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TRANSPORT-ENTROPY INEQUALITIES

ON LOCALLY ACTING GROUPS OF PERMUTATIONS

PAUL-MARIE SAMSON

Abstract. Following Talagrand’s concentration results for permutations picked

uniformly at random from a symmetric group [Tal95], Luczak and McDiarmid

have generalized it to more general groups G of permutations which act suitably

‘locally’. Here we extend their results by setting transport-entropy inequalities

on these permutations groups. Talagrand and Luczak-Mc-Diarmid concentration

properties are consequences of these inequalities. We also consider transport-

entropy inequalities on G for a larger class of measures. By projection, we de-

rive transport-entropy inequalities for the uniform law on the slice of the discrete

hypercube and more generally for the multinomial law. These results are new

examples, in discrete setting, of weak transport-entropy inequalities introduced

in [GRST14], that contribute to a better understanding of the concentration prop-

erties of measures on permutations groups.

1. Introduction

Let S n denote the symmetric group of permutations acting on a set Ω of car-

dinality n, and µ denote the uniform law on S n, µ(σ) := 1
n!
, σ ∈ S n. A seminal

concentration result on S n obtained by Maurey is the following.

Theorem 1.1. [Mau79] Let dH be the Hamming distance on the symmetric group,

for all σ, τ ∈ S n,

dH(σ, τ) :=
∑

i∈Ω
1σ(i),τ(i).

Then for any subset A ⊂ S n such that µ(A) ≥ 1/2, and for all t ≥ 0, one has

µ(At) ≥ 1 − 2e−
t2

64n ,

where At := {y ∈ S n, dH(x, A) ≤ t}.

Milman and Schechtman [MS86] generalized this result to some groups whose

distance is invariant by translation. For example, in the above result we may replace

(up to constants) the Hamming distance by the transposition distance dT (σ, τ) that
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corresponds to the minimal number of transpositions t1, ..., tk such that σt1 · · · tk =
τ. The distances dT and dH are comparable,

1

2
dH(σ, τ) ≤ dT (σ, τ) ≤ dH(σ, τ) − 1, ∀σ , τ.

(We refer to [BHT06] for comments about these comparison inequalities).

A few years later, a stronger concentration property in terms of dependence

in the parameter n, has been settled by Talagrand using the so-called “convex-

hull” method [Tal95] (see also [Led01]). This property implies Maurey’s result

with a slitly worse constant. Let us recall some notations from [Tal95]. For each

A ⊂ S n and σ ∈ S n, let V(σ, A) ⊂ R
Ω be the set of vectors z = (z j) j∈Ω ∈ R

Ω with

z j := 1σ( j),y( j) for y ∈ A. Let conv(V(σ, A)) denote the convex hull of V(σ, A) in

R
Ω,

V(σ, A) :=

ß
x = (x j) j∈Ω,∃p ∈ P(A),∀ j ∈ Ω, x j =

∫
1σ( j),y( j)dp(y)

™
,

where P(A) denotes the set of probability measures on A. Talagrand introduced the

quantity

f (σ, A) := inf{‖x‖22; x ∈ conv(V(σ, A))}.
with ‖x‖22 :=

∑
i∈Ω x2

i , that measures the distance from σ to the subset A.

Theorem 1.2. [Tal95] For any subset A ⊂ S n,
∫

S n

e f (σ,A)/16dµ(σ) ≤ 1

µ(A)
.

Maurey’s concentration result easily follows by observing that

f (σ, A) ≥ 1

n

(
inf

{
∑

i∈Ω
xi; x ∈ conv(V(σ, A))

})2

=
1

n
d2

H(σ, A)

and applying Tchebychev inequality with usual optimization arguments.

Talagrand’s result has been first extended to product of symmetric groups by

McDiarmid [McD02], and then further by Luczak and McDiarmid to cover more

general permutation groups which act suitably “locally” [LM03].

For any σ ∈ S n, the support of σ, denoted by supp(σ), is the set {i ∈ Ω, σ(i) , i}
and the degree of σ, denoted by deg(σ), is the cardinality of supp(σ), deg(σ) =

|supp(σ)|. By definition, according to [LM03], a subgroup G of S n is ℓ-local,

ℓ ∈ {2, . . . , n}, if for any σ ∈ G and any i, j ∈ Ω with σ(i) = j, there exists τ ∈ G

such that supp(τ) ⊂ supp(σ), deg(τ) ≤ ℓ and τ(i) = j.

As explained in [LM03], any 2-local group is a direct product of symmetric

groups on its orbits, the alternating group (consisting of even permutations) is 3-

local, and any 3-local group is a direct product of symmetric or alternating groups

on its orbits.

In the present paper, the concentration result by Luczak-McDiarmid and Ta-

lagrand is a consequence of a weak transport-entropy inequality satisfied by the

uniform law on G. We also prove weaker type of transport entropy inequalities for

a larger class of probability measures on G, denoted byM.
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For a better comprehension of the class of measures M, let us first consider

the case of the symmetric group S n on [n] := {1, . . . , n}. Let (i, j) denote the

transposition in S n that exchanges the elements i and j in [n]. One may easily

check that the map

{1, 2} × {1, 2, 3} × · · · × {1, . . . , n} → S n

U : (i2, i3, . . . , in) 7→ (i2, 2)(i3, 3) · · · (in, n),

is one to one.

The set of measuresM consists of probability measures on S n which are pushed

forward by the map U of product probability measures on {1, 2} × {1, 2, 3} × · · · ×
{1, . . . , n},

M :=
{

U#ν̂, ν̂ = ν̂2 ⊗ · · · ⊗ ν̂n with ν̂i ∈ P([i]), ∀i ∈ [n]
}
,

where by definition U#ν̂(C) = ν̂(U−1(C)) for any subset C in S n. The uniform

measure µ on S n belongs toM since µ = U#µ̂ with µ̂ = µ̂2 ⊗ · · · ⊗ µ̂n, where for

each i, µ̂i denotes the uniform probability measure on [i].

Let us now construct the class of measuresM for any ℓ-local group G. To clarify

the notations, the elements of Ω are labelled with integers, Ω = [n].

The orbit of an element j ∈ Ω, denoted by orb( j), is the set of elements in Ω

connected to j by a permutation of G,

orb( j) :=
{
σ( j), σ ∈ G

}
.

Let us observe that for any j ∈ [n], j ∈ orb( j) since the identity belongs to G. The

identity will be denoted by id.

Lemma 1.1. Let G be a ℓ-local subgroup of S n. For any j ∈ {2, . . . , n} let I j =

orb( j)∩ [ j]. There exists a fixed family of permutions T = (ti j , j) with j ∈ {2, . . . , n}
and i j ∈ I j with t j, j = id and for every i j , j

ti j , j(i j) = j, supp(ti j , j) ⊂ [ j], and deg(ti j j) ≤ ℓ,

such that the map

I2 × I3 × · · · × In → G

UT : (i2, i3, . . . , in) 7→ ti2 ,2ti3,3 · · · tin ,n,
(1)

is one to one. Such a family T is called “ℓ-local base of G” in the present paper.

