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Abstract. The Grundy number of a graph is the maximum number of
colors used by the greedy coloring algorithm over all vertex orderings.
In this paper, we study the computational complexity of Grundy Col-
oring, the problem of determining whether a given graph has Grundy
number at least k. We show that Grundy Coloring can be solved in
time O∗(2.443n) on graphs of order n. While the problem is known to
be solvable in time f(k, w) · n for graphs of treewidth w, we prove that
under the Exponential Time Hypothesis, it cannot be computed in time
O∗(cw), for any constant c. We also study the parameterized complexity
of Grundy Coloring parameterized by the number of colors, showing
that it is in FPT for graphs including chordal graphs, claw-free graphs,
and graphs excluding a fixed minor.
Finally, we consider two previously studied variants of Grundy Col-
oring, namely Weak Grundy Coloring and Connected Grundy
Coloring. We show that Weak Grundy Coloring is fixed-parameter
tractable with respect to the weak Grundy number. In stark contrast,
it turns out that checking whether a given graph has connected Grundy
number at least k is NP-complete already for k = 7.

1 Introduction

A k-coloring of a graph G is a surjective mapping ϕ : V (G) → {1, . . . , k} and we
say v is colored with ϕ(v). A k-coloring ϕ is proper if any two adjacent vertices
receive different colors in ϕ. The chromatic number χ(G) of G is the smallest k
such that G has a k-coloring. Determining the chromatic number of a graph is
the most fundamental problem in graph theory. Given a graph G and an ordering
σ = v1, . . . , vn of V (G), the first-fit algorithm colors vertex vi with the smallest
color that is not present among the set of its neighbors within {v1, . . . , vi−1}.
The Grundy number Γ (G) is the largest k such that G admits a vertex ordering
on which the first-fit algorithm yields a proper k-coloring. First-fit is presumably
the simplest heuristic to compute a proper coloring of a graph. In this sense, the
Grundy number gives an algorithmic upper bound on the performance of any
⋆ This research was done while this author was a postdoctoral fellow at the Department
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heuristic for the chromatic number. This notion was first studied by Grundy
in 1939 in the context of digraphs and games [11], and formally introduced 40
years later by Christen and Selkow [8]. Many works have studied the first-
fit algorithm in connection with on-line coloring algorithms, see e.g. [21]. A
natural relaxation of this concept is the weak Grundy number, introduced by
Kierstead and Saoub [17], where the obtained coloring is not asked to be proper.
A more restricted concept is the one of connected Grundy number, introduced by
Benevides et al. [3], where the algorithm is given an additional “local” restriction:
at each step, the subgraph induced by the colored vertices must be connected.

The goal of this paper is to advance the study of the computational com-
plexity of determining the Grundy number, the weak Grundy number and the
connected Grundy number of a graph.

Let us introduce the problems formally. Let G be a graph and let σ =
v1, . . . , vn be an ordering of V (G). A (not necessarily proper) k-coloring ϕ :
V (G) → {1, . . . , k} of G is a first-fit coloring with respect to σ if for every vertex
vi and every color c with c < ϕ(vi), vi has a neighbor vj with ϕ(vj) = c for some
j < i. In particular, ϕ(v1) = 1. A vertex ordering σ = v1, . . . , vn is connected
if for every i, 1 6 i 6 n, the subgraph induced by {v1, . . . , vi} is connected. A
k-coloring ϕ : V (G) → {1, . . . , k} is called the (i) weak Grundy, (ii) Grundy,
(iii) connected Grundy coloring of G, respectively, if it is a first-fit coloring with
respect to some vertex ordering σ such that (i) ϕ and σ has no restriction, (ii)
ϕ is proper, (iii) ϕ is proper and σ is connected, respectively.

The maximum number of colors used in a (weak, connected, respectively)
Grundy coloring is called the (weak, connected, respectively) Grundy number
and is denoted Γ (G) (Γ ′(G) and Γc(G), respectively). In this paper, we study
the complexity of computing these invariants.

