
relative density and orientation of details.

Finally, aperiodic tiling needs to generate thousands of different
geometric models to guarantee consistent contact between rocks.
In contrast, our framework allows the mass-instantiation of a few
geometric models, which is considerably less memory demanding.
Figure 22 shows an ancient dry stone hut and stone wall modeled
with only two 2 reference rock models (∼ 63k instances). In con-
trast, the same scene created with aperiodic tiling required 7355
different rock models (∼ 28k instances).

Our method also resembles to recent procedural approaches such
as discrete element textures [MWT11] and non-periodic aggre-
gates generation methods [SM14]. Both techniques rely on a com-
putationally demanding energy-minimization step, which prevents
interactive editing and limits the number of generated instances to
a few thousand. In contrast, in our method, the collision detection
is performed during the Ghost Tile generation pre-processing step,
which enables us to speed up the instantiation process and generate
complex scenes featuring tens of thousands of entangled objects.

Our method also compares favorably to wind-based simulation
techniques for modeling fallen leaves. The leaf distribution ap-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

Branches field
Straw field

Figure 22: An ancient dry stone hut generated with our Ghost Tile technique (∼ 63k flat stones). The shape of the hut was sculpted by
defining a density field for rocks as the difference between a hollow sphere and several smaller spheres. The user defined another field to
constrain the size of the stones around the openings.

Figure 23: The 3D shape of objects is taken into account in our
collision solver leading to this automatic placement of mushrooms.

proach presented in [DGAG06] relies on computationally demand-
ing trajectory and collision computations for every leaf. In contrast,
our method can generate visually plausible leaf piles and distribu-
tions. Although our method cannot guarantee precise contact be-
tween objects, results remain visually plausible.

Environmental objects [GPG∗16] is another approach for gener-
ating details by augmenting a database of procedural objects with
environment sensitive details such as grass, moss or leaves. The
user needs to define the behavior of every object with respect to the
different environment variables prior to using it. In contrast, our
framework can be directly combined with other editing, simulation
of procedural techniques to generate details on the surface or sculpt
any kind of volumetric object filled with details.

6.4. Limitations

Because our model does not aim at generating structured arrange-
ments, it generally fails at assembling details organized into regu-
lar patterns such as bricks in a wall. Since collisions between can-
didates are computed during a pre-processing step and stored in
a static graph, our method cannot handle animated objects. Still it
should be possible to handle small deformations on instantiated ob-
jects like grass tufts blowing in the wind. In this case, the collision
volume should embed the animated shape.

7. Conclusion

In this paper, we have introduced a novel tile-based approach for
modeling details. Our approach relies on pre-computed Ghost Tiles
that store a set of overlapping candidates and a graph that repre-
sents collisions between them. The originality of our method is
that it provides the designer with a unified framework for creat-
ing a vast variety of entangled details such as fallen leaves, grass
tufts, rocks and pebbles or tree branches. The distribution of de-
tails can be efficiently controlled through density fields which can
be either obtained by interactive editing, simulations or procedural
techniques. Moreover, our method allows to freely sculpt piles of
entangled objects and control the relative density of the different
objects.

Acknowledgments

This work is part of the project PAPAYA funded by the Fonds
National pour la Société Numérique. The algorithms were imple-
mented in the Arches framework supported by the LIRIS/CNRS.
We would like to credit Lise Baron, computer artist, for providing
the assets.

References

[AD05] ALSWEIS M., DEUSSEN O.: Modeling and Visualization of
symmetric and asymmetric plant competition. In Eurographics Work-
shop on Natural Phenomena (2005), pp. 83–88. 2

[AD06] ALSWEIS M., DEUSSEN O.: Wang-tiles for the simulation and
visualization of plant competition. In 24th Computer Graphics Interna-
tional Conference (2006), pp. 1–11. 2

[BCF∗05] BEHRENDT S., COLDITZ C., FRANZKE O., KOPF J.,
DEUSSEN O.: Realistic real-time rendering of landscapes using bill-
board clouds. Computer Graphics Forum 24, 3 (2005), 507–516. 2

[BN12] BRUNETON E., NEYRET F.: Real-time Realistic Rendering and
Lighting of Forests. Computer Graphics Forum 31, 2 (2012), 373–382.
2

[DGA04] DESBENOIT B., GALIN E., AKKOUCHE S.: Simulating and
Modeling Lichen Growth. Computer Graphics Forum 23, 3 (2004), 341–
350. 2

