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Abstract

In this paper we provide a formal justification of the use of time-frequency

reassignment techniques on time-frequency transforms of discrete time signals.

State of the art techniques indeed rely on formulae established in the continuous

case which are applied, in a somehow inaccurate manner, to discrete time signals.

Here, we formally derive a general framework for discrete time reassignment. To

illustrate its applicability and generality, this framework is applied to a specific

transform: the Constant-Q Transform.

Keywords: Reassigned time-frequency representations, reassigned CQT,

discrete signals, synchrosqueezing

1. Introduction

Time-frequency reassignment has received great attention over the last de-

cades, especially for the task of sinusoidal parameter estimation in noisy data.

Numerous methods have been developed based on Fourier analysis [1, 2, 3],

on subspace decomposition [4, 5] or on more general models such as AM/FM5

models [6, 7]. Time-frequency reassignment methods aim at providing enhanced

time-frequency representations with an improved resolution in both time and

frequency. To this end, these methods propose to assign the energy computed at

˚Corresponding author, e-mail address: Sebastien.Fenet@Zoho.com

Preprint submitted to Elsevier October 6, 2016



some time-frequency point in the signal to a different point in the time-frequency

plane that depends on the window used for the spectral computation.10

Time-frequency reassignment methods emerge from the idea first proposed

by Kodera [8]. This original approach uses the phase information of the time-

frequency representation and remains difficult to use in practice. Later on,

Auger and Flandrin [1] proposed a new closed-form solution to this problem

which applies to a wide variety of time-frequency representations and relies on15

much more straightforward computations of the reassigned indexes. This work

has opened the door to the use of time-frequency reassignment in numerous

domains such as physics [9], radar imaging [10] or audio [11]. It has also led to

the development of numerous extensions and adaptations of the original method

[12, 13, 14].20

Another solution to the problem, named synchrosqueezing, has been pro-

posed by Daubechies and Maes in [15]. Notably because it offers the ability

to reconstruct the time signals, the technique has drawn a lot of interest and

has become the root of multiple applications and enhancements [16, 17, 18] .

Although synchrosqueezing was initially presented as a distinct technique from25

Auger and Flandrin’s reassignment method, the strong connection that exists

between the two has been clarified in [19].

Traditionally, reassignment calculations are carried out in the context of

continuous time signals (see [20] for a review) while most applications involve

discrete time signals. In practice, all results obtained in the continuous time30

case are applied, without detailed justification, to the discrete case.

In this work, we propose a formal framework for the computation of the re-

assigned transforms which fully takes into account the discrete time aspect. Our

approach consists of expressing the magnitude of the time-frequency transform

of a discrete signal as a mass function in the time-frequency plane and in assign-35

ing the energy to the centre of mass of this representation. Interestingly, the

obtained mathematical expressions are very similar to the classical expressions

proved in the continuous time case. The main advantage of our approach is that

we obtain exact expressions of the solution when discrete signals are considered.
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This opens the door to the implementation of exact solutions and, should the40

implementation require an approximate solution, we are able to characterise the

introduced error. To some extent, this work also gives a formal justification of

the common approximation made when applying continuous time formulae to

discrete time signals.

The paper is organised as follows. The mathematical model and the deriva-45

tions of closed-form expressions for reassigned time and frequency indexes are

provided in section 2. We then discuss in the subsequent section the merit

of the proposed solution. An application of the framework to a specific time-

frequency representation, the Constant Q Transform (CQT), is finally proposed

in section 4.50

2. Mathematical model

2.1. Traditional time-frequency representations

As stated in the introduction, our aim is to derive the mathematical formu-

lation of the reassigned time-frequency representation of a discrete numerical

signal. We thus consider a discrete time signal x. Such a signal maps any55

discrete index n P Z to a complex value xn P C. Its frequency content Xpξq

is defined for any normalised frequency ξ P R{Z by the Discrete Time Fourier

Tranform (we use the standard notation R{Z to indicate that the normalised

frequency is defined modulo 1).