Grundy Coloring
Input: A graph G, an integer k.
Question: Do we have Γ (G) > k?

The problems Weak Grundy Coloring and Connected Grundy Col-
oring are defined analogously.

Note that χ(G) 6 Γ (G) 6 ∆(G) + 1, where χ(G) is the chromatic number
and ∆(G) is the maximum degree of G. However, the difference Γ (G) − χ(G)
can be (arbitrarily) large, even for bipartite graphs. For example, the Grundy
number of the tree of Figure 1 is 4, whereas its chromatic number is 2. Note that
this is not the case for Γc for bipartite graphs, since Γc(G) 6 2 for any bipartite
graph G [3]. However, the difference Γc(G)−χ(G) can be (arbitrarily) large even
for planar graphs [3].

Previous results. Grundy Coloring remains NP-complete on bipartite
graphs [14] and their complements [25] (and hence claw-free graphs and P5-
free graphs), on chordal graphs [23], and on line graphs [13]. Certain graph
classes admit polynomial-time algorithms. There is a linear-time algorithm
for Grundy Coloring on trees [15]. This result was extended to graphs of
bounded treewidth by Telle and Proskurowski [24], which proposed a dynamic
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programming algorithm running in time kO(w)2O(wk)n = O(n3w2) for graphs
of treewidth w (in other words, their algorithm is in FPT for parameter k + w
and in XP for parameter w).4 A polynomial-time algorithm for P4-laden graphs,
which contains all cographs as a subfamily, was given in [2].

Note that Grundy Coloring admits a polynomial-time algorithm when
the number k of colors is fixed [26], in other words, it is in XP for parameter k.

Grundy Coloring has polynomial-time constant-factor approximation al-
gorithms for inputs that are interval graphs [12,21], complements of chordal
graphs [12], complements of bipartite graphs [12] and bounded tolerance
graphs [17]. In general, however, there is a constant c > 1 s.t. approximat-
ing Grundy Coloring within c is impossible unless NP ⊆ RP [18]. It is not
known if a polynomial-time o(n)-factor approximation algorithm exists.

When parameterized by the graph’s order minus the number of colors,
Grundy Coloring was shown to be in FPT by Havet and Sempaio [14].

Connected Grundy Coloring was introduced by Benevides et al. [3],
who proved it to be NP-complete, even for chordal graphs and for co-bipartite
graphs. Weak Grundy Coloring is NP-complete [10].

Our results. As pointed out in [24], no (extended) monadic second order expres-
sion is known for the property “Γ (G) > k”. Therefore it is not clear whether
the algorithm of [24] can be improved, e.g. to an algorithm of running time
f(w) · poly(n). Nevertheless, on general graphs, we show that Grundy Color-
ing can be solved in time O∗(2.443n).

As a lower bound to the positive algorithmic bounds, we show that under the
Exponential Time Hypothesis (ETH) [16], an O(cw · poly(n))-time algorithm for
Grundy Coloring does not exist (for any fixed constant c). Hence the expo-
nent n cannot be replaced by the treewidth in our O∗(2.443n)-time algorithm.

We also study the parameterized complexity of Grundy Coloring param-
eterized by the number of colors, showing that it is in FPT for graphs including
chordal graphs, claw-free graphs, and graphs excluding a fixed minor.

Finally, we show that Weak Grundy Coloring and Connected Grundy
Coloring exhibit opposite computational behavior when viewed through the
lense of parameterized complexity (for the parameter “number of colors”). While
Weak Grundy Coloring is shown to be FPT on general graphs, Connected
Grundy Coloring is NP-complete even when k = 7, i.e. does not belong to
XP (it is the only of the three studied problems to be in this case). Note that the
known NP-hardness proof for Connected Grundy Coloring was only for an
unbounded number of colors [3].

Due to space constraints, some proofs are deferred to the full version of the
paper [6].

