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Abstract
Because of their large wavelength, the acoustic waves and mechanical vibrations at low frequencies cannot
easily be reduced in the structures by using dissipative porous materials (like fiberglass) contrarily to the
waves at middle and high frequencies. We propose to reduce the noise and the vibrations on a broad low-
frequency band through a microstructured material by inclusions that are randomly arranged in the material
matrix (which is also structural). The inclusions will have a dynamical behaviour which will be imposed
in the nonlinear domain in such a way that the energy be efficiently pumped over a broad frequency band
around the resonance frequency. Indeed, the nonlinearity leads to a pumping of the energy over a broader
frequency band than the linearity. The first step of this work is to design and to analyze the efficiency of an
inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is
designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this
first step, the objective is to develop the simplest mechanical model that has the capability to nearly predict
the experimental results that are measured. The second step, which is not presented in the paper, will consist
in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to
the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the
resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency
band around the resonance. We will present the design in terms of geometry, dimension and materials
for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and
the experimental measures that have been performed. We compare the prevision given by the stochastic
numerical model with the measurements. The results obtained exhibit the physical attenuation over a broad
low-frequency band, as intended.

1 Introduction

Among the first papers devoted to the energy pumping by simple oscillators, the works by Frahm [1] and by
Roberson [2] can be cited. Since these pioneering works, the developments of metamaterials for absorbing
vibrations and noise have recently received a great attention and numerous papers have been published, as for
instance, [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Concerning the energy pumping by linear or nonlinear
mechanical oscillators in order to attenuate vibrations and noise for discrete or continuous systems at macro-
or at micro-scales, many works have been published such as [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

This paper is devoted to the reduction of vibrations and induced noise in structures at macro-scale for the
low-frequency band for which the first structural modes are excited. It is well known that the dissipative
passive materials are not really efficient for this case contrarily to their efficiency in the middle and high



frequencies. The final objective of this work is to reduce vibrations and induced noise on a broad low-
frequency band by using a microstructured material by inclusions that are randomly arranged in the material
matrix. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made
up of a hollow frame including a point mass centered on a beam. This inclusion behaves as a nonlinear
oscillator that is designed in order that the energy pumping be efficient on a broad frequency band around
its resonance instead of a narrow frequency band as for a linear oscillator. For this first step, the objective is
to develop the simplest mechanical model that has the capability to roughly predict the experimental results
that are measured. The second step will consist in developing a more sophisticated nonlinear dynamical
system. In this paper, devoted to the first step, it is proved that the nonlinearity induced an attenuation on
a broad frequency band around its resonance, whereas the associated linear system yields a reduction only
on a narrow frequency band. We will present the design in terms of geometry, dimension and materials
for the inclusion, the experimental manufacturing of this system realized with a 3D printed system, and
the experimental measures that have been performed. We compare the prevision given by the stochastic
computational model with the measurements. The results obtained exhibit the physical attenuation over a
broad low-frequency band, which were expected.

2 Design of the inclusion, experimental manufacturing, and material
identification

An inclusion has been designed at a macro-scale. It is made up of a point mass constituted of a cube with a
hole, centered on a beam whose ends are attached to a frame. The beam length is 0.0125m and its square
section is 0.001 × 0.001m2. The exterior dimensions of the cube are 0.005 × 0.005 × 0.005m3. The
hole is a cylinder that is centered in the cube for which the dimensions are 0.005 × 0.001752πm3. The
material of the inclusion and of the frame is in ABS. This inclusion is manufactured using a 3D printing
system (the ABS (Acrylonitrile Butadiene Styrene) is commonly used as a material for 3D printing). A steel
screw is inserted in the hole (see Figure 1). The mass m of the inclusion is approximated by the mass of

Figure 1: Design of the inclusion inserted in the frame (left figure) and its manufacturing with a 3D printing
system (right figure).

the screw that is 0.0012 kg. The mass density of the ABS is 1, 780 kg/m3. Some experimental traction tests
have been carried out for identifying the mechanical properties of the ABS material which is assumed to be
homogeneous, linear elastic and isotropic. The experiments yield for the Young modulus, 2.2× 109 Pa and
for the Poisson coefficient 0.35. This inclusion has been designed in order that the first eigenfrequency of
the frame be around 1, 200Hz and the first eigenfrequency of the inclusion (point mass and beam) be around



167Hz. We are interested in analyzing the stationary random response of the inclusion in the frequency
band of analysis Ba = [−fmax, fmax] with fmax = 1, 024Hz, induced by the stationary random excitation
generated by an imposed acceleration of the two ends supports of the beam. The same acceleration is
imposed to the two supports. This acceleration is equal to the acceleration that is imposed to the frame (that
can be considered as rigid in the frequency band of analysis), on which a stationary random external force
is applied (see Section 5). The frequency band that is observed is the band Bo = [90, 190]Hz ⊂ Ba, which
contains the resonance frequency for the low and the high amplitudes of the excitation.