The proof of this lemma simply follows from the definition of the ℓ-local prop-

erty, the details of the proof are let to the reader.

As for the symmetric group, the classM is made up of all probability measures

on G which are pushed forward of product probability measures on I2× I3×· · ·× In

by a map UT defined by (1),

M :=
{

UT #ν̂, ν̂ = ν̂2 ⊗ · · · ⊗ ν̂n with ν̂i ∈ P(Ii), ∀i ∈ {2, . . . , n}
}
,(2)

where T is a ℓ-local base of G. The class M contains the uniform law on G,

obtained by choosing for each ν̂i the uniform law on Ii.



4 P.-M. SAMSON

In this paper, the concentration results are derived from weak transport-entropy

inequalities, involving the relative entropy H(ν|µ) between two probability mea-

sures µ, ν on G given by

H(ν|µ) :=

∫
log

Å
dν

dµ

ã
dν,

if ν is absolutely continuous with respect to µ and H(ν|µ) := +∞ otherwise.

The terminology “weak transport-entropy” introduced in [GRST14], encom-

pass many kinds of transport-entropy inequalities from the well-known Talagrand’s

transport inequality satisfied by the standard Gaussian measure on R
n [Tal96], to

the usual Csizár-Kullback-Pinsker inequality [Pin64, Csi67, Kul67] that holds for

any (reference) probability measure µ on a Polish metric space X, namely

‖µ − ν‖2TV ≤ 2 H(ν|µ), ∀ν ∈ P(X).(3)

where ‖µ − ν‖TV denotes the total variation distance between µ and ν,

‖µ − ν‖TV := 2 sup
A

|µ(A) − ν(A)|,

above the supremum runs over all measurable subset A ofX. We refer to the survey

[Sam16b, Sam16a] for other examples of weak transport-entropy inequalities and

their connections with the concentration of measure principle.

The next theorem is one of the main result of this paper. It presents new weak

transport inequalities for the uniform measure on G or measures in the class M,

that recover the concentration results of Theorems 1.1 and 1.2.

We also denote by dH the Hamming distance on G: for any σ, τ ∈ G,

dH(σ, τ) := deg(στ−1) =

n∑

i=1

1σ(i),τ(i),

and the distance dT (σ, τ) is defined as the minimal number of elements of G,

t1, ..., tk, with degree less than ℓ, such that σt1 · · · tk = τ.

For any measures ν1, ν2 ∈ P(G), the set Π(ν1, ν2) denotes the set of all probabil-

ity measures on G ×G with first marginal ν1 and second marginal ν2. The Wasser-

stein distance between ν1 and ν2, according to the distance d = dH or d = dT , is

given by

W1(ν1, ν2) := inf
π∈Π(ν1,ν2)

"
d(σ, τ)dπ(σ, τ).

We also consider two other optimal weak transport costs, T̃2(ν2|ν1) and ÛT2(ν2|ν1)

defined by

T̃2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ Å∫
d(σ, τ)dpσ(τ)

ã2

dν1(σ),(4)

and

ÛT2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ n∑

i=1

Å∫
1σ(i),τ(i)dpσ(τ)

ã2

dν1(σ),
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where pσ represents any probability measure such that π(σ, τ) = ν1(σ)pσ(τ) for

all σ, τ ∈ G. By Jensen’s inequality, these weak transport costs are comparable,

namely

W2
1 (ν1, ν2) ≤ T̃2(ν2|ν1) ≤ nÛT2(ν2|ν1),

where the last inequality only holds for d = dH .

Theorem 1.3. Let G be a ℓ-local subgroup of S n, G , {id}.
(a) Let µ be a probability measure of the setM defined by (2). Then, for all

probability measures ν1 and ν2 on G,

2

Knc(ℓ)2
W2

1 (ν1, ν2) ≤
(»

H(ν1|µ) +
»

H(ν2|µ)
)2
,(5)

and

1

2Knc(ℓ)2
T̃2(ν2|ν1) ≤

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
,(6)

where Kn is the cardinality of the set
{

j ∈ {2, . . . , n}, I j , { j}
}

, and

c(ℓ) :=

{
min(2ℓ − 1, n) if d = dH ,

2 if d = dT .

When µ is the uniform law on G, inequalities (5) and (6) hold with

c(ℓ) :=

{
ℓ if d = dH ,

1 if d = dT .

(b) Let µ denotes the uniform law on G. Then, for all probability measures ν1

and ν2 on G,

(7)
1

2c(ℓ)2
ÛT2(ν2|ν1) ≤

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
,

where c(ℓ)2
= 2(ℓ − 1)2

+ 2.

The proofs of these results, given in the next section, are inspired by Talagrand

seminal work on S n [Tal95], and Luczak-McDiarmid extension to ℓ-local groups

[LM03].

Comments :

• Here is a more popular dual formulation of the transport-entropy inequality

(5): for all 1-Lipschitz functions ϕ : G → R (with respect to the distance

d),
∫

eϕdµ ≤ e

∫
ϕ dµ+Knc(ℓ)2t2/8, ∀t ≥ 0.(8)

For the uniform measure on S n, Kn = n − 1 and this property is widely

commented in [BHT06]; it is also a consequence of Hoeffding inequalities

for bounded martingales (see page 18 of [Hoe63]). The concentration re-

sult derived from item (a) are of the same nature as the one obtained by the

“bounded differences approach” in [Mau79, McD89, McD02, LM03].
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• Similarly, by Proposition 4.5 and Theorem 2.7 of [GRST14] and using the

identity Ä√
u +
√

v
ä2
= inf

α∈(0,1)

ß
u

α
+

v

1 − α

™
,

we may easily show that the weak transport-entropy inequality (6) is equiv-

alent to the following dual property: for any real function ϕ on G and for

any 0 < α < 1,
Å∫

eαQ̃Knϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(9)

where the infimum-convolution operator ‹Qtϕ, t ≥ 0, is defined by

‹Qtϕ(σ) := inf
p∈P(G)

®∫
ϕ dp +

1

2c2(ℓ)t

Å∫
d(σ, y) dp(y)

ã2
´
, σ ∈ G.

Moreover, let us observe that following our proof of (9) in the next

section, for each α ∈ (0, 1) the inequality (9) can be improved by replacing

the square cost function by the convex cost cα(u) ≥ u2/2, u ≥ 0 given in

Lemma 2.2. More precisely, (9) holds replacing ‹QKn
ϕ by ‹Qα

Kn
ϕ defined by

‹Qα
t ϕ(σ) := inf

p∈P(S n)

®∫
ϕ dp + tcα

Å
1

c(ℓ)t

∫
d(σ, y) dp(y)

ã2
´
,

for any σ ∈ G, t > 0.