4 The first running time is not explicitly stated in [24] but follows from their meta-
theorem. The second one is deduced by the authors of [24] from the first one by
bounding k by w log2 n + 1.
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2 Preliminaries

We defer many (classic) technical definitions to the full version [6], and only
give the ones related to Grundy colorings. Given a graph G, a colored witness
of height ℓ, or simply called an ℓ-witness, is a subgraph G′ of G, which comes
with a partition W = W1 ⊎ · · · ⊎ Wℓ of V (G′) such that for every i in 1, . . . , ℓ (1)
Wi 6= ∅, and (2) Wi is an independent dominating set of G[Wi ∪ · · · ∪ Wℓ]. The
cell Wi under W is called the color class of color i. A witness G′ of height ℓ is
said to be minimal if for every u ∈ V (G′), G′ −u with the partition W|V (G′)−{u}
is not an ℓ-witness.

Observation 1. For any graph G, Γ (G) > k if and only if G allows a minimal
k-witness.

Observation 2. A minimal k-witness has a vertex of degree k − 1 (the root),
order at most 2k−1, and is included in the distance-k neighborhood of the root.

By these observations, k-Grundy Coloring can be solved by checking, for
every subset of 2k−1 vertices, if it contains a k-witness as an induced subgraph:

Corollary 3 ([26]). Grundy Coloring can be solved in time f(k)n2k−1 , i.e.
Grundy Coloring parameterized by the number k of colors is in XP.

Observation 4. In any Grundy coloring of G, a vertex with degree d cannot be
colored with color d + 2 or larger.

Proposition 5. Let G be a graph with a minimal Grundy coloring achieving
color k and let W be the corresponding minimal witness. Then, if a vertex u of
W is colored with k′ < k, u has a neighbor colored with some color k′′, k′′ > k′.

Proof. If not, one could remove u from the witness, a contradiction. ⊓⊔

Lemma 6. Let G be a graph and let G′ be the corresponding minimal ℓ-witness
with the partition W := W1 ⊎ · · · ⊎ Wℓ. Then, Wi is an independent set which
dominates the set

⋃
j∈[i+1,ℓ] Wj (and no proper subset of Wi has this property).

In particular, W1 is a minimal independent dominating set of V (G′).

For each i ∈ [l], let ti be a rooted tree. We define v[t1, t2, . . . , tl] as the tree
rooted at node v where v is linked to the root of each tree ti. The set (Tk)k>1 is a
family of rooted trees (known as binomial trees) defined as follows (see Figure 1
for an illustration):

– T1 consist only of one node (incidentally the root), and
– ∀k > 1, Tk+1 = v[T1, T2, . . . , Tk].

In a tree Tk with root v, for each i ∈ [k], v(i) denotes the root of Ti (i.e. the i-th
child of v).

We now show a useful lemma about Grundy colorings of the tree Tk.
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Fig. 1. The binomial tree T4, where numbers denote the color of each vertex in a
first-fit proper coloring with largest number of colors.

Lemma 7. The Grundy number of Tk is k. Moreover, there are exactly two
Grundy colorings achieving color k, and a unique coloring if we impose that the
root is colored k.

The following result of Chang and Hsu [7] will prove useful:

Theorem 8 ([7]). Let G be a graph on n vertices for which every subgraph H
has at most d|V (H)| edges. Then Γ (G) 6 logd+1/d(n) + 2.

3 Grundy Coloring: algorithms and complexity

3.1 An exact algorithm

A straightforward way to solve Grundy Coloring is to enumerate all possible
orderings of the vertex set and to check whether the greedy algorithm uses at
least k colors. This is a Θ(n!)-time algorithm. A natural question is whether
there is a faster exact algorithm. We now give such an algorithm.

We rely on two observations: (a) in a colored witness, every color class Wi

is an independent dominating set in G[
⋃

j>i Wj ] (Lemma 6), and (b) any in-
dependent dominating set is a maximal independent set (and vice versa). The
algorithm is obtained by dynamic programming over subsets, and uses an algo-
rithm which enumerates all maximal independent sets.

Theorem 9. Grundy Coloring can be solved in time O∗(2.44225n).