The information that one reads in a time-frequency representation of x is60

the amount of energy in x at time t P R and normalised frequency ν P r0; 1s.

In order to evaluate this energy, the scalar product between x and a kernel

is computed. The kernel consists of a windowing sequence ht,ν , centred on t,

multiplied by the harmonic function of frequency ν. Let us note that the pt, νq

exponent makes it explicit that the windowing sequence depends on the time of65

interest and may also depends on the frequency of interest. More precisely, the

transforms of x that fall within the scope of this paper can be written in the
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following form:

T x,ht,ν
pt, νq “

ÿ

nPZ
ht,νn xn e´ j2πνn (1)

The time-frequency representation at time t and frequency ν is finally obtained

by considering the squared magnitude of the transform:70

spt, νq “ | T x,ht,ν
pt, νq |2. (2)

It is interesting here to recall the Heisenberg-Gabor limit [21] that constrains

the design of the windowing sequence ht,ν . More precisely, the Gabor limit

states that there is a trade-off between the temporal and spectral resolutions

when representing a signal in the time-frequency plane. In practice, adjusting

the support of the windowing sequence is a direct way to tune this trade-off. A75

wide support will result in a precise frequency resolution with a poor temporal

resolution. Conversely, a narrow support will provide a good temporal resolution

at the cost of the frequency resolution. In order to ensure consistency, we

consider that the windowing sequences are of finite support and that they are

normalised by the size of their supports. For instance, h being a continuous80

window function of finite temporal support, the windowing sequence is defined

by ht,νn “ h pn´ tq in the case of a short-term Fourier Transform (STFT) or by

ht,νn “ νh pνpn´ tqq in the case of a constant-Q Transform (CQT) for a set of

frequencies ν within
“

0; 1
2

‰

(see Section 4 for more details).

In addition to constraining the design of the window, the choice of a given85

time-frequency transform also determines the set of time-frequency points pt, νq

at which the representation is evaluated. Typically, a Short-Time Fourier Trans-

form with a temporal hop size ∆t and a spectral hop size ∆ν is obtained with

the following set of points: tpt0 ` k∆t, ν0 ` k1∆νq for pk, k1q P N2qu. In con-

trast, the Constant-Q Transform, whose spectral geometric progression is often90

denoted by 2
1
r (r being the number of bins per octave), is obtained with the set

tpt0 ` k∆t, ν02
1
r k

1

q for pk, k1q P N2u. In these expressions, t0 naturally denotes

the lowest time index of the representation and ν0 the lowest frequency bin.

Let us make explicit here that in the following derivations we will be using
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the notation z for the complex conjugate of z and the symbol ˙ for the discrete95

convolution operator.

2.2. Time-frequency representations as mass functions

Reassignment techniques rely on the idea that time-frequency representa-

tions, at a given point pt, νq, can be written as the sum of a mass function

defined on the time-frequency plane pn, ξq. Given our context, which involves100

a discrete time axis and a periodic frequency axis, we have pn, ξq P Z ˆ pR{Zq.

We thus look for an expression of the form:

spt, νq “
ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

Φt,νpn, ξqdξ (3)

where the function Φt,ν is real-valued.

Let us define W , a discrete version of Rihaczek’s ambiguity function [22], for

any sequence ϕ P `1pZq, time index n P Z and frequency ξ P R{Z by:105

Wϕpn, ξq “
ÿ

τPZ
ϕn`τ ϕn e´j2πξτ . (4)

Proposition 1. The time-frequency representation spt, νq of a discrete time

signal x P `1pZq, as defined in equation (2), can be written as the sum of a mass

function, as in equation (3), with:

Φt,νpn, ξq “ <
!

Wht,ν pn, ν ´ ξqWxpn, ξq
)

.

Putting things together, this means that the time-frequency representation of x

at point pt, νq can be written in the following form:

spt, νq “
ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

<
!