• Proposition 4.5 and Theorem 9.5 of [GRST14] also provide a dual formu-

lation of the weak transport-entropy inequality (7): for any real function ϕ

on G and for any 0 < α < 1,
Å∫

eα
ÛQϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(10)

where the infimum convolution operator ÙQϕ is defined by

ÙQϕ(σ) = inf
p∈P(G)

{∫
ϕ dp +

1

2c(ℓ)2

n∑

k=1

Å∫
1σ(k),y(k) dp(y)

ã2
}
, σ ∈ G.

As explained at the end of this section, the property (10) directly provides

the following version of the Talagrand’s concentration result for the uni-

form law on G.

Corollary 1.1. Let µ denotes the uniform law on a ℓ-local subgroup G of

S n. Then, for all A ⊂ G and all α ∈ (0, 1), one has
∫

e
α

2c(ℓ)2
f (σ,A)

dµ(σ) ≤ 1

µ(A)α/(1−α)
,

with c(ℓ)2
= 2(ℓ − 1)2

+ 2. As a consequence, by Tchebychev inequality,

for any α ∈ (0, 1) and all t ≥ 0,

µ
(
{σ ∈ G, f (σ, A) ≥ t}

)
≤ e

− αt

2c(ℓ)2

µ(A)α/(1−α)
.
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For α = 1/2, this result is exactly Theorem 2.1 by Luczak-McDiarmid

[LM03], that generalizes Theorem 1.2 on S n (since S n is a 2-local group).

By projection arguments, Theorem 1.3 applied to the uniform law µ on the sym-

metric group S n, also provides transport-entropy inequalities for the uniform law

on the slices of the discrete cube {0, 1}n. Namely, for n ≥ 1, let us denote by Xk,n−k,

k ∈ {0, . . . , n}, the slices of discrete cube defined by

Xk,n−k :=

{
x = (x1, . . . , xn) ∈ {0, 1}n,

n∑

i=1

xi = k

}
.

The uniform law on Xk,n−k, denoted by µk,n−k, is the pushed forward of µ by the

projection map

S n → Xk,n−k

P : σ 7→ 1σ([k]),

where σ([k]) := {σ(1), . . . , σ(k)} and for any subset A of [n], 1A is the vector with

coordinates 1A(i), i ∈ [n]. In other terms, µk,n−k = P#µ and µk,n−k(x) =
(n

k

)−1
for all

x ∈ Xk,n−k. Let dh denotes the Hamming distance on Xk,n−k defined by

dh(x, y) :=
1

2

n∑

i=1

1xi,yi
, x, y ∈ Xk,n−k.

Theorem 1.4. Let µk,n−k be the uniform law on Xk,n−k, a slice of the discrete cube.

(a) For all probability measures ν1 and ν2 on Xk,n−k,

2

Ck,n−k

W2
1 (ν1, ν2) ≤

(»
H(ν1|µk,n−k) +

»
H(ν2|µk,n−k)

)2
,

and

1

2Ck,n−k

T̃2(ν2|ν1) ≤
(»

H(ν1|µk,n−k) +
»

H(ν2|µk,n−k)
)2
,

where W1 is the Wasserstein distance associated to dh, T̃2 is the weak op-

timal transport cost defined by (4) with d = dh, and Ck,n−k = min(k, n − k).

(b) For all probability measures ν1 and ν2 on Xk,n−k,

(11)
1

8
T̂2(ν2|ν1) ≤

(»
H(ν1|µk,n−k) +

»
H(ν2|µk,n−k)

)2
,

where

T̂2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ n∑

i=1

Å∫
1xi,yi

dpx(y)

ã2

dν1(x),

with π(x, y) = ν1(x)px(y) for all x, y ∈ Xk,n−k.

Up to constants, the weak transport inequality (11) is the stronger one since for

all ν1, ν2 ∈ P(Xk,n−k),

W2
1 (ν1, ν2) ≤ T̃2(ν2|ν1) ≤ n

4
T̂2(ν2|ν1).
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The proof of Theorem 1.4 is given in section 3. The transport-entropy inequality

(11) is derived by projection from the transport-entropy inequality (7) for the uni-

form measure µ on S n. The same projection argument could be used to reach the

results of (a) from the transport-entropy inequality of (a) in Theorem 1.3, but it

provides worse constants. The constant Ck,n−k is obtained by working directly on

Xk,n−k and following similar arguments as in the proof of Theorem 1.3.

Remark : The results of Theorem 1.4 also extend to the multinomial law. Let

E = {e1, . . . , em} be a set of cardinality m and let k1, . . . , km be a collection of

non-zero integers satisfying k1 + · · · + km = n. The multinomial law µk1,...,km
is by

definition the uniform law on the set

Xk1 ,...,km
:=

ß
x ∈ En, such that for all l ∈ [m],

∣∣{i ∈ [n], xi = el

}∣∣ = kl

™
,

where we denote by |A| the cardinality of a finite set A. For any x ∈ Xk1 ,...,km
, one

has µk1,...,km
(x) = k1!···km!

n!
. As a result, the weak transport-entropy inequality (11)

holds on Xk1 ,...,km
replacing the measure µk,n−k by the measure µk1,...,km

. The proof

of this result is a simple generalization of the one on Xk,n−k, by using the projection

map P : S n → Xk1 ,...,km
defined by: P(σ) = x if and only if

xi = el, ∀l ∈ [m], ∀i ∈ Jl,

where Jl :=
{

i ∈ [n], k0 + · · ·+ kl−1 < i ≤ k0 + · · ·+ kl

}
, with k0 = 0. The details of

this proof are let to the reader.

A straightforward application of transport-entropy inequalities is deviation’s

bounds for different classes of functions. For more comprehension, we present

below deviations bounds that can be reached from Theorem 1.3 for the uniform

law µ on a ℓ-local subgroup of S n. Obviously some of these results extend to the

class of measuresM and a similar corollary can be derived from Theorem 1.4 on

the slices of the discrete cube. For any h : G → R, the mean of h is denoted by

µ(h) :=
∫

h dµ.

Corollary 1.2. Let µ be the uniform law on a ℓ-local subgroup G of S n, G , {id}.
Let g be a real function on G.

(a) Assume that there exists a function β : G → R
+ such that for all τ, σ ∈ G,

g(τ) − g(σ) ≤ β(τ)d(τ, σ),

where d = dT or d = dH . Then for all u ≥ 0, one has

µ (g ≥ µ(g) + u) ≤ exp

Ç
− 2u2

Knc(ℓ)2 supσ∈G β(σ)2

å
.

and

µ (g ≤ µ(g) − u) ≤ exp

Ç
− 2u2

Knc(ℓ)2 min(supσ∈G β(σ)2, 4µ(β2))

å
,

where the constants c(ℓ) and Kn are defined as in (a) in Theorem 1.3.
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(b) Assume that there exist functions αk : G → R
+, k ∈ {1, . . . , n} such that for

all τ, σ ∈ G,

g(τ) − g(σ) ≤
n∑

k=1

αk(τ)1τ(k),σ(k) .