Proof. Let G = (V, E) be a graph. We present a dynamic programming algorithm
to compute Γ (G). For simplicity, given S ⊆ V , we denote the Grundy number
of the induced subgraph G[S] by Γ (S). We recursively fill a table Γ ∗(S) over
the subset lattice (2V , ⊆) of V in a bottom-up manner starting from S = ∅. The
base case of the recursion is Γ ∗(∅) = 0. The recursive formula is given as

Γ ∗(S) = max{Γ ∗(S\X)+1 | X ⊆ S is an independent dominating set of G[S]}.

Now let us show by induction on |S| that Γ ∗(S) = Γ (S) for all S ⊆ V . The
assertion trivially holds for the base case. Consider a nonempty subset S ⊆ V ;
by induction hypothesis, Γ ∗(S′) = Γ (S′) for all S′ ⊂ S. Let X be a subset of S
achieving Γ ∗(S) = Γ ∗(S \ X) + 1 and X ′ be the set of the color class 1 in the
ordering achieving the Grundy number Γ (S).

5
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Let us first see that Γ ∗(S) 6 Γ (S). By induction hypothesis we have Γ ∗(S \
X) = Γ (S \ X). Consider a vertex ordering σ on S \ X achieving Γ (S \ X).
Augmenting σ by placing all vertices of X at the beginning of the sequence
yields a (set of) vertex ordering(s). Since X is an independent set, the first-fit
algorithm gives color 1 to all vertices in X, and since X is also a dominating set
for S \X, no vertex of S \X receives color 1. Therefore, the first-fit algorithm on
such ordering uses Γ (S \ X) + 1 colors. We deduce that Γ (S) > Γ (S \ X) + 1 =
Γ ∗(S \ X) + 1 = Γ ∗(S).

To see that Γ ∗(S) > Γ (S), we first observe that Γ (S\X ′) > Γ (S)−1. Indeed,
the use of the optimal ordering of S ignoring vertices of X ′ on S \ X ′ yields the
color Γ (S) − 1. We deduce that Γ (S) 6 Γ (S \ X ′) + 1 = Γ ∗(S \ X ′) + 1 6
Γ ∗(S \ X) + 1 = Γ ∗(S).

As a minimal independent dominating set is a maximal independent set, we
can estimate the computation of the table by restricting X to the family of
maximal independent sets of G[S]. On an n-vertex graph, one can enumerate all
maximal independent sets in time O(1.44225n) [20]. Checking whether a given
set is a minimal independent set is polynomial and thus, the number of execution
steps is dominated (up to a polynomial factor) by the number of recursion steps
taken. This is

n∑

i=0

(
n

i

)
· 1.44225i = (1 + 1.44225)n.

⊓⊔

We leave as an open question to improve this running time. However, we
note that the fast subset convolution technique [4] does not seem to be directly
applicable.

3.2 Lower bound on the treewidth dependency

Let us recall that Grundy Coloring is known to be in XP for the parameter
treewidth, but its membership in FPT remains open.

The following result is inspired by ideas in [19] for proving near-optimality
of known algorithm on bounded treewidth graphs. Unlike [19] which is based on
the Strong ETH, our result is based on the ETH.

Theorem 10. Under the ETH, for any constant c, Grundy Coloring is not
solvable in time O∗(cw) on graphs with feedback vertex set number (and hence
treewidth) at most w.

3.3 Grundy Coloring on special graph classes

For each fixed k, Grundy Coloring can be solved in polynomial time [26]
and thus Grundy Coloring parameterized by the number of colors is in XP.
However, it is unknown whether it is in FPT for this parameter. We will next
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show several positive results for H-minor-free, chordal and claw-free graphs.
Note that Grundy Coloring is NP-complete on chordal graphs [23] and on
claw-free graphs [25].

We first observe that the XP algorithm of [24] implies a pseudo-polynomial-
time algorithm on apex-minor-free graphs (such as planar graphs).