3 Computational model with stochastic excitation

As explained in Section 1, a nonlinear oscillator with one DOF is constructed for modeling the nonlinear dy-
namical behavior of the inclusion defined in Section 2. The nonlinearity of the inclusion is due to nonlinear
geometrical effects induced by finite displacements, the ABS material staying with a linear behavior. For the
experimental configuration that is studied, the principal direction of the excitation and of the measured re-
sponse of the inclusion is according to the normal displacement to the plane defined by the frame (bending of
the beam in the plane perpendicular to the plane of the frame). Consequently, the proposed approach consists
in modeling this normal displacement of the inclusion by a one-DOF nonlinear oscillator. As the nonlinearity
is due to geometrical effects due to finite displacement, it could be expected a hardening effect that would
induce an increase of the resonance frequency. However, the experimental measurements performed for this
inclusion (see Section 5) have shown a softening behavior for which the resonance frequency significantly
decreases. Such behavior can only be explained by the participation of other displacement DOFs (torsion
around the axis of the beam and in plane bending displacement that is in the plane of the frame), which are
excited by a nonlinear coupling. Consequently, for this type of behavior, it would be better to develop a
multi-DOFs nonlinear oscillator (which is in progress as the step two of the work). Nevertheless, it is inter-
esting to develop a one-DOF nonlinear oscillator for which the nonlinear elastic force is directly identified
by using the experimental results. Such an identified model, which will approximatively reproduce the mea-
surements, will allow to analyze the expected phenomena of the energy pumping over a broader frequency
band around the resonance frequency.

The one-DOF nonlinear model is composed of a mass-spring-damper system with a nonlinear spring, excited
by its support (see the scheme displayed in Figure 2). The mass of the beam is neglected. Let Xexp

imp(t) be
the displacement imposed at the support in the absolute frame and let Xs(t) be the relative displacement
of the point mass with respect to the support. Let {Ẍexp

imp(t), t ∈ R} be the acceleration imposed to the

m

Xs(t)

c�0(Xs(t))

Xexp
imp(t)

F exp
s (t)

Figure 2: 1D simplified model.

support, which is a Gaussian stationary second-order centered stochastic process, defined on the probability



space (Θ, T ,P), for which the power spectral density function is denoted by SẌexp
imp

(ω). We aim to find

the stationary second-order stochastic solution {Xs(t), t ∈ R} (which is not Gaussian) of the following
stochastic nonlinear equation m(Ẍs(t) + Ẍexp

imp(t)) + cẊs(t) + Φ′(Xs(t)) = 0 for t in R, which is rewitten
as

mẌs(t) + cẊs(t) + Φ′(Xs(t)) = F exp
s (t), t ∈ R, (1)

in which F exp
s (t) = −mẌexp

imp(t), where m is the mass of the inclusion introduced before, c is the damping
coefficient, Φ′(x) is the derivative with respect to x of the elastic potential which will be identified in Sec-
tion 5 for two different amplitudes of the excitation.

The mean input power Πin = E{F exp
s (t) Ẋs(t)} (in which E is the mathematical expectation) and the mean

power dissipated Πdiss = cE{Ẋs(t)
2}, which are independent of t and which are equal (due to the station-

arity), can be written as Πin =
∫
R πin(ω) dω and Πdiss =

∫
R πdiss(ω) dω, in which the density πin(ω) and

πdiss(ω) are such that
πin(ω) = SF exp

s Ẋs
(ω) , πdiss(ω) = c SẊs(ω) . (2)

In Eq. (2), SF exp
s Ẋs

is the cross-spectral density function of the stationary stochastic processes F exp
s and Ẋs,

and SẊs is the power spectral density function of the stationary stochastic process Ẋs. The energy pumping
expressed as a function of the frequency is therefore characterized by πin(ω) = πdiss(ω). In order to qualify
the efficiency of this energy pumping as a function of the intensity of the nonlinearity, we introduce the
normalized quantity,

πin,norm(ω) =
πdiss(ω)

SF exp
s

(ω)
. (3)

Finally, the elastic potential Φ(x) will be experimentally identified by using the frequency dependent function
FRF2(ω) defined on B0 by,

FRF2(ω) =
|SẊsF exp

s
(ω)|2

|SF exp
s

(ω)|2
(4)

It should be noted that if Φ′(x) was a linear function of x (linear oscillator), then FRF2 would represent the
square of the modulus of the frequency response function of the associated linear filter for which F exp

s is the
input and Ẋs is the output.