Then, for all u ≥ 0, one has

µ (g ≥ µ(g) + u) ≤ exp

Ç
− u2

2c(ℓ)2 supσ∈G |α(σ)|22

å
,

and

µ (g ≤ µ(g) − u) ≤ exp

Ç
− u2

2c(ℓ)2µ
(
|α|22
)
å
,

where |α(σ)|22 :=

n∑

k=1

α2
k(σ) and c(ℓ)2

= 2(ℓ − 1)2
+ 2.

Comments :

• The above deviation’s bounds of g around its mean µ(g) are directly derived

from the dual representations (8),(9),(10) of the transport-entropy inequal-

ities of Theorem 1.3, when α goes to 0 or α goes to 1. By classical argu-

ments (see [Led01]), Corollary 1.2 also implies deviation’s bounds around

a median M(g) of g, but we loose in the constants with this procedure.

However, starting directly from Corollary 1.1, we get the following bound

under the assumption of (b): for all u ≥ 0,

µ(g ≥ M(g) + u) ≤ 1

2
exp

Ç
−w

Ç
u√

2c(ℓ) supσ∈G |α(σ)|2

åå
,(12)

where w(h) = h(h − 2
√

log 2), h ≥ 0, and c(ℓ)2
= 2(ℓ − 1)2

+ 2.

The idea of the proof is to choose the set A = {σ ∈ G, g(σ) ≤ M(g)} of

measure µ(A) ≥ 1/2 and to show that the asumption of (b) implies

{
σ ∈ G, f (σ, A) < t

}
⊂
®
σ ∈ G, g(σ) < M(g) + t sup

σ∈G
|α(σ)|2

´
, t ≥ 0.

Then, the deviation bound above the median directly follows from Corol-

lary 1.1 by optimizing over all α ∈ (0, 1). With identical arguments, the

same bound can be reached for µ(g ≤ M(g) − u).

• In (a), the bound above the mean is a simple consequence of (8). As settled

in (a), this bound also holds for the deviations under the mean, and it can

be slightly improved by replacing supσ∈G β(σ)2 by 4µ(β2). This small im-

provement is a consequence of the weak transport inequality with stronger

cost T̃2. The same kind of improvement could be reached for the devia-

tions above the mean under additional Lipschitz regularity conditions on

the function β.

• Let ϕ : [0, 1]n → R be a 1-Lipschitz convex function and let x = (x1, . . . , xn)

be a fixed vector of [0, 1]n. For any σ ∈ G, let xσ := (xσ(1), . . . , xσ(n)).

By applying the results of (b) (or even (12)) to the particular function
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gx(σ) = ϕ(xσ), σ ∈ G, we recover and extend to any ℓ-local group G,

the deviation inequality by Adamczak, Chafaı̈ and Wolff [ACW14] (Theo-

rem 3.1) obtained from Theorem 1.2 by Talagrand. Namely, since for any

σ, τ ∈ G,

ϕ(xτ) − ϕ(xσ) ≤
n∑

k=1

∂kϕ(xτ)(xτ(k) − xσ(k)) ≤
n∑

k=1

|∂kϕ(xτ)|1τ(k),σ(k),

with
∑n

k=1 |∂kϕ(xτ)|2 = |∇ϕ(xτ)|2 ≤ 1, Corollary 1.2 implies, for any choice

of vector x = (x1, . . . , xn) ∈ [0, 1]n,

µ(|gx − µ(gx)| ≥ u) ≤ 2 exp

Ç
− u2

2c(ℓ)2

å
, u ≥ 0.

This concentration property on S n (ℓ = 2) plays a key role in the approach

by Adamczak and al. [ACW14], to study the convergence of the empirical

spectral measure of random matrices with exchangeable entries, when the

size of the matrices is increasing.

• The aim of this paper is to clarify the links between Talagrand’s type of

concentration results on the symmetric group and functional inequalities

derived from the transport-entropy inequalities. For brevity’s sake, appli-

cations of these functional inequalities are not developped in the present

paper. However, let us briefly mention some other applications using con-

centration results on the symmetric group: the stochastic travelling sales-

man problem for sampling without replacement (see Appendix [Pau14]),

graph coloring problems (see [McD02]). We also refer to the surveys and

books [DP09, MR02] for other numerous examples of application of the

concentration of measure principle in randomized algorithms.

Proof of Corollary 1.2. We start with the proof of (b). Under the assumption on

the function g, for any p ∈ P(G)
∫

gdσ ≥ g(σ)−
n∑

k=1

αk(σ)

∫
1σ(k),τ(k)dp(τ) ≥ g(σ)−|α(σ)|2

Å∫
1σ(k),τ(k)dp(τ)

ã1/2

.

Let λ ≥ 0. Plugging this estimate into the definition of ÙQ(λg), we get for any σ ∈ G

ÙQ(λg)(σ) ≥ λg(σ) − sup
u≥0

®
λ|α(σ)|2 −

λ2

2c(ℓ)2

´
= λg(σ) − λ

2|α(σ)|22c(ℓ)2

2
.

As α goes to 1, (10) applied to the function λg yields
∫

e
ÛQ(λg)dµ ≤ eλµ(g),

and therefore
∫

eλgdµ ≤ exp

Ç
λµ(g) +

λ2c(ℓ)2 supσ∈G |α(σ)|22
2

å
.(13)

As α goes to 0, (10) yields
∫

e−λgdµ ≤ eλµ(ÛQ(λg)),
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and therefore
∫

e−λgdµ ≤ exp

Ç
−λµ(g) +

λ2c(ℓ)2µ(|α|22)

2

å
.(14)

The deviation bounds of (b) then follows from (10) and (14) by Tchebychev in-

equality by optimizing over all λ ≥ 0.

The deviation bounds of (a) are also obtained from (9) by Tchebychev inequal-

ity. As above, the improvement for the deviation under the mean is a consequence

of (9) applied to λg, as α goes to 0, and using the estimate

‹QKn
(λg)(σ) ≥ λg(σ) − λ

2β(σ)2c(ℓ)2Kn

2
.

�

Proof of Corollary 1.1. Take a subset A ⊂ G and consider the function ϕλ which

takes the values 0 on A and λ > 0 on G \ A. It holds

ÙQϕλ(σ) = inf
p∈P(G)



λ(1 − p(A)) +

1

2c(ℓ)2

n∑

j=1

Å∫
1σ( j),y( j) dp(y)

ã2





= inf
β∈[0,1]

{λ(1 − β) + ψ(β, σ)},

denoting by

ψ(β, σ) = inf





1

2c(ℓ)2

n∑

j=1

Å∫
1σ( j),y( j) dp(y)

ã2

; p(A) = β



 .

So it holds

ÙQϕλ(σ) = min

Å
inf

β∈[0,1−ε]
{λ(1 − β) + ψ(β, σ)}; inf

β∈[1−ε,1]
{λ(1 − β) + ψ(β, σ)},

ã

≥ min

Å
λε; inf

β≥1−ε
ψ(β, σ)

ã
→ inf

β≥1−ε
ψ(β, σ),

as λ→∞. It is easy to check that for any fixedσ, the function ψ( · , σ) is continuous

on [0, 1], so letting ε go to 0, we get lim infλ→∞ ÙQϕλ(σ) ≥ ψ(1, σ). On the other

hand, ÙQϕλ(σ) ≤ ψ(1, σ) for all λ > 0. This proves that limλ→∞ ÙQϕλ(σ) = ψ(1, σ).