Wht,ν pn, ν ´ ξqWxpn, ξq
)

dξ (5)

Proof. Let us evaluate the following expression:

Ept, νq “
ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

Wht,ν pn, ν ´ ξqWxpn, ξq dξ .
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We have:

Ept, νq “
ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

#

ÿ

τ1PZ
ht,νn`τ1 h

t,ν
n e´j2πpν´ξqτ1

ÿ

τ2PZ
xn`τ2 xn e´j2πξτ2

+

dξ .

Knowing that ht,ν is of finite support and that x is in `1pZq, Fubini’s theorem

ensures that the summations can be permuted:

Ept, νq “
ÿ

n,τ1,τ2PZ

#

ht,νn`τ1 h
t,ν
n xn`τ2 xn e´j2πντ1

ż ν` 1
2

ξ“ν´ 1
2

e´j2πξpτ2´τ1q dξ

+

.

Knowing that, for any integer k, we have:

ż ν` 1
2

ξ“ν´ 1
2

e´j2πξk dξ “

$

&

%

1 if k “ 0

0 otherwise

the above expression can be rewritten with respect to a single shift variable τ :

Ept, νq “
ÿ

n,τPZ
ht,νn`τ h

t,ν
n xn`τ xn e´j2πντ .

By the substitution τ ÞÑ m´ n we get:

Ept, νq “
ÿ

n,mPZ
ht,νm ht,νn xm xn e´j2πνpm´nq

“

#

ÿ

mPZ
ht,νm xm e´j2πνm

+#

ÿ

nPZ
ht,νn xn e´j2πνn

+

“ | T x,ht,ν
pt, νq|2.

Altogether, we have proved that:110

| T x,ht,ν
pt, νq|2 “

ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

Wht,ν pn, ν ´ ξqWxpn, ξq dξ . (6)

By applying the real part operator on both sides of the above equality, using its

linearity and knowing that | T x,ht,ν
pt, νq| is real, we get:
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| T x,ht,ν
pt, νq|2“

ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

<
!

Wht,ν pn, ν ´ ξqWxpn, ξq
)

dξ.

l

We have thus proved that the time-frequency representation of x at a given

time t and frequency ν, which we have defined as the squared magnitude of115

the transform, can be expressed as the sum of a real-valued function in the

time-frequency plane. In accordance with the context of discrete time signals,

we have a discrete time axis (leading to a discrete summation over the time

index) and a continuous and periodic frequency axis (leading to a continuous

and finite summation over the frequency variable). It is also interesting to note120

that the contributions of the window ht,ν and the signal x are quite separated

and symmetric. They are induced through the same transform W that applies

separately on the window and on the signal. We may now consider the function

that is summed as a mass function and, as such, look for its centre of mass in

the time-frequency plane.125

2.3. Reassigned time index

Given the formulation (3) of the time-frequency representation at point pt, νq

as the two-dimensional sum of a mass function, it is possible to evaluate the

centre of mass of this distribution in the time-frequency plane. By definition,

the first coordinate of the centre of mass is given by the following formula:130

t̂t,ν “

ř

nPZ
şν` 1

2

ξ“ν´ 1
2

nΦt,νpn, ξqdξ

ř

nPZ
şν` 1

2

ξ“ν´ 1
2

Φt,νpn, ξqdξ
. (7)

Proposition 2. The temporal coordinate of the centre of mass in the time-

frequency plane of the time-frequency representation evaluated at point pt, νq,

defined in equation (7), can also be expressed as:

t̂t,ν “ t` <

#

T x, rtht,ν
pt, νq

T x,ht,ν
pt, νq

+

(8)

where rt is the unit ramp centred on t: rtn “ n´ t.
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Proof. Let us evaluate the following quantity:135

E1pt, νq “
ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

nΦt,νpn, ξqdξ . (9)

We have:

E1pt, νq “ <

#

ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

ÿ

τ1PZ
nht,νn`τ1h

t,ν
n e´j2πpν´ξqτ1

ÿ

τ2PZ
xn`τ2 xn e´j2πξτ2 dξ

+

.