[DGAG06] DESBENOIT B., GALIN E., AKKOUCHE S., GROSJEAN J.:
Modeling Autumn Sceneries. In Eurographics Short Papers (2006),
pp. 107–110. 2, 10

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Eric Guérin et al. / Efficient modeling of entangled details for natural scenes

[DHL∗98] DEUSSEN O., HANRAHAN P., LINTERMANN B., MĚCH R.,
PHARR M., PRUSINKIEWICZ P.: Realistic modeling and rendering of
plant ecosystems. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques (1998), SIGGRAPH ’98,
pp. 275–286. 2

[DHM13] DU S. P., HU S. M., MARTIN R. R.: Semiregular solid textur-
ing from 2d image exemplars. IEEE Transactions on Visualization and
Computer Graphics 19, 3 (2013), 460–469. 2

[DN04] DECAUDIN P., NEYRET F.: Rendering forest scenes in real-time.
In Eurographics Symposium on Rendering (2004), pp. 93–102. 2

[EVC∗15] EMILIEN A., VIMONT U., CANI M.-P., POULIN P., BENES
B.: WorldBrush: Interactive Example-based Synthesis of Procedural Vir-
tual Worlds. ACM transactions on Graphics, Proceedings of ACM SIG-
GRAPH 34, 4 (2015), 106:1–106:11. 2

[FUM05] FUHRMANN A., UMLAUF E., MANTLER S.: Extreme Model
Simplification for Forest Rendering. In Eurographics Workshop on Nat-
ural Phenomena (2005), pp. 57–67. 2

[GPG∗16] GROSBELLET F., PEYTAVIE A., GUÉRIN E., GALIN E.,
MÉRILLOU S., BENES B.: Environmental objects for authoring pro-
cedural scenes. Computer Graphics Forum 35, 1 (2016), 296–308. 2,
10

[HK10] HSU S., KEYSER J.: Piles of objects. ACM Transactions on
Graphics 29, 6 (2010), 155:1–155:6. 2

[JDR04] JAGNOW R., DORSEY J., RUSHMEIER H.: Stereological tech-
niques for solid textures. ACM Transactions on Graphics 23, 3 (2004),
329–335. 2

[JZW∗15] JIANG M., ZHOU Y., WANG R., SOUTHERN R., ZHANG
J. J.: Blue noise sampling using an SPH-based method. ACM Trans-
actions on Graphics 34, 6 (2015), 211:1–211:11. 2

[LD06] LAGAE A., DUTRÉ P.: Poisson sphere distributions. In Vision,
Modeling, and Visualization (2006), pp. 373–379. 2

[LDG01] LEGAKIS J., DORSEY J., GORTLER S.: Feature-based cellu-
lar texturing for architectural models. In The 28th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’01)
(2001), pp. 309–316. 2

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. ACM Transactions
on Graphics 25, 3 (2006), 614–623. 2

[MWT11] MA C., WEI L.-Y., TONG X.: Discrete element textures.
ACM Transactions on Graphics 30, 4 (2011), 62:1–62:10. 2, 9

[PGMG09] PEYTAVIE A., GALIN E., MERILLOU S., GROSJEAN J.:
Procedural Generation of Rock Piles Using Aperiodic Tiling. Computer
Graphics Forum (Proceedings of Pacific Graphics) 28, 7 (2009), 1801–
1810. 2, 9

[SKS12] STOLPNER S., KRY P., SIDDIQI K.: Medial spheres for shape
approximation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34, 6 (2012), 1234–1240. 4

[SM14] SAKURAI K., MIYATA K.: Modelling of non-periodic aggre-
gates having a pile structure. Computer Graphics Forum 33, 1 (2014),
190–198. 2, 9

[WGG99] WYVILL B., GUY A., GALIN E.: Extending the CSG tree.
Warping, Blending and Boolean operations in an Implicit Surface Mod-
eling System. Computer Graphics Forum 18, 2 (1999), 149–158. 5,
8

[WSL∗06] WANG R., SNYDER J., LIU X., BAO H., PENG Q., GUO
B.: Variational sphere set approximation for solid objects. The Visual
Computer 22, 9–11 (2006), 612–621. 4

[ZDL∗11] ZHANG G.-X., DU S.-P., LAI Y.-K., NI T., HU S.-M.:
Sketch guided solid texturing. Graphical Models 73, 3 (2011), 59 – 73.
2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