Applying (10) to ϕλ and letting λ go to infinity yields to
∫

eαψ(1,σ) dµ · µ(A)α/(1−α) ≤ 1.

It remains to observe that ψ(1, σ) =
f (σ,A)

2c(ℓ)2 . �

2. Proof of Theorem 1.3

Let G be a ℓ-local subgroup of S n and Tn = (ti j , j, j ∈ {2, . . . , n}, i j ∈ I j) be a

ℓ-local base of G (defined in Lemma 1.1). Let µ be a probability measure of the set

M. By definition ofM, there exists a product probability measure ν̂ = ν̂1⊗ · · ·⊗ ν̂n

such that µ = UTn
#ν̂ where the map UTn

is defined by (1).
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Each transport-entropy inequality of Theorem 1.3 is obtained by induction over

n and using the partition (Hi)i∈orb(n) of the group G defined by: for any i ∈ orb(n),

Hi := {σ ∈ G, σ(i) = n} .(15)

If Hn = {Id}, then orb(n) = {n} and if Hn , {Id}, then orb(n) ! {n}. In any case,

from the definition of the ℓ-local property, we may easily check that Hn is a ℓ-local

group that realizes a natural embedding of a ℓ-local subgroup of S n−1 and Tn−1 is

a ℓ-local base of this subgroup.

Moreover, it is rather easy to get that for any i ∈ orb(n), Hi is the coset defined

by Hi = Hntin. From the definition of µ, if σ ∈ Hi, then there exist i2, . . . , in−1 such

that σ = ti2 ,2 · · · tin−1 ,n−1ti,n and therefore

µ(σ) = ν̂2(i2) · · · ν̂n−1(in−1)ν̂n(i).

As a consequence, one has µ(Hi) = ν̂n(i). Let µi denote the restriction of µ to Hi

defined by

µi(σ) =
µ(σ)

µ(Hi)
1σ∈Hi

.

From the construction of µ, µn = UTn−1
#(ν̂1 ⊗ · · ·⊗ ν̂n−1). Moreover, for all σ ∈ Hn,

σti,n ∈ Hi, one has

µn(σ) =
µ(σ)

µ(Hn)
=
µ(σti,n)

µ(Hi)
= µi(σti,n).(16)

This property is needed in the induction step of the proofs.

Let us note that if i and l are elements of orb(n), then from the ℓ-local property of

G, there exists ti,l ∈ G such that ti,l(i) = l and deg(ti,l) ≤ ℓ. We also have Hl = Hiti,l.

If moreover the measure µ is the uniform law on G, then for any i, l ∈ orb(n),

µi(Hi) = µl(Hl) =
|G|
|orb(n)| . In that case we will use in the proofs the following

property: for any σ ∈ Hn, σti,nt−1
i,l ∈ Hl and

µn(σ) = µi(σti,nt−1
i,l ).(17)

Proof of (a) in Theorem 1.3. Since the distance W1 satisfies a triangular inequality,

the transport-entropy inequality (5) follows from the following one: for all proba-

bility measures ν1 on G,

2

Knc(ℓ)2
W2

1 (ν1, µ) ≤ H(ν1|µ).

A dual formulation of this property given by Theorem 2.7 in [GRST14] and Propo-

sition 3.1 in [Sam16a] is the following: for all functions ϕ on G and all λ ≥ 0,
∫

eλQϕdµ ≤ e

∫
λϕ dµ+Knc(ℓ)2λ2/8,(18)

with

Qϕ(σ) = inf
p∈P(S n)

ß∫
ϕdp +

∫
d(σ, τ) dp(τ)

™

We will prove the inequality (18) by induction on n.
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When n = 2, since G , {id}, G is the two points space, G = S 2, ℓ = 2 and one

has

Qϕ(σ) = inf
p∈P(S 2)

ß∫
ϕdp + c(2)

∫
1σ,τ dp(τ)

™
.

In that case, (18) exactly corresponds to the following dual form of the Csiszar-

Kullback-Pinsker inequality (3) (see Proposition 3.1 in [Sam16a] ): for any proba-

bility measure ν on a Polish space X, for any measurable function f : X → R,
∫

eλRc f dν ≤ eλ
∫

f dν+λ2c2/8, ∀λ, c ≥ 0,(19)

with Rc f (x) = inf
p∈P(X)

ß∫
f dp + c

∫
1x,ydp(y)

™
, x ∈ X.

The induction step will be also a consequence of (19). Let (Hi)i∈orb(n) be the

partition of G defined by (15). Any p ∈ P(G) admits a unique decomposition

defined by

p =
∑

i∈orb(n)

p̂(i)pi, with pi ∈ P(Hi) and p̂(i) = p(Hi).(20)

This decomposition defines a probability measure p̂ on orb(n). In particular, ac-

cording to the definition of the measure µ ∈ M, one has

µ =
∑

i∈orb(n)

ν̂n(i) µi.

It follows that
∫

eλQϕdµ =
∑

i∈orb(n)

ν̂n(i)

∫
eλQϕ(σ)dµi(σ) =

∑

i∈orb(n)

ν̂n(i)

∫
eλQϕ(σti,n)dµn(σ),

where the last equality is a consequence of property (16). Now, we will bound the

right-hand side of this equality by using the induction hypotheses.

For any function g : G → R and any t ∈ G, let gt : G → R denote the function

defined by gt(σ) := g(σt).

For any function f : Hn → R and any σ ∈ Hn, let us note

QHn f (σ) := inf
p∈P(Hn)

ß∫
f dp +

∫
d(σ, τ) dp(τ)

™
.

The next step of the proof relies on the following Lemma.

Lemma 2.1. Let i ∈ orb(n), for any function ϕ : Hi → R and any σ ∈ Hn, one has

(1) Qϕ(σti,n) ≤ inf
p̂∈P(orb(n))




∑

l∈orb(n)

QHnϕtn,l (σ)p̂(l) + c(ℓ)
∑

l∈orb(n)

1l,i p̂(l)



 ,

where c(ℓ) = min(2ℓ − 1, n) if d = dH and c(ℓ) = 2 if d = dT .

