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Abstract
This paper deals with the broad-band frequency analysis of complex systems, characterized by the presence
of numerous structural scales (flexible parts) attached to the skeleton of the structure (stiff part) and for which
numerous local displacements – which are very sensitive to uncertainties – are then coupled with the usual
global displacements. Due to this overlap of several scales of displacements, there is an overlap of the low-,
medium-, and high-frequency regimes (LF, MF, HF). Hence the introduction of a multilevel reduced-order
model (ROM), whose vector basis gathers LF-, MF-, and HF-like families of displacements, for which the
separation proceeds from a given filtering strategy. Integrating the nonparametric probabilistic approach of
uncertainties, the obtained multilevel stochastic ROM allows for assigning a specific statistical dispersion to
each scale. The stochastic ROM allows for (1) tackling the dimensionality induced by the local elastic modes
and (2) taking into account the heterogeneous uncertainties associated with the frequency regimes.

1 Introduction

The low-frequency (LF) band is characterized by frequency response functions (FRFs) exhibiting sharp peaks
(isolated resonances), which are associated with the corresponding eigenfrequencies and eigenvectors (elas-
tic modes) of the dynamical system. For this band, modal analysis [1, 2, 3, 4, 5] is a widely known method
that provides an effective and efficient small-dimension reduced-order model (ROM) through the use of a
reduced-order basis (ROB) composed of the first elastic modes (associated with the smallest eigenfrequen-
cies). In contrast, the high-frequency (HF) band is characterized by rather smooth FRFs and by a high modal
density. As opposed to the large-wavelength global displacements of the LF band, the numerous elastic
modes in HF are composed of small-wavelength displacements. For this band, statistical energy analysis
[6] is a well established method. The intermediate band, the medium-frequency (MF) band, exhibits large
variations of the modal density, associated with overlapping resonances corresponding to more or less small-
wavelength displacements [7]. For this band, several approaches have been investigated [7, 8, 9, 10, 11, 12].

This paper deals with the broad-band frequency analysis of complex systems, characterized by the presence
of numerous structural scales (flexible parts) attached to the skeleton of the structure (stiff part) and for which
numerous local displacements – which are very sensitive to uncertainties – are then coupled with the usual
global displacements. The local displacements are associated with predominant vibrations of the flexible
sub-parts, whereas the global displacements involve the deformation of the whole structure, supported by the
stiff skeleton. Due to the small dimension of the flexible parts, the local displacements (of small wavelength)



of the flexible parts are associated with local elastic modes of low eigenfrequency. As a consequence, there
are numerous local elastic modes in the LF band, and consequently, in higher frequencies too. For such
complex structures, it is well recognized that the broad-band frequency analysis must be improved by taking
into account uncertainties introduced by modeling errors. For this, the nonparametric probabilistic approach
of uncertainties has been proposed [13]. Parametric probabilistic approaches [14, 15], despite very effective
besides, cannot in general represent the modeling errors. In addition, the variability of such complex systems
(concerning automotive vehicle, see [16, 17, 18]) is more important in the HF band than in the LF band. For
such complex structures, due to the overlap of several scales of displacements, there is an overlap of the LF,
MF, and HF regimes. Since the local displacements (HF-like displacements), which are coupled with the
robust global displacements (LF-like displacements), are very sensitive to uncertainties (as it is well known),
the model of uncertainties should be able to take into account this heterogeneous behavior. In addition, for
such structures, modal analysis then yields ROMs of high dimension (due to the presence of the numerous
local elastic modes). Not only are the local displacements highly sensitive to uncertainties, they also have
little contribution to the dynamical response of the skeleton of the structure, compared to the global displace-
ments. For obtaining a smaller ROM, one solution would consist in sorting the elastic modes depending on
whether they be global or local. Unfortunately, the elastic modes are in general combinations of both global
and local displacements. In addition, due to the large amplitude of the local displacements in comparison to
the global displacements, it is difficult to distinguish the global displacements based on the mode shapes (this
becomes even more difficult for higher frequencies). In order to filter the local displacements, substructuring
techniques [19, 20] (component mode synthesis) could be used: the component modes associated with the
flexible parts shall be discarded. Unfortunately, for the complex structures considered, there is no clear sep-
aration between the stiff and flexible parts (due to the complexity of their geometry). Few research has been
devoted to this particular case of a high modal density [21, 22]. Recently, a methodology has been proposed
[23] for constructing a stochastic ROM whose ROB is composed of two subsets of either global or local
displacements vectors, and for which uncertainties are introduced for the local displacements. The present
paper is a continuation of this work. In [17] the original methodology has been applied to an automobile. In
[24] it has been generalized and a multilevel ROM has been introduced. In this paper, the multilevel ROM
is used and the integration of the nonparametric probabilistic approach of uncertainties allows for obtaining
a multilevel stochastic ROM for which specific statistical dispersion hyperparameters are assigned to each
scale. The stochastic ROM allows for (1) tackling the dimensionality induced by the local elastic modes and
(2) taking into account the heterogeneous uncertainties associated with the frequency regimes.