By using the same grouping and the same substitution as in the proof of Propo-

sition 1, the expression becomes:

E1pt, νq “ <

#

ÿ

n,mPZ
nht,νm ht,νn xm xn e´j2πνpm´nq

+

.

Expanding n as t` n´ t, we have:

E1pt, νq “ t<

#

ÿ

nPZ
ht,νn xn e´j2πνn

ÿ

mPZ
ht,νm xm e´j2πνm

+

`<

#

ÿ

nPZ
pn´ tqht,νn xn e´ j2πνn

ÿ

mPZ
ht,νm xm e´j2πνm

+

This can be more concisely written as:140

E1pt, νq “ t | T x,ht,ν
pt, νq|2 ` <

!

T x,rtht,ν
pt, νq T x,ht,ν

pt, νq
)

(10)

Given the definitions (7) and (9), we know that dividing E1pt, νq by
ř

nPZ
şν` 1

2

ξ“ν´ 1
2

Φt,νpn, ξqdξ yields t̂t,ν . Besides, we know from equations (2) and

(3) that:

ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

Φt,νpn, ξqdξ “ | T x,ht,ν
pt, νq|2 (11)

“ T x,ht,ν
pt, νq T x,ht,ν

pt, νq .

Thus, dividing equation (10) by
ř

nPZ
şν` 1

2

ξ“ν´ 1
2

Φt,νpn, ξqdξ, we finally get:

t̂t,ν “ t` <

#

T x, rtht,ν
pt, νq

T x,ht,ν
pt, νq

+

l145

8



Let us recall that we are currently looking for the centre of mass of the mass

function Φt,ν from which the time-frequency representation spt, νq stems. What

we have done here is establishing a simple expression of the time coordinate t̂t,ν

of the centre of mass. The original definition of the centre of mass, shown in

equation (7), indeed leads to quite complex computations while our calculations150

have showed that the time coordinate of the centre of mass can be expressed

mostly as the division of two transforms. The benefits of this expression will be

further discussed in section 3 but it is already remarkable that we could express

this coordinate in a nice and simple way.

2.4. Reassigned frequency155

Similarly to what has been done for the time coordinate, the expression of

the time-frequency representation at point pt, νq as the sum of a mass function

Φt,ν , proved in Proposition 1, allows to determine the frequency coordinate of

the centre of mass of Φt,ν . The latter is defined by:

ν̂t,ν “

ř

nPZ
şν` 1

2

ξ“ν´ 1
2

ξΦt,νpn, ξqdξ

ř

nPZ
şν` 1

2

ξ“ν´ 1
2

Φt,νpn, ξqdξ
. (12)

Proposition 3. The frequency coordinate of the centre of mass in the time-160

frequency plane of the time-frequency representation evaluated at point pt, νq,

defined in equation (12), can also be expressed as:

ν̂t,ν “ ν ´
1

2π
=

#

T x,ht,ν˙g
pt, νq

T x,ht,ν
pt, νq

+

(13)

where g is the differentiator filter, i.e. gn “
p´1qn

n for n ‰ 0 and g0 “ 0.

Proof. Let us evaluate the following expression:

E2pt, νq “
ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

ξΦt,νpn, ξqdξ . (14)
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We have:165

E2pt, νq “ <

#

ÿ

nPZ

ż ν` 1
2

ξ“ν´ 1
2

ξ
ÿ

τ1PZ
ht,νn`τ1 h

t,ν
n e´j2πpν´ξqτ1

ÿ

τ2PZ
xn`τ2 xn e´j2πξτ2 dξ

+

.

By the substitution ξ ÞÑ ξ1 ` ν we get:

E2pt, νq “ ν | T x,ht,ν
pt, νq|2

`<

#

ÿ

nPZ

ż 1
2

ξ1“´ 1
2

ξ1
ÿ

τ1PZ
ht,νn`τ1 h

t,ν
n e j2πξ

1τ1
ÿ

τ2PZ
xn`τ2 xn e´j2πpξ

1
`νqτ2 dξ1

+

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

E2
2 pt,νq

.