Proposition 11. Grundy Coloring is nO(log2 n)-time solvable on apex-
minor-free graphs.

Proposition 12. Grundy Coloring parameterized by the number of colors is
in FPT for the class of graphs excluding a fixed graph H as a minor.

Proof. Notice that G contains a k-witness H as an induced subgraph if and only
if Γ (G) > k. We can check, for every k-witness H, whether the input graph G
contains H as an induced subgraph. By Observation 1, it suffices to test only
the minimal k-witnesses. The number of minimal k-witnesses is bounded by
some function of k and H-Induced Subgraph Isomorphism is in FPT when
parameterized by |V (H)| on graphs excluding H as a minor [9]. Therefore, one
can check if Γ (G) > k by solving H-Induced Subgraph Isomorphism for all
minimal k-witnesses H. ⊓⊔
Proposition 13. Let C be a graph class for which every member G satisfies
tw(G) 6 f(Γ (G)) for some function f . Then, Grundy Coloring parameter-
ized by the number of colors is in FPT on C. In particular, Grundy Coloring
is in FPT on chordal graphs.

Proof. Since Grundy Coloring is in FPT for parameter combination of the
number of colors and the treewidth [24], the first claim is immediate. Moreover
ω(G) 6 Γ (G), hence if tw(G) 6 f(ω(G)) we have tw(G) 6 f(Γ (G)). For any
chordal graph G, tw(G) = ω(G) − 1 [5]. ⊓⊔

Proposition 14. Grundy Coloring can be solved in time O
(

nk∆k+1
)

=

n∆∆O(∆) for graphs of maximum degree ∆.

Proof. Observation 2 implies that one can enumerate every distance-k-
neighbourhood of each vertex, test every k-coloring of this neighborhood, and
check if it is a valid Grundy k-coloring. Every such neighborhood has size at
most ∆k+1 6 ∆∆+3 since by Observation 4, k 6 ∆ + 2. There are at most kx

k-colorings of a set of x elements. ⊓⊔
Corollary 15. Let C be a graph class for which every member G satisfies
∆(G) 6 f(Γ (G)) for some function f . Then, Grundy Coloring parameter-
ized by the number of colors is in FPT for graphs in C. In particular, this holds
for the class of claw-free graphs.

Proof. Straightforward by Proposition 14. Moreover, let G be a claw-free graph,
and consider a vertex v of degree ∆(G). Since G is claw-free, the subgraph
induced by the neighbors of v has independence number at most 2, and hence
Γ (G) > χ(G) > χ(N(v)) > ∆(G)

2 . ⊓⊔
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4 Weak and connected Grundy coloring

Among the three versions of Grundy Coloring we consider in this paper,
Weak Grundy Coloring is the least constrained while Connected Grundy
Coloring appears to be the most constrained one. This intuition turns out
to be true when it comes to their parameterized complexity. When parame-
terized by the number of colors, Weak Grundy Coloring is in FPT while
Connected Grundy Coloring does not belong to XP.

We recall that Weak Grundy Coloring is NP-complete [10].

Theorem 16. Weak Grundy Coloring parameterized by number of colors
is in FPT.

The FPT-algorithm is based on the idea of color-coding by Alon et al. [1]. The
height of a minimal witness for Γ ′ > k is bounded by a function of k. Since those
vertices of the same color do not need to induce an independent set, a random
coloring will identify a colorful minimal witness with a good probability.

We also remark that the approach used to prove Theorem 16 does not work
for Grundy Coloring because there is no control on the fact that a color class
is an independent set.

Minimal connected Grundy k-witnesses, contrary to minimal Grundy k-
witnesses (Observation 2), have arbitrarily large order: for instance, the cycle
Cn of order n (n > 4, n odd) has a Grundy 3-witness of order 4, but its unique
connected Grundy 3-witness is of order n: the whole cycle.

Observe that Γc(G) 6 2 if and only if G is bipartite. Hence, Connected
Grundy Coloring is polynomial-time solvable for any k 6 3. However, we will
now show that this is not the case for larger values of k, contrary to Grundy
Coloring (Corollary 3). Hence, the parameterized version of the problem does
not belong to XP.