The paper is organized as follows. First, in Section 2 the basic equations are given and the stochastic ROM
of the nonparametric approach, which is based on modal analysis, is presented. Then in Section 3 a filtering
methodology, devoted to the seperation between the local displacements and the global displacements, is
presented. In Section 4 the developments of Section 3 are used in order to obtain a multilevel ROM composed
of three families of LF-, MF-, and HF-like displacements, followed by the introduction of the associated
stochastic ROM using the nonparametric probabilistic approach. Section 5 is devoted to an application to
an automobile, for which the classical and proposed ROMs are compared, with respect to experimental
measurements.

2 Classical reduced-order model

In this section we first summarize very well known results, after which we introduce the basic elements of
the nonparametric probabilistic approach.

Using the finite element method [25], the reference computational model is given by positive-definite sym-
metric (m×m) real matrices: [M] (mass), [D] (damping), and [K] (stiffness), with m the number of degrees
of freedom (DOFs). For all angular frequency ω belonging to the frequency band of analysis, vector U(ω)



of displacements is the solution of the following matrix equation,

(−ω2[M] + iω[D] + [K] )U(ω) = F(ω) , (1)

in which F(ω) is the vector of the prescribed forces. For the complex structures considered, dimension m of
the finite element model can be large. Hence the introduction of a ROM, using modal analysis.

Using the first n elastic modes ϕα with associated eigenvalues λα solutions of the generalized eigenvalue
problem,

[K]ϕα = λα[M]ϕα , (2)

the displacements are approximated as

U(ω) '
n∑

α=1

qα(ω)ϕα , (3)

or, introducing [Φ] = [ϕ1 . . .ϕn], latter equation can be rewritten as

U(ω) ' [Φ]q(ω) . (4)

In latter equations, q(ω) is a vector composed of the generalized coordinates qα(ω) , which is then the
solution of the following reduced-matrix equation,

(−ω2[M] + iω[D] + [K] )q(ω) = f(ω) , (5)

with f(ω) = [Φ]TF(ω), [M] = [Φ]T [M][Φ], [D] = [Φ]T [D][Φ], and [K] = [Φ]T [K][Φ]. Latter matrices are
called the generalized matrices associated with the projection basis (or ROB) [Φ]. In the rest of this paper,
several ROBs will be introduced. For each ROB, it is straightforward to obtain the associated ROM in a
similar way.

Using the nonparametric probabilistic approach of uncertainties, latter deterministic generalized matrices are
replaced by random matrices. For [A] = [M], [D], or[K] the construction of the associated random matrix,
[A], proceeds from the application of the maximum entropy principe [26, 27] under the constraints:

• Matrix [A] is a positive-definite symmetric (n× n) real matrix.

• E{[A]} = [A] , with E the mathematical expectation.

• E{||[A]−1||2F } < +∞ , with ||.||F the Frobenius norm.

The construction of [A] is such that

[A] = [LA]T [G(δA)][LA] , (6)

in which [LA] is upper-triangular such that [A] = [LA]T [LA] (Cholesky decomposition) and where the
construction of the random matrix [G(δA)] is given in [13], with δA a dispersion hyperparameter such that

δ2A =
1

n
E{||[G(δA)]− [In]||2F } . (7)

As a consequence, Eq. (5) is replaced by a random-matrix equation whose solution is a random vector. The
random solution is statistically estimated using the Monte-Carlo simulation method [28].