In the above expression, let us call the second operand E22 pt, νq. We now have:

E2pt, νq “ ν | T x,ht,ν
pt, νq|2 ` E22 pt, νq . (15)

Adequately reordering the summations in E22 pt, νq, the latter can be written as:

E22 pt, νq “ <

#

ÿ

n,τ1,τ2PZ
ht,νn`τ1 h

t,ν
n xn`τ2 xn e´j2πντ2

ż 1
2

ξ1“´ 1
2

ξ1 e j2πξ
1
pτ1´τ2q dξ1

+

.

Let us define the sequence g in the following way:

gn “

ż 1
2

ξ1“´ 1
2

2jπξ1 e j2πξ
1n dξ1 “

$

&

%

p´1qn

n if n ‰ 0

0 if n “ 0
. (16)

The expression of E22 pt, νq consequently becomes:170

E22 pt, νq“<

#

j

2π

ÿ

n,τ1,τ2PZ
ht,νn`τ1h

t,ν
n xn`τ2xn e´j2πντ2gτ2´τ1

+

.

We can then use the substitution:
$

&

%

τ2 ÞÑ l ´ n

τ1 ÞÑ l ´ n´m

to get the following equation.

E22 pt, νq “ <

#

j

2π

ÿ

n,m,lPZ
ht,νl´mh

t,ν
n xl xn e´j2πνpl´nq gm

+

.

10



As far as the terms in m are concerned, we observe that:

ÿ

mPZ
ht,νl´mgm “ ph

t,ν ˙ gql .

The whole expression can thus be rewritten:

E22 pt, νq “ <

#

j

2π

ÿ

nPZ
ht,νn xn e´j2πνn

ÿ

lPZ
pht,ν˙gql xl e

´j2πνl

+

.

By identifying the transforms in the above expression of E22 pt, νq and reinjecting

in equation (15), we get:

E2pt, νq “ν| T x,ht,ν
pt, νq|2 ´

1

2π
=
!

T x,ht,ν
pt, νq T x,ht,ν˙g

pt, νq
)

.

Taking into account equation (11) and given the definition (14) of E2pt, νq, it is175

only needed to divide the latter by | T x,ht,ν
pt, νq|2 to obtain ν̂t,ν , as defined in

equation(12). This finally leads to:

ν̂t,ν “ ν ´
1

2π
=

#

T x,ht,ν˙g
pt, νq

T x,ht,ν
pt, νq

+

l

Similarly to what we have done in Section 2.3 for the time coordinate, we

have obtained here a simple expression of the frequency coordinate of the cen-180

tre of mass of Φt,νpn, ξq. Although the mathematical steps that led to this

expression are rather different from the ones performed in the case of the first

coordinate, the final result in equation (13) is quite symmetric with the one in

equation (8). In a similar fashion, the frequency coordinate is expressed as a

simple combination of two transforms. This expression of ν̂t,ν will be further185

discussed in the next section.

3. Discussion

In the previous section, we have obtained exact expressions of the coordi-

nates pt̂t,ν , ν̂t,νq of the centre of mass of Φt,ν . The latter is a mass function

11



whose summation in the time frequency plane gives spt, νq i.e. the value of the190

time-frequency representation of x at time t and frequency ν. The obtained

expressions are valid for any time-frequency representation of a discrete signal

with any kind of windowing. Time-frequency reassignment consists of building

an enhanced time-frequency representation of x simply by reassigning the value

spt, νq to the time-frequency point pt̂t,ν , ν̂t,νq.195

3.1. Practical interest of the expressions

The major advantage of the presented formulae for t̂t,ν and ν̂t,ν is that they

provide a way of computing the reassigned index with the computation of only

three transforms, one of which is the ‘original’ one (T x,ht,ν
pt, νq). The presented

reassignment tool is thus very powerful since it only involves an increase of the200

computation time by a factor 3 compared to the original representation, which

does not seem a very high price to pay considering the tremendous gain of

resolution.