Theorem 17. Connected Grundy Coloring is NP-hard even for k = 7.

Proof. We give a reduction from 3-SAT 3-OCC, an NP-complete restriction of
3-SAT where each variable appears in at most three clauses [22], to Connected
Grundy Coloring with k = 7. We first give the intuition of the reduction. The
construction consists of a tree-like graph of constant order (resembling binomial
tree T6) whose root is adjacent to two vertices of a K6 (this constitutes W ) and
contains three special vertices a4, a21, and a24 (which will have to be colored
with colors 1, 3, and 2 respectively), a connected graph P1 which encodes the
variables and a path P2 which encodes the clauses. One in every three vertices
of P2 is adjacent to a4, a21 and a24. To achieve color 7, we will need to color
those vertices with color strictly greater than 3. This will be possible if and only
if the assignment corresponding to the coloring of P1 satisfies all the clauses.

We now formally describe the construction. Let φ = (X = {x1, . . . , xn}, C =
{C1, . . . , Cm}) be an instance of 3-SAT 3-OCC where no variable appears al-
ways as the same literal. P1 = ({i1, i2, v} ∪ {vi, vi | i ∈ [n]}, {{i1, i2}, {i2, v}} ∪
{{v, vi} ∪ {v, vi} ∪ {vi, vi} | i ∈ [n]}) consists of n triangles sharing the vertex v.

8
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P2 = ({pj | j ∈ [3m − 1]}, {{pj , pj+1} | j ∈ [3m − 2]) consists of a path of length
3m − 1. For each j ∈ [m] and i ∈ [n], cj

def= p3j−1 is adjacent to vi if xi appears
positively in Cj , and is adjacent to vi if xi appears negatively in Cj . For each
j ∈ [m], cj is adjacent to a4, a21, and a24.

a4
i1

i2

v

v1 v1 v2 v2 v3 v3 v4 v4 a6

a9 c1 c2 c3 c4 a11

P1

P2

Fig. 2. P1 and P2 for the instance {x1 ∨¬x2 ∨x3}, {x1 ∨x2 ∨¬x4}, {¬x1 ∨x3 ∨x4}, {x2 ∨
¬x3 ∨ x4}.

Intuitively, setting a literal to true consists of coloring the corresponding ver-
tices with 3. Therefore, a clause Cj is satisfied if cj has a 3 among its neighbors.
To actually satisfy a clause, one has to color cj with 4 or higher. Thus, cj must
also see a 2 in its neighborhood. We will show that the unique way of doing so
is to color p3j−2 with 2, so all the clauses have to be checked along the path P2.

We give, in Figure 3, a coloring of P1 corresponding to a truth assignment of
the instance SAT formula. One can check that when going along P2 all the cj ’s
are colored with color 4.

1
2

1
2

3 1 3 1 1 3 3 1 1

1 2 4 1 2 4 1 2 4 1 2 4 1

Fig. 3. A connected Grundy coloring such that all the cj ’s are colored with color at
least 4.

The constant gadget W is depicted in Figure 4. The waves between a4 and
a6 and between a9 and a11 correspond, respectively, to the gadgets encoding the
variables (P1) and the clauses (P2) described above and drawn in Figure 2. A
connected Grundy coloring achieving color 7 is given in Figure 5 provided that
going from a9 to a11 can be done without coloring any vertex cj with color 2 or
less.

9
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a1 a2

a3

a4

a5 a6

a7

a8 a9

a10 a11

a12 a13 a14

a15

a16 a17

a18

a19

a20a21

a22a23

a24

a25a26

a27

a28

a29

a30 a31

a32

a33

Fig. 4. The constant gadget. The doubly-
circled vertices are adjacent to all the cj ’s
(j ∈ [m]).