Due to the presence of the numerous local displacements, dimension n of the classical stochastic ROM (C-
SROM) may be large. As previously introduced, not only are the local displacements highly sensitive to
uncertainties, they also have little contribution to the dynamical response of the skeleton of the structure,
compared to the global displacements. We thus propose the construction of an unusual ROM, which is based
on the use of global-displacements basis vectors.



3 Global-displacements reduced-order model

The construction of the global vectors relies on the use of a suitable approximation (reduced kinematics)
for the mass matrix. Instead of using the finite element basis (which yields consistent mass matrix [M]), a
vector subspace is introduced. In original work [23], this subspace is given by the set of vectors that are
constant within given subdomains that partition the whole structure. Using this approximation, no local
displacement is permitted within a given subdomain and the filtering between the global and the local dis-
placements is parameterized by the characteristic dimension of the subdomains (which then have to be of a
homogeneous size). The construction of homogeneous domain partitionings of complex geometries is not
a straightforward task, and for this a methodology based on the Fast Marching Method [29, 30] has been
extended and implemented in [17] for an automobile structure. Instead, in this paper, we choose to use poly-
nomial shape functions (with support the whole structure) in order to span the approximation subspace. This
way, the degree of the polynomial approximation allows for efficiently controlling the filtering between the
global displacements and the local displacements. Using the multivariate monomials (of the 3D physical
space) obtained from all the possible combinations up to a given degree, a basis of orthogonal polynomials
is calculated by performing a QR decomposition of the matrix of the monomials. It should be noted that the
orthogonality is defined with respect to the inner-product given by mass matrix [M]. Using this vector basis,
the reduced-kinematics mass matrix, [Mr] , is obtained via the orthogonal-projection matrix associated with
this orthogonal basis (with respect to latter inner-product). The dimension of [Mr] is m while its rank is
r ≤ m. Stiffness matrix [K] is left unchanged (the elastic energy is kept exact).

Replacing [M] by [Mr] in Eq. (2) leads us to an unusual generalized eigenvalue problem, whose eigenvectors
consist in more or less global displacements, depending on the polynomial degree used. It should be noted
that [Mr] is only used in order to carry out the filtering between the global displacements and the local dis-
placements. The global-displacements ROM is obtained by projecting Eq. (1) onto the global-displacements
ROB. Concerning the global-displacements ROB, it is actually not exactly constituted of latter eigenvectors,
these being not orthogonal with respect to [M]. First, only a subset of the eigenvectors is considered (first
truncation). Then, projecting the usual generalized eigenvalue problem of Eq. (2) onto these eigenvectors,
the components of the global-displacements ROB are given by the newly obtained eigenvectors associated
with the lowest eigenfrequencies (second truncation).

We now define the local-displacements subspace as the orthogonal complement of the global-displacements
subspace, with respect to the inner-product given by matrix [M]. The ROB of this subspace is constituted
of orthogonal vectors with respect to both [K] and [M] (the orthogonalization is achieved solving some
eigenvalue problem). Concerning computational aspects, for the construction of the global-displacements
ROB and of the local-displacements ROB, a double projection method allows for avoiding the need of having
[K] and only requires access to a diagonally-lumped approximation of [M]. It is based on the projection of
the dynamics equation onto the subspace spanned by the n elastic modes [Φ]. In addition, it allows for the
efficient calculation of the local-displacements ROB, whose associated local-displacements subspace allows
the subspace spanned by the elastic modes to be decomposed as the internal orthogonal direct sum of the
global-displacements subspace and the local-displacements subspace.

4 Multilevel reduced-order model

In Section 3 we have presented the proposed methodology dedicated to the filtering between the global dis-
placements and the local displacements. This filtering is defined upon the polynomial degree used for the
reduced kinematics. The construction of the multilevel ROM is based on this filtering methodology.



The frequency band is decomposed into the LF, MF, and HF bands. Since the HF band exhibits small-
wavelength displacements in comparison to the LF band, in order to obtain a sufficient accuracy of the
global-displacements ROM, a higher polynomial degree is necessary for analyzing the dynamical response
up to HF, compared to the one that would be necessary for LF. We thus introduce three parameters (polyno-
mial degrees) on which the construction of the multilevel ROM is based, DL , DM , and DH , for which the
associated reduced kinematics allow sufficient approximations to be obtained respectively up to LF, MF, and
HF.