4 Stochastic solver and signal processing

Stochastic solver. For constructing the stationary stochastic solution of the nonlinear differential equation
Eq. (1), the Monte Carlo method [29] is used. Let {F exp

s (t; θ`), t ∈ R} be a realization of the stochastic
process F exp

s for θ` ∈ Θ. Considering L independent realizations, for each realization θ`, we then have to
solve the deterministic nonlinear differential equation with initial conditions,

mẌ(t; θ`) + cẊ(t; θ`) + Φ′(X(t; θ`)) = F exp
s (t; θ`), t ∈ [0, t0 + T ],

X(0, θ`) = 0, Ẋ(0, θ`) = 0.

(5)

The part {X(t; θ`), t ∈ [0, t0]} of the non-stationary random response corresponds to the transient signal in-
duces by the initial conditions, that decreases exponentially due to the damping. This part of the response is
removed in the signal processing of the second-order quantities of the stationary solution. Time t0 is chosen
in order that the transient response be negligible for t ≥ t0. The part of the trajectory corresponding to the
stationary response is Xs(t; θ`) = X(t − t0; θ`) for t in [t0, t0 + T ]. The time duration T that is related to
the frequency resolution is defined after. The deterministic problem defined by Eq. (5) will be solved with a
Störmer-Verlet scheme presented after.



Time and frequency sampling. For constructing the second-order quantities of the stationary response Xs,
the signal processing requires a time sampling with a constant time step ∆t that is performed using the
Shannon theorem for the stationary stochastic processes [30, 31]. The sampling frequency is thus written
as fe = 2 fmax and the time step is ∆t = 1/fe. The corresponding time sampling is tα = α∆t with α =
0, 1, ..., N−1 in which the integerN is chosen in order that the frequency resolution ∆f = 1/T = 0.125Hz
where T = N∆t yielding N = 16, 384 for T = 8 s. The corresponding sampling points in the frequency
domain are fβ = −fmax + (β + 1/2)∆f for β = 0, 1, ..., N − 1.

Generation of independent realizations of stochastic process F exp
s . The usual second-order spectral represen-

tation of the stationary stochastic processes is used [32, 33]. The power spectral density function SF exp
s

(ω) of
the Gaussian stationary second-order centered stochastic process F exp

s is such that SF exp
s

(ω) = m2 SẌexp
imp

(ω),

in which SẌexp
imp

(ω) = ω4 SXexp
imp

(ω). The autocorrelation function τ 7→ RẌexp
imp

(τ) of stochastic process Ẍexp
imp

is such as RẌexp
imp

(τ) = E{Ẍexp
imp(t+ τ)Ẍexp

imp(t)} and is such that RẌexp
imp

(τ) =
∫
R e

iωτSẌexp
imp

(ω) dω. The gen-

erator of realizations of the Gaussian stationary second-order stochastic process Ẍexp
imp is based on the usual

spectral representation [34, 35]. Let Ψ0, . . . ,ΨN−1 be N mutually independent uniform random variables
on [0, 1], and let φ0, . . . , φN−1 be N mutually independent uniform random variables on [0, 2π], which are
independent of Ψ0, . . . ,ΨN−1. The spectral representation used is,

Ẍexp
imp(t) '

√
2∆ω Re

{N−1∑
β=0

√
SẌexp

imp
(ωβ)Zβ e

−iωβt e−iφβ
}
, t ∈ [0, t0 + T ] , (6)

in which ∆ω = 2π∆f , where Zβ =
√
− log(Ψβ) and ωβ = 2π fβ . From Eq. (6), it can be deduced that the

realization {Ẍexp
imp(t; θ`) , t ∈ [t0; t0 + T ]} is written as

Ẍexp
imp(t; θ`) '

√
2∆ω Re

{N−1∑
β=0

gβ,` e
−iωβt

}
, t ∈ [0, t0 + T ] , (7)

in which gβ,` =
√
SẌexp

imp
(ωβ)Zβ(θ`) e

−iφβ(θ`). Introducing the FFT {ĝ0,`, . . . , ĝN−1,`} of {g0,`, . . . , gN−1,`},

which is written as ĝα,` =
∑N−1

β=0 gβ,` exp
{
− 2i π αβ/N

}
for α = 0, 1, ..., N − 1, we obtain

Ẍexp
imp(tα; θ`) =

√
2∆ω Re

{
exp

{
− iπα

(1−N
N

)}
ĝα,`

}
, α = 0, 1, . . . , N − 1 . (8)

Störmer-Verlet integration scheme. The Störmer-Verlet integration scheme is well suited for the resolution
of dynamical Hamiltonian systems [36, 37] as proposed, for instance, for the dissipative case, in [38]. Such
a scheme preserves the mechanical energy during the numerical integration. We thus rewrite Eq. (5) in the
following dissipative Hamiltonian form as

Ẋ(t; θ`) =
1

m
Y (t; θ`) , t ∈ [t0, t0 + T ] ,

Ẏ (t; θ`) = −Φ′(X(t; θ`))−
c

m
Y (t; θ`) + F exp

s (t; θ`) , t ∈ [t0, t0 + T ] ,

X(0; θ`) = 0 , Y (0; θ`) = 0 .