(2) Qϕ(σti,n) ≤ inf
p̂∈P(orb(n))




∑

l∈orb(n)

QHnϕti,nt−1
i,l (σ)p̂(l) + c(ℓ)

∑

l∈orb(n)

1l,i p̂(l)



 ,

where c(ℓ) = ℓ if d = dH and c(ℓ) = 1 if d = dT , and ti,l denotes an element

of G with deg(ti,l) ≤ ℓ and such that ti,l(i) = l.
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This lemma is obtained using the decomposition (20) of the measures p ∈ P(G)

on the H j’s. Let σ ∈ Hn. By the triangular inequality and using the invariance by

translation of the distance d, one has
∫

d(σti,n, τ) dp(τ) =
∑

l∈orb(n)

∫

Hl

d(σti,n, τ)dpl(τ)p̂(l)

≤
∑

l∈orb(n)

d(σti,n, σtl,n)p̂(l) +
∑

l∈orb(n)

∫

Hl

d(σtl,n, τ)dpl(τ)p̂(l)

=

∑

l∈orb(n)

d(ti,n, tl,n)p̂(l) +
∑

l∈orb(n)

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l)

and therefore, since d(ti,n, tl,n) ≤ c(ℓ) with c(ℓ) = min(2ℓ − 1, n) if d = dH and

c(ℓ) = 2 if d = dT ,
∫

d(σti,n, τ) dp(τ) ≤
∑

l∈orb(n)

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l) + c(ℓ)

∑

l∈orb(n)

1l,i p̂(l).(21)

It follows that

Qϕ(σti,n) ≤ inf
p̂∈P(orb(n))

inf
pl∈P(Hl),l∈orb(n)



∑

l∈orb(n)

ñ∫
ϕ dpl +

∫

Hl

d(σ, τt−1
l,n )dpl(τ)

ô
p̂(l) + c(ℓ)

∑

l∈orb(n)

1l,i p̂(l)





= inf
p̂∈P(orb(n))

inf
ql∈P(Hn),l∈orb(n)



∑

l∈orb(n)

ñ∫
ϕtl,n dql +

∫

Hn

d(σ, τ)dql(τ)

ô
p̂(l) + c(ℓ)

∑

l∈orb(n)

1l,i p̂(l)





= inf
p̂∈P(orb(n))




∑

l∈orb(n)

QHnϕtl,n (σ)p̂(l) + c(ℓ)
∑

l∈orb(n)

1l,i p̂(l)



 .

The proof of the second inequality of Lemma 2.1 is similar, starting from the fol-

lowing triangular inequality
∫

d(σti,n, τ) dp(τ) =
∑

l∈orb(n)

∫

Hl

d(σti,n, τ)dpl(τ)p̂(l)

≤
∑

l∈orb(n)

∫
d(σti,n, τti,l)dpl(τ)p̂(l) +

∑

l∈orb(n)

∫

Hl

d(τti,l, τ)dpl(τ)p̂(l)

=

∑

l∈orb(n)

∫
d(σ, τti,lt

−1
i,n )dpl(τ)p̂(l) +

∑

l∈orb(n)

d(ti,l, id)p̂(l)

≤
∑

l∈orb(n)

∫

Hl

d(σ, τti,lt
−1
i,n )dpl(τ)p̂(l) + c(ℓ)

∑

l∈orb(n)

1l,i p̂(l),(22)

with c(ℓ) = ℓ if d = dH and c(ℓ) = 1 if d = dT . The end of the proof of the second

inequality of Lemma 2.1 is let to the reader.



TRANSPORT-ENTROPY INEQUALITIES ON LOCALLY ACTING GROUPS 15

The induction step of the proof of (18) continues by applying consecutively

Lemma 2.1, the Hölder inequality, and the induction hypotheses to the measure µn.

If In = orb(n) = {n} then Kn = Kn−1 and
∫

eλQϕdµ =

∫
eλQϕ(σ)dµn(σ) ≤ e

∫
λϕdµn+Kn−1c(ℓ)2/8

= e

∫
λϕdµ+Knc(ℓ)2/8

If In = orb(n) , {n} then Kn = Kn−1 + 1 and for any i ∈ orb(n),

∫
eλQϕ(σti,n)dµn(σ) ≤ inf

p̂∈P(orb(n))




∏

l∈orb(n)

Å∫
eλQHnϕ

tl,n
dµn

ãp̂(l)

ec(ℓ)λ
∑n

l=1 1l,i p̂(l)





≤ exp


 inf

p̂∈P(orb(n))



λ

∑

l∈orb(n)

Å∫
ϕtl,n dµn

ã
p̂(l) + Kn−1c(ℓ)2 λ

2

8
+ c(ℓ)λ

∑

l∈orb(n)

1l,i p̂(l)








= exp


λ inf

p̂∈P(orb(n))




∑

l∈orb(n)

ϕ̂(l)p̂(l) + c(ℓ)
∑

l∈orb(n)

1l,i p̂(l)



 + Kn−1c(ℓ)2 λ

2

8


 ,

where, by using property (16), ϕ̂(l) :=
∫
ϕdµl =

∫
ϕtl,n dµn. Let us consider again

the above infimum-convolution Rcϕ̂ defined on the spaceX = orb(n), with c = c(ℓ),

one has

Rcϕ̂(i) = inf
p̂∈P(orb(n))




∑

l∈orb(n)

ϕ̂(l)p̂(l) + c
∑

l∈orb(n)

1l,i p̂(l)



 .

By applying (19) with the probability measure ν̂n on orb(n), the previous inequality

gives

∫
eλQϕdµ =

∑

i∈orb(n)

ν̂n(i)

∫
eλQϕ(σti,n)dµn(σ) ≤

Ñ
∑

i∈orb(n)

eλRc(ℓ)ϕ̂(i)ν̂n(i)

é
eKn−1λ

2/8

≤ exp

[
n∑

i=1

ϕ̂(i)ν̂n(i) +
λ2c(ℓ)2

8
+ Kn−1c(ℓ)2 λ

2

8

]
= exp

ñ
λ

∫
ϕ dµ + Knc(ℓ)2 λ

2

8

ô
.

The scheme of the induction proof of (18), with a better constant c(ℓ) when µ is

the uniform measure on G, is identical, starting from the second result of Lemma

2.1 and using the property (17). This is let to the reader.

We now turn to the induction proof of the dual formulation (9) of the weak

transport-entropy inequality (6). The sketch of the proof is identical to the one of

(18).

For the initial step n = 2, one has G = S 2 and ℓ = 2, and one may easily check

that

‹Q1ϕ(σ) = inf
p∈P(S 2)

®∫
ϕdp +

1

2

Å∫
1σ,τ dp(τ)

ã2
´
.

In that case, the result follows from the following infimum-convolution property.
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Lemma 2.2. For any probability measure ν on a Polish metric space X, for all

α ∈ (0, 1) and all measurable functions f : X → R, bounded from below

Å∫
eαR̃α f dν

ã1/α Å∫
e−(1−α) f dν

ã1/(1−α)

≤ 1,

where for all x ∈ X,

R̃α f (x) = inf
p∈P(X)

®∫
f (y)dp(y) + cα

Å∫
1x,ydp(y)

ã2
´
,

and cα is the convex function defined by

cα(u) =
α(1 − u) log(1 − u) − (1 − αu) log(1 − αu)

α(1 − α)
, u ∈ [0, 1].