First filtering First, using degreeDH and projecting the computational model onto the n elastic modes, the
filtering methodology yields a global-displacements subspace and a local-displacements subspace. Assumed
DH is high enough for representing the HF band, only the global-displacements are kept, whereas the local-
displacements subspace is neglected. This allows the final dimension of the multilevel ROM to be reduced.
The global-displacements subspace, which includes the totality of the remaining displacements considered
for the multilevel ROM, is denoted as St .

Second filtering Second, using degree DM and projecting the computational model onto St , the filtering
methodology yields a global-displacements subspace, SLM ⊆ St , and a local-displacements subspace,
SH ⊆ St .

Third filtering Third, using degree DL and projecting the computational model onto SLM , the filtering
methodology yields a global-displacements subspace, SL ⊆ SLM , and a local-displacements subspace,
SM ⊆ SLM .

The three ROBs associated with subspaces SL , SM , and SH , and respectively constituted of LF-, MF-, and
HF-like displacements, allow the ROB of the multilevel ROM to be obtained. As a result, each generalized
matrix of the multilevel ROM is constituted of 3 × 3 = 9 matrix blocks. The purpose of the multilevel
ROM is to allow for adapting the level of statistical fluctuations to each frequency regime (to each type of
displacement). To this end, a random matrix composed of 3 × 3 = 9 blocks (whose dimensions match
those of the blocks of the multilevel ROM matrices) is used, for which only the 3 diagonal blocks are
non-zero. These blocks are given by the random matrix involved in Eq. (7). For each block, a dedicated
dispersion hyperparameter is used. For instance, for the stiffness matrix: dispersion δLK is used for the random
matrix block associated with the LF-like displacements, dispersion δMK is used for the random matrix block
associated with the MF-like displacements, and dispersion δHK is used for the random matrix block associated
with the HF-like displacements. Performing the Cholesky decomposition of each deterministic generalized
matrix of the multilevel ROM, the multilevel stochastic ROM (ML-SROM) is obtained in a similar way than
the C-SROM (see Eq. (6)), using latter block-diagonal random matrix.

5 Application to an automobile structure

Measurements of FRFs of 20 nominally identical cars are carried out. For each car, the same excitation force
is applied (at the engine fasteners) and the acceleration is measured at another point (located somewhere at
the back of the car). On the other hand, a finite element model (associated with the model of the measured
cars) is given. It is a very detailed model, with about m = 8, 000, 000 DOFs. For this structure, the LF, MF,
and HF bands are defined as BL = 2π×]10, 70] Hz , BM = 2π×]70, 300] Hz , and BH = 2π×]300, 900] Hz .
There are approximately 2.5 modes per Hz in the LF band, 5 modes per Hz in the MF band and 10 modes
per Hz in the HF band. This high modal density is due to the fact that, as soon as low frequencies, numerous



local displacements are intertwined with the usual global displacements.

The C-SROM is built upon the use of the first n = 8, 450 elastic modes, with a maximum eigenfrequency of
1, 000 Hz. Hyperparameters δK and δM of the C-SROM are identified solving a statistical inverse problem
(we use a modal damping model and consequently, each random realization of the diagonal damping matrix
is deduced from the realization of the random generalized mass and stiffness matrices, hence the disappear-
ance of hyperparameter δD). The statistical inverse problem consists in finding hyperparameters δK and δM
that maximize the overlap between the computed random response and the experiments. The cost function
associated with latter optimization problem is defined frequency-by-frequency using the overlapping coeffi-
cient [31] between the distribution of the experimental measurements and the distribution of the computed
responses. These probability density functions are estimated using kernel density estimation. For the com-
putational model, nsim = 40 Monte-Carlo realizations are considered, enough for reaching convergence of
the cost function. More precisely, the analyzed FRF is the modulus of the acceleration of the observed point.
Using an irregular 2D grid constituted of about 300 sampling points, the C-SROM is identified. In Fig. 1
the random FRF given by the identified C-SROM is plotted in log-log scale, in addition to the experimental
measurements. Throughout this paper, by random FRF we mean a 95% confidence interval that is estimated
using nsim = 10, 000 Monte-Carlo realizations, sufficient for its convergence. It can be seen in Fig. 1 that
the confidence region is not sufficiently large in the LF and MF bands (especially in the LF band).