(9)

We use the notation uα` = U(tα; θ`). The Störmer-Verlet integration scheme for Eq. (9) is then written, for



α = 0, 1, ..., N − 1, as

x
α+1/2
` = xα` +

∆t

2m
yα` ,

yα+1
` = yα` + ∆t

(
−Φ′(x

α+1/2
` )− c

2m
yα` −

c

2m
yα+1
` + F exp

s (tα+1; θ`)
)
,

xα+1
` = x

α+1/2
` +

∆t

2m
yα+1
` ,

(10)

in which F exp
s (tα+1; θ`) = −mẌexp

imp(tα+1; θ`).

Signal processing. For estimating, the power spectral density functions and the cross-spectral density func-
tions defined in Eqs. (2) and (4), the periodogram method [30, 31] is used.

5 Experimental measurements and identification of the model with
stochastic excitation

Figure 3: The experimental configuration.

Experimental configuration and measurements. The experimental configuration can be viewed in Figure 3.
The displacement Xexp

imp at a point of the rigid frame that is suspended and the displacement Xexp of the
point mass (inclusion) are measured with two laser sensors. The excitation applied to the rigid frame is
done by a shaker. The experimental responses have been measured for two amplitudes of the experimental
accelerations Ẍexp

imp: the first one corresponds to a low amplitude for which the response of the oscillator is
approximately linear and the second one corresponds to a high amplitude for which the response is nonlin-
ear. These two cases will be identified by symbols L and NL, respectively. Consequently, the corresponding
force F exp

s = −mẌexp
imp applied to the oscillator is denoted, for the two amplitudes, by F exp,L

s and F exp,NL
s . The

power spectral density functions SF exp,L
s

and SF exp,NL
s

are displayed in Figure 4 for the frequency band Bo.
Some fluctuations can be seen in these power spectral density functions, which imply some fluctuations in
the power spectral density functions of the inclusion displacement (these fluctuations will be reduced for the
future works by adapting the experimental configuration and the signal processing). As these experimental
power spectral density functions are used as input for computing the stochastic responses of the nonlinear os-
cillator, these fluctuations induce some fluctuations in the power spectral density functions of the responses.

Experimental identification of the nonlinear elastic force. As explained in Section 3, for each one of the two
amplitudes, the experimental identification of the nonlinear elastic force is performed by minimizing over
the frequency band Bo, the distance between FRF2 (defined by Eq. (6)) computed with the model and the
same quantity constructed with the experimental measurements.
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excitation.

(i)- Low amplitude. A one-parameter algebraic representation of Φ′(x) is chosen as Φ′L(x) = k1 x. The
experimental identification gives k1 = 1, 305N/m (see Figure 5).
(ii)- High amplitude. A three-parameters algebraic representation of Φ′(x) is defined by Φ′NL(x) = k1 x (α1+
α2x

2)−1/4 in which k1 is fixed to the value identified for the low-amplitude case and where the experimental
identification of the two positive parameters α1 and α2 yields α1 = 3 and α2 = 108m−2 (see Figure 5).

For each one of the two amplitudes, Figure 6 displays the comparison of the FRF2 function for the iden-
tified model with that obtained with the experiments. It can be seen a reasonable agreement between the
experiments and the computation, knowing that an approximation has been introduced for constructing the
model (see the explanations given in Section 3) and in taking to account the existence of fluctuations in the
experimental power spectral density function of the input.

6 Energy pumping in frequency band Bo and comparison with the
experiments

Figure 7 (related to predictions with the identified model) and Figure 8 (related to the experiments) display
the normalized input power density defined by Eq. (3) for the low amplitude and for the high amplitude. It can
be seen a reasonable agreement between the prediction with the model and the experiments. Furthermore,
the results presented in these two figures confirm a strong effect of the nonlinearity that allows the pumping
energy phenomenon to be efficient over a broader frequency band around the resonance frequency than for
the linear case, which was the objective of the work.

7 Conclusions

In this paper, we have presented the results related to the first step of a work devoted to the design and
the analysis of a nonlinear microstructured material to reduce noise and vibrations at low frequencies. We
have developed the design of an inclusion at macroscale, which has been manufactured with a 3D printing
system. The dimension of this inclusion can easily be reduced with the same technology. A first version of a
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nonlinear dynamical model has been developed and its parameters have been identified with the experiments.
Both the predictions given by the model and the experiments confirm that the pumping energy phenomenon
is more efficient over a broader frequency band around the resonance frequency than for the linear case. The
work in progress is the development of a more sophisticated model of the inclusion, which takes into account
the nonlinear couplings between several degrees of freedom.
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