Observing that cα(u) ≥ u2/2 for all u ∈ [0, 1], the above inequality also holds

replacing R̃α f by

R̃ f (x) = inf
p∈P(X)

®∫
f (y)dp(y) +

1

2

Å∫
1x,ydp(y)

ã2
´
, x ∈ X.(23)

The proof of this Lemma can be founded in [Sam07] (inequality (4)). For a sake

of completeness, we give in appendix a new proof of this result on finite spaces X
by using a localization argument (Lemma 4.1).

Let us now present the key lemma for the induction step of the proof. For any

function f : Hn → R and any σ ∈ Hn, we define

‹QHn
t f (σ) := inf

p∈P(Hn)

®∫
f dp +

1

2c(ℓ)2t

Å∫
d(σ, τ) dp(τ)

ã2
´
.

Here, writing Q
Hn
t f , we omit the dependence in c(ℓ) to simplify the notations. The

proof relies on the following Lemma.

Lemma 2.3. Let i ∈ orb(n). For any function ϕ : Hi → R and any σ ∈ Hn, one has

(1) ‹QKn
ϕ(σti,n) ≤ inf

p̂∈P(orb(n))




∑

l∈orb(n)

‹QHn

Kn−1
ϕtl,n (σ)p̂(l) +

1

2

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2



 ,

with c(ℓ) = min(2ℓ − 1, n) if d = dH and c(ℓ) = 2 if d = dT .

(2) ‹QKn
ϕ(σti,n) ≤ inf

p̂∈P(orb(n))




∑

l∈orb(n)

‹QHn

Kn−1
ϕti,nt−1

i,l (σ)p̂(l) +
1

2

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2



 ,

where c(ℓ) = ℓ if d = dH and c(ℓ) = 1 if d = dT .

The proof of this lemma is similar to the one of Lemma 2.1. By (21) and the

inequality

(u + v)2 ≤ u2

s
+

v2

1 − s
, u, v ∈ R, s ∈ (0, 1),
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we get for any s ∈ (0, 1),

Å∫
d(σtl,n, τ) dp(τ)

ã2

≤

Ñ
∑

l∈orb(n)

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l) + c(ℓ)

∑

l∈orb(n)

1l,i p̂(l)

é2

≤ 1

s

Ñ
∑

l∈orb(n)

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l)

é2

+
c(ℓ)2

1 − s

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2

≤ 1

s

∑

l∈orb(n)

Ç∫
Hl

d(σ, τt−1
l,n )dpl(τ)

å2

p̂(l) +
c(ℓ)2

1 − s

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2

.

It follows that for any σ ∈ Hn,

‹QKn
ϕ(σtl,n)

≤ inf
p̂∈P(orb(n))

inf
pl∈P(Hl),l∈orb(n)



∑

l∈orb(n)

[∫
ϕ dpl +

1

2c(ℓ)2 sKn

Ç∫
Hl

d(σ, τt−1
l,n )dpl(τ)

å2
]

p̂(l) +
1

2(1 − s)Kn

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2





= inf
p̂∈P(orb(n))

inf
ql∈P(Hn),l∈orb(n)



∑

l∈orb(n)

[∫
ϕtl,n dql +

1

2c(ℓ)2 sKn

Ç∫
Hn

d(σ, τ)dql(τ)

å2
]

p̂(l) +
1

2(1 − s)Kn

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2





= inf
p̂∈P(orb(n))




∑

l∈orb(n)

‹QHn

Kn−1
ϕtl,n (σ)p̂(l) +

1

2

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2



 ,

where the last equality follows by choosing s = Kn−1/Kn, which ends the proof of

the first inequality of Lemma 2.3. The second inequality of Lemma 2.3 is obtained

identically starting from (22).

We now turn to the induction step of the proof. By the decomposition of the

measure µ on the Hi’s, we want to bound

∫
eαQ̃Knϕdµ =

∑

i∈orb(n)

ν̂n(i)

∫
eαQ̃Knϕ(σ)dµi(σ) =

∑

i∈orb(n)

ν̂n(i)

∫
eαQ̃Knϕ(σti,n)dµn(σ),

where the last equality is a consequence of property (16).

If orb(n) = {n}, then the result simply follows from the induction hypotheses

applied to the measure µn.
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If orb(n) , {n}, then applying successively Lemma 2.3, the Hölder inequality,

and the induction hypotheses, we get

∫
eαQ̃Knϕ(σti,n)dµn(σ) ≤ inf

p̂∈P(orb(n))




∏

l∈orb(n)

Å∫
e
αQ̃

Hn
Kn−1

ϕ
tl,n

dµn

ã p̂(l)

exp


1

2

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2







≤ inf
p̂∈P(orb(n))




∏

l∈orb(n)

Å∫
e−(1−α)ϕtl,n

dµn

ã− p̂(l)α
1−α

exp


1

2

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2







= exp


α inf

p̂∈P(orb(n))




∑

l∈orb(n)

ϕ̂(l)p̂(l) +
1

2

Å ∑

l∈orb(n)

1l,i p̂(l)

ã2






 ,

where by property (16), we set

ϕ̂(l) := log

Å∫
e−(1−α)ϕdµl

ã− 1
1−α
= log

Å∫
e−(1−α)ϕtl,n

dµn

ã− 1
1−α

.

According to the definition of the infimum convolution R̃ϕ̂ on the space X = orb(n)

given in Lemma 2.2, the last inequality is
∫

eαQ̃Knϕ(σti,n)dµn(σ) ≤ eαR̃ϕ̂(i),

and therefore Lemma 2.2 provides

∫
eαQ̃Knϕdµ =

∑

i∈orb(n)

eαR̃ϕ̂(i)ν̂n(i) ≤
Å ∑

i∈orb(n)

e−(1−α)ϕ̂(i)ν̂n(i)

ã− α
1−α

=

Å ∑

i∈orb(n)

ν̂n(i)

∫
e−(1−α)ϕdµi

ã− α
1−α
=

Å∫
e−(1−α)ϕdµ

ã− α
1−α

.

The proof of (9) is completed for any measure µ ∈ M. To improve the constant

when µ is the uniform probability measure on G, the proof is similar using the

second inequality of Lemma 2.3 together with property (17). �

Proof of (b) in Theorem 1.3. We prove the dual equivalent property (10) as a con-

sequence of the stronger following result: for any real function ϕ on G, for any

j ∈ {1, . . . , n}
Å∫

eαQ jϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(24)

where the infimum convolution operator Q jϕ is defined as follows, for σ ∈ G

(25) Q jϕ(σ) = inf
p∈P(G)

®∫
ϕdp +

1

c(ℓ)2

Å∫
1σ( j),y( j)dp(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n]\{ j}

Å∫
1σ(k),y(k)dp(y)

ã2



 .
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The proof of (24) relies on Lemma 2.2 and the following ones. For any σ ∈ G,

we define

QHnϕ(σ) = inf
p∈P(Hn)

{∫
ϕdp +

1

2c(ℓ)2

n−1∑

k=1

Å∫
1σ(k),y(k)dp(y)

ã2
}
,

and for j ∈ [n − 1],

QHn, jϕ(σ) = inf
p∈P(Hn)

®∫
ϕdp +

1

c(ℓ)2

Å∫
1σ( j),y( j)dp(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n−1]\{ j}

Å∫
1σ(k),y(k)dp(y)

ã2



 .