Figure 1: Experimental FRF measurements (black lines) and random FRF using the identified C-SROM
(colored region)

For constructing the ML-SROM, filtering parametersDL , DM , andDH have to be chosen. If these parame-
ters were to tend toward infinity, no dimension reduction would be obtained with respect to a classical modal
analysis, and in addition, the families of LF-, MF-, and HF-like displacements would consist in the elastic
modes present in the corresponding bands. In addition, the ML-SROM is defined upon 6 dispersions hyper-
parameters: δLK , δLM , δMK , δMM , δHK , δHM . A sensitivity analysis shows that we can consider δLK = δLM = δL ,
δMK = δMM = δM , and δHK = δHM = δH . First, the filtering parameters are identified in a deterministic con-
text and fixed. Then, a coarse 3D grid allows for identifying δL , δM , and δH (using about 500 sampling



points). The identification is then refined: parameters DH and δH , whose effect in HF is quite independent
of the other parameters, are identified concurrently (with the other parameters fixed). At last, parameters δL

and δM are identified concurrently (using a 2D grid). The random response given by the identified ML-
SROM is plotted in Fig. 2. It can be seen that the prediction is improved in the LF and MF bands. This is
explained by the increased capability of the ML-SROM to adapt the level of statistical fluctuations to each
of the frequency bands (correlated with each type of displacement). In addition, the dimension of obtained
ML-SROM is nt = 4, 232 , which constitutes a non-negligible reduction.

Figure 2: Experimental FRF measurements (black lines) and random FRF using the identified ML-SROM
(colored region)

6 Conclusions

We have presented a general method for constructing a multilevel stochastic ROM adapted to the broad-
band frequency analysis of complex structures. The overlap of the LF, MF, and HF regimes, induced by the
intertwining of numerous local displacements with the global displacements, brings up two difficulties, one
that is related to uncertainty quantification and the other to computational efficiency. First, in order to filter
the local displacements from the global displacements, we have presented a general methodology, for which
the implementation is non-intrusive and efficient. It is based on the introduction of a reduced kinematics for
the kinetic energy, using polynomial shape functions. Second, in order to separate the LF-, MF-, and HF-
like displacements associated with the LF, MF, and HF regimes, the filtering methodology is used several
times and the associated multilevel ROM is obtained. Using the nonparametric probabilistic approach of
uncertainties, a multilevel stochastic ROM is constructed, which allows specific statistical dispersion levels to
be assigned to each frequency regime. The proposed methodology has been efficiently applied to a complex
finite element model of an automobile, for which the multilevel stochastic ROM has been identified with
respect to experimental measurements. Compared to a classical stochastic ROM based on modal analysis, the
proposed multilevel stochastic ROM allows for obtaining an improved FRF prediction for a lower dimension.



Acknowledgements

This research was supported by Agence Nationale de la Recherche, Contract HiMoDe, ANR-2011-BLAN-
00378. The authors thank PSA Peugeot Citroën for providing the experimental measurements and the com-
putational model.

References

[1] L. Meirovitch, Dynamics and Control of Structures, Wiley, New York (1990).

[2] J. Argyris, H.P. Mlejnek, Dynamics of Structures, North-Holland, Amsterdam (1991).

[3] R. Ohayon, C. Soize, Structural acoustics and vibration. Academic Press, San Diego, London (1998)

[4] R.R. Craig, A.J. Kurdila, Fundamentals of Structural Dynamics, John Wiley and Sons, Inc., New York
(2006)

[5] K.J. Bathe, The subspace iteration method - revisited, Computers and Structures, Vol. 126, No. 1, Else-
vier (2013), pp. 177-183.

[6] R.H. Lyon, R.G. DeJong, Theory and Application of Statistical Energy Analysis, Butterworths-Heimann,
Boston, MA (1995).

[7] C. Soize, Medium frequency linear vibrations of anisotropic elastic structures, La Recherche
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