In detail, in order to compute the reassigned time index as in equation

(8), one has to compute an additional transform of x with a window function205

which consists of the original window function multiplied by the unit ramp

function. The real part of the division of this ramp-windowed transform by the

original transform provides the time shift. In order to compute the reassigned

frequency index as in equation (13), one has to compute the transform of x with

a window sequence which is the original window convolved with some discrete210

filter g. Let us note that this modified window can be pre-computed once so that

calculating the transform of x with this window has the same complexity as with

the original window. The frequency shift is proportional to the imaginary part

of the transform with the convolved window divided by the original transform.

3.2. Comparison with previously established expressions215

The transition from the mathematical proof of the time-frequency reassign-

ment formulae in the context of continuous time signals [1] to the one for discrete

time signals is not straightforward. The continuous proof indeed relies on the

12



rewriting of the spectrogram as a summed product of Wigner-Ville transforms

[23, 24, 25]. However, since the Wigner-Ville transform involves non-integer220

shifts, it cannot be directly applied to discrete-time signals. We have overcome

the issue by introducing in equation (4) the transform W , which can be seen

as a discrete version of Rihaczek’s ambiguity function [22]. This transform is

fully applicable to discrete time signals but it lacks the symmetric design of

the Wigner-Ville transform. As a result, the transform is not bounded to real225

values. Fortunately, we could still step back to the expression of a real-valued

mass function by applying the real operator on equation (6). Another pitfall

when switching to discrete time signals is the choice of ξ’s integration interval in

equation (3). Given the spectral periodicity of discrete signals, it is clear enough

that the interval should be of unit length. However, the localisation of the inter-230

val is not obvious. It does not intervene in the calculation of the reassigned time

index but it has a meaningful impact when deriving the reassigned frequency

index. Our calculations have shown that, in a rather expectable and logical

way, the interval of integration should be centred around ν when studying the

time-frequency representation at point pt, νq.235

In spite of the meaningfully dissimilar calculations steps that led to them,

the formulae that we finally obtain for t̂t,ν and ν̂t,ν are very similar to the ones

obtained in the continuous case by Auger and Flandrin [1]. The expression of

the reassigned time index is indeed the same, with the same appearance in the

calculation of the window multiplied by the ramp function. One meaningful con-240

tribution of our work, though, is that our expressions have been derived in the

context of discrete time signals. There is thus no approximation when applying

it to real signals and we have formally proved that the expression is valid. As

far as the reassigned frequency index is concerned, the continuous proof, which

relies on an integration by parts, leads to an expression that brings the deriva-245

tive of the original window into play. On the other hand, our calculations lead

to a new window which is the original one convolved with a filter g. For that

matter, it is very interesting to note that the filter g that we obtain is the ideal

differentiator filter. It is indeed clear in the definition of g, given in equation

13



(16), that it is the inverse Fourier Transform of 2jπξ1 which is the frequency250

response of the perfect differentiator. The similarity between our expression

and the one from Auger and Flandrin then becomes clear. To some extent, we

may indeed consider that the “derivative” of h approximates the convolution of

h by g. We however take full advantage here of our discrete time approach. We

indeed have an exact formulation for the reassigned frequency index whereas255

Auger and Flandrin propose to compute the “derivative” of h. The derivative is

quite an ill-defined concept for discrete time signals and applying their formula

raises the question of the best way to estimate it. Our work brings an answer

to this, until now, open question. The technically correct way of using Auger

and Flandrin formula is to estimate the derivative with an ideal differentiator260

filtering.

3.3. From reassignment to synchrosqueezing

As stated in the introduction the pioneering approach of Kodera [8] sug-

gests to compute the reassigned time and frequency indexes by using the par-

tial derivatives of the phase of the time-frequency representation. In a similar265

spirit, the synchrosqueezing method [15] makes use of the partial derivatives of

the phase to compute the reassigned frequency index. A notable difference of

synchrosqueezing, however, is that only the frequency index is reassigned.