1 2

3

1

2 1

4

2 1

2 1

3 1 2

5

1 2

1

2

13

24

2

31

6

1

2

3 4

5

7

Fig. 5. A connected Grundy color-
ing of the constant gadget achieving
color 7. The order is given by the se-
quence (ai)16i633.

In the following claims, we use extensively Observation 1 which states that a
vertex with degree d gets color at most d + 1. We observe that coloring a vertex
of degree d with color d + 1 is useful only if we want to achieve color d + 1.
Indeed, otherwise, the vertex has all its neighbors already colored and cannot
be used in the sequel. Moreover, if one wants to color a neighbor y of a vertex
x in order to color x with a higher color, y cannot receive a color greater than
its degree d(y). Hence, the only vertices that could achieve color k are vertices
of degree at least k − 1 having at least one neighbor of degree at least k − 1.

In the sequel, we call doubly-circled vertices the special vertices a4, a21 and
a24, as they are doubly-circled in our figures.

Claim 17.A. To achieve color 7, a27 needs to be colored with color 6 (while for
all i ∈ [28, 33], ai is still uncolored).

Claim 17.B. Vertices a26, a22, a25, a23, a15 must receive color 1, 2, 3, 4, 5
respectively.

Claim 17.C. Vertex a7 must receive color 4.

Claim 17.D. Vertex a3 must receive color 3.

Claim 17.D has further consequences: we must start the connected Grundy
coloring by giving colors 1 and 2 to a1 and a2. The only follow-up, for connectivity
reasons, is then to color a3 with color 3 and a4 with color 1. Thus, vertices a5
and a6 has to be colored with colors 2 and 1 respectively (so that a7 can be
colored 4). As, by Claim 17.B, a25 must receive color 3, a24 must receive color 2
(since a4 has already color 1), so a18 must be colored 1.
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Claim 17.E. Vertex a21 must receive color 3.

Claim 17.F. The unique way of coloring a11 with color 1 without coloring any
vertex cj with color 1, 2, or 3 is to color all the cj’s for each j ∈ [m].

We remark that opposite literals are adjacent, so for each i ∈ [n], only one of
vi and vi can be colored with color 3. We interpret coloring vi with 3 as setting
xi to true and coloring vi with 3 as setting xi to false.

Claim 17.G. To color each cj (j ∈ [m]) of the path P2 with a color at least 4,
the SAT formula must be satisfiable.

So, to achieve color 7 in a connected Grundy coloring, the SAT formula must
be satisfiable. The reverse direction consists of completing the coloring by giving
a13 color 1 and a14 color 2, as shown in Figure 3 and Figure 5. ⊓⊔

5 Concluding remarks and questions

We presented several positive and negative results concerning Grundy Color-
ing and two of its variants. To conclude this article, we suggest some questions
which might be useful as a guide for further studies.

There is a gap between the f(k, w) · n (and XP) algorithm of [24] and the
lower bound of Theorem 10. Is Grundy Coloring in FPT when parameterized
by treewidth? Two simpler questions are whether there is a better f(k, w)poly(n)
algorithm (for example with f(k, w) = kO(w)), and whether Grundy Coloring
is in FPT when parameterized by the feedback vertex set number (it is easy to
see that it is the case when parameterized by the vertex cover number).

Grundy Coloring (parameterized by the number of colors) is in XP, and
we showed it to be in FPT on many important graph classes. Yet, the question
whether it is in FPT or W[1]-hard remains unsolved. A perhaps more accessible
research direction is to settle this question on bipartite graphs.

It would also be interesting to determine the (classic) complexity of Grundy
Coloring on interval graphs. Also, we saw that the algorithm of [24] implies a
pseudo-polynomial algorithm for planar (even apex-minor-free) graphs, making
it unlikely to be NP-complete on this class. Is there a polynomial-time algorithm?

Concerning Connected Grundy Coloring, we showed that it becomes
NP-complete for k = 7. As Connected Grundy Coloring is polynomial-time
solvable for k 6 3, its complexity status for 4 6 k 6 6 and/or on restricted graph
classes remains open.
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