Our method, on the other hand, looks for the centre of mass of the distribu-

tion Φt,ν related to the time-frequency representation spt, νq. The equivalence270

between the computation of the reassigned indexes thanks to the partial deriva-

tives of the phase and the computation of the same indexes through the centre

of mass has however been proved in [1].

As a result, as explained in [19], the synchrosqueezing method can be com-

puted within our framework in a straightforward way. First, the reassigned275

frequency ν̂t,ν is determined according to equation (13). Finally, the complex

value T x,ht,ν
pt, νq is additively reassigned to the point pt, ν̂t,νq. The differences

with the reassignment method that we detailed in the first place are thus clear
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and limited: only the frequency index is reassigned and the reassignment is op-

erated on the complex value of the transform instead of its squared magnitude.280

4. Application: A reassigned Constant-Q Transform

As explained, the formal framework derived above is valid for a wide vari-

ety of time-frequency transforms. To illustrate its applicability, we propose to

demonstrate the merit of the reassignment strategy on the Constant-Q Trans-

form. The interested reader will find a Python implementation of this reassigned285

Constant-Q Transform on the authors’ homepages1.

4.1. Presentation of the transform

The Constant-Q Transform is a common tool in the field of audio processing.

Its numerous fields of application include main melody extraction [26], audio-

fingerprinting [27], chords detection [28, 29]. It was first proposed in [30] by290

Brown, who aimed at designing a time-frequency representation that mimics

our perception of sound. To this end, the Constant-Q Transform has frequency

bins with geometrically spaced centre frequencies. Moreover, their frequency

resolution is inversely proportional to the centre frequency. Its direct calcula-

tion, however, is computationally heavy compared to the Short Time Fourier295

Transform which can rely on the Fast Fourier Transform. Hence the proposition

by Brown and Puckette of a faster implementation in [31] and a follow-up in [32]

by Klapuri. Another pitfall of the initial transform is its non-invertibility. As a

consequence, several authors have focused on designing an invertible version of

the Constant-Q Transform [33, 34, 35, 36]. Very recently, the concept of reas-300

signed Constant-Q Transform has appeared in [37] and [12]. The point of view

is however slightly different from the one adopted here since both works present

the Constant-Q Transform as an application example of the theory derived in

[12]. In the latter, reassignment formulae are specifically derived for filter banks.

1googledrive.com/host/0B1DUW3X2T63neXhKWmxrTW5nUlE/ressources.html
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Since they rely on the work by Auger and Flandrin [1], the derivations are only305

carried out for continuous-time signals.

More precisely, in the context of the Constant-Q spectrogram, one evaluates

the amount of energy in x at any time t for a set of frequencies tνku. The νk’s

are distributed according to the following law:

νk “ 2
k
r ν0

The parameter r specifies the resolution of the transform (the bigger r is, the

more numerous the frequency bins are) and ν0 is the centre of the lowest fre-

quency bin of the transform. A meaningful interest of the Constant-Q Transform

is that the νk’s can be aligned on the note frequencies of the Western scale. The310

parameter r then corresponds to the number of bins per octave, or equivalently,

r{12 to the number of bins per note.

As far as the windowing functions are concerned, the Constant-Q Transform

scales them with respect to frequency:

ht,νn “ νhpνpn´ tqq

where h is a window function. The above relationship implies that the tempo-

ral support of the window decreases as νk increases. This equivalently means

that the temporal resolution of the transform increases with frequency, and,315

according to the Heisenberg-Gabor principle [21], that its frequency resolution

decreases.

The results presented thereafter have been obtained with the following set

of parameters:
$

&

%

r “ 36

ν0 “ 2.45ˆ10´3

and ht,ν0 is a Hann window whose length is about 22500 samples. The analysed

sound has a sampling rate of 44100 Hz, which means that the lowest frequency

bin of the transform corresponds to the continuous frequency 107.9 Hz and320

that the support of ht,ν0 is half a second long. With this setup the frequency

bins of the transform are aligned on the note frequencies of the Western scale,
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Figure 1: Spectrogram of a piano sound, sampled at 44100 Hz, obtained by means of the

traditional Constant-Q Transform. The X axis is the time, it is labelled with the integer

indexes of the sampled signal. The Y axis represents the frequency. It is noticeable that the

latter follows a logarithmic scale.

with a resolution of 3 bins per note. More specifically, the three lowest bins of

the transform are centre on 110 Hz, which corresponds to the frequency of the

musical note A2.325

4.2. Considerations on the resolution

Figure 1 shows the spectrogram of a piano sound obtained by means of the

traditional Constant-Q Transform. We can see that the frequency resolution

of the transform is well adapted to the musical sound since every frequency of

the sound is well resolved. As mentioned, this transform has a better frequency330

resolution in low frequencies, where the musical frequencies are closer to each

other. Of course, the counterpart of this better frequency resolution is a loss in

temporal resolution. As a result, in spite of the fact that all frequencies of the pi-

ano sound have been played simultaneously, one can observe in the spectrogram

that the energy in low frequencies starts earlier than in the higher frequencies.335

Similarly, the energy in low frequencies vanishes later. This is a typical artifact

of the Constant-Q Transform due to these resolution considerations.
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Figure 2: Spectrogram of the same piano sound as in Figure 1 obtained by means of the

reassigned Constant-Q Transform.

4.3. Application of the reassignment tool

It is quite straightforward to apply the reassignment formulae to the Constant-

Q Transform. When evaluating the energy in x at time t and frequency νk, the340

process is the following. We first compute the magnitude of the Constant-Q

Transform at pt, νkq. We then compute the Constant-Q Transform with the

ramp-multiplied windows. We finally compute the Constant-Q Transform with

the g-convolved windows. Thanks to equations (8) and (13), we obtain the

indexes t̂t,νk and ν̂t,νk . In the end, the energy computed at point pt, νkq is345

additively reassigned to the point pt̂t,νk , ν̂t,νkq in the time-frequency plane.

Figure 2 shows the reassigned Constant-Q Transform of the same piano

sound as in Figure 1. One can see that the temporal resolution has much im-

proved in the second figure. The typical artifacts of the widening energy bursts

in low frequencies seem to be accurately handled in the reassigned spectrogram.350

Besides, one can see that the frequency resolution has also improved. Even if

the original tool’s design ensures a suitable frequency resolution for sound appli-

cations, we can observe that the reassigned transform has much more localised

(in terms of frequency) energy bursts.
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5. Conclusion355

In this work we have derived a formal framework for the time-frequency reas-

signment of discrete time signals. The principle of time-frequency reassignment

is to express the time-frequency transform of interest as the summation of a

real-valued mass function in the time-frequency plane. The energy is then reas-

signed to the centre of mass of this function. The first derivations carried out in360

this paper result in an explicit expression of the mass function which is valid for

a wide variety of time-frequency transforms. Based upon the latter, an expres-

sion of the coordinates of the centre of mass could be obtained. Interestingly, it

consists of very simple combinations of three time-frequency transforms, each of

them using a specific window. This result makes time-frequency reassignment365

a rather generic, simple and easily computable technique.

To illustrate the applicability of the derived framework as well as the benefits

of time-frequency reassignment, the obtained results have then been applied to

the Constant-Q Transform. This transform, commonly used in audio processing,

has geometrically-spaced frequency bins with a variable resolution. This makes370

it a well adapted tool for the analysis of sound. This frequency setup, however,

comes at the cost of time resolution, which has the serious drawback of being

variable with frequency. Once reassigned though, the representation provides

a much better resolution, in time and frequency. A Python implementation

of this enhanced tool is available on the authors’ homepages2. It is our belief375

that the proposed reassigned Constant-Q Transform has a strong potential for

numerous audio processing applications, including pitch/multipich estimation,

onset detection and chords transcription.
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