Lemma 2.4. Let j ∈ [n]. For any σ ∈ G, one has

Q jϕ(σ) = Qσ( j)ϕ{−1}(σ−1),

where ϕ{−1}(z) = ϕ(z−1), z ∈ G.

This result follows from the change of variables σ(k) = l in the definition (25)

of Q jϕ(σ), one has

Q jϕ(σ) = inf
p∈P(G)

®∫
ϕdp +

1

c(ℓ)2

Å∫
1y−1(σ( j)),σ−1(σ( j))dp(y)

ã2

+
1

2c(ℓ)2

∑

l,l,σ( j)

Å∫
1l,y(σ−1(l))dp(y)

ã2





= inf
q∈P(G)

®∫
ϕ(z−1)dq(z) +

1

c(ℓ)2

Å∫
1z(σ( j)),σ−1(σ( j))dq(z)

ã2

+
1

2c(ℓ)2

∑

l,l,σ( j)

Å∫
1z(l),σ−1(l)dq(z)

ã2



 ,

where for the last equality, we use the fact that the map that associates to any

measure p ∈ P(G) the image measure q := R#p with R : σ ∈ G 7→ σ−1 ∈ G, is one

to one from P(G) to P(G).

Here is the key lemma for the induction step of the proof of (24).

Lemma 2.5. (1) Let j ∈ orb(n). For any σ ∈ Hn, one has

Q jϕ(σt j,n) ≤ QHnϕt j,n (σ).

(2) If orb(n) , {n}, let i, j ∈ orb(n) with i , j, and let ti, j ∈ G such that

ti, j(i) = j and deg(ti, j) ≤ ℓ. We note Di = supp(ti, j) \ {i} and d = |Di|. For

any σ ∈ Hn, for any θ ∈ [0, 1] one has

Qiϕ(σti,n) ≤ 1

d

∑

l∈ti,n(Di)

[
θQHn,lϕti,n (σ) + (1 − θ)QHnϕ

ti,nt−1
i, j (σ)

]
+

1

2
(1 − θ)2.



20 P.-M. SAMSON

Proof. The first part of this Lemma follows from the fact that P(H j) ⊂ P(G) and

the fact that
∫

1σt j,n( j),y( j)dp(y) = 0 for σ ∈ Hn and p ∈ P(H j). Therefore, accord-

ing to the definition of Q jϕ, one has for σ ∈ H j,

Q jϕ(σt j,n) ≤ inf
p∈P(H j)





∫
ϕdp +

1

2c(ℓ)2

∑

k∈[n]\{ j}

Å∫
1σti,n(k),y(k)dp(y)

ã2





= inf
q∈P(Hn)





∫
ϕt j,n dq +

1

2c(ℓ)2

∑

k∈[n]\{ j}

Å∫
1σt j,n(k),yti,n(k)dq(y)

ã2



 = QHnϕt j,n (σ).

For the proof of the second part of Lemma 2.5, let us consider pl
i, l ∈ Di, a

collection of measures in P(Hi), and p j ∈ P(H j) ( j , i). For θ ∈ [0, 1],

p :=
1

d

∑

l∈Di

[θpl
i + (1 − θ)p j],

is a probability measure on G. Therefore, according to the definition of Qiϕ, for

any σ ∈ Hn,

Qiϕ(σti,n) ≤ 1

d

∑

l∈Di

ï
θ

∫
f dpl

i + (1 − θ)
∫

f dp j

ò
+

1

2c(ℓ)2
(A + B +C),

with

A =
∑

k∈[n]\supp(ti, j)

Å∫
1σti,n(k),y(k)dp(y)

ã2

, B =
∑

k∈Di

Å∫
1σti,n(k),y(k)dp(y)

ã2

,

and C = 2

Å∫
1σti,n(i),y(i)dp(y)

ã2

.

Since σ ∈ Hn and pl
i ∈ P(Hi), one has

∫
1σti,n(i),y(i)dpi(y) = 0 and

∫
1σ(i),y(i)dp j(y) =

1. It follows that

C = 2(1 − θ)2.

For any k ∈ [n] and l ∈ Di, let us note

Ui(k, l) :=

∫
1σti,n(k),y(k)dpl

i(y), and U j(k) :=

∫
1σti,n(k),y(k)dp j(y).

By the Cauchy-Schwarz inequality, one has

A ≤ 1

d

∑

l∈Di


θ

∑

k∈[n]\supp(ti, j)

U2
i (k, l) + (1 − θ)

∑

k∈[n]\supp(ti, j)

U2
j (k)


 .
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We also have

B =
∑

k∈Di

Ñ
θ

d
Ui(k, k) + (1 − θ)U j(k) +

θ

d

∑

l∈Di\{k}
Ui(k, l)

é2

≤
∑

k∈Di


d

Å
θ

d
Ui(k, k) + (1 − θ)U j(k)

ã2

+
θ2

d

∑

l∈Di\{k}
U2

i (k, l)




≤
∑

k∈Di


2θ2

d
U2

i (k, k) + 2(1 − θ)2
+
θ2

d

∑

l∈Di\{k}
U2

i (k, l)




≤ 2d2(1 − θ)2
+
θ

d

∑

l∈Di


2U2

i (l, l) +
∑

k∈Di\{l}
U2

i (k, l)




All the above estimates together provide

A + B +C ≤ (2d2
+ 2)(1 − θ)2

+
1

d

∑

l∈Di


θ

Ñ
2U2

i (l, l) +
∑

k∈[n]\{i,l}
U2

i (k, l)

é
+ (1 − θ)

∑

k∈[n]\supp(ti, j)

U2
j (k)


 .

Since 2d2
+ 2 ≤ 2(ℓ− 1)2

+ 2 = c(ℓ)2, we get by optimizing over all pl
i ∈ P(Hi) and

all p j ∈ P(H j),

Qiϕ(σti,n) ≤ 1

d

∑

l∈Di

[
θVl + (1 − θ)W j

]
+

1

2
(1 − θ)2,

with

Vl := inf
pi∈P(Hi)





∫
ϕdpi +

1

c(ℓ)2

∫
1σti,n(l),y(l)dpi(y) +

1

2c(ℓ)2

∑

k∈[n]\{i,l}

∫
1σti,n(k),y(k)dpi(y)





= inf
qi∈P(Hn)





∫
ϕti,n dqi +

1

c(ℓ)2

∫
1σ(ti,n(l)),y(ti,n (l))dqi(y) +

1

2c(ℓ)2

∑

k∈[n−1]\{ti,n(l)}

∫
1σti,n(k),y(k)dpi(y)





= QHn,ti,n(l)ϕti,n (σ)
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and

W j := inf
p j∈P(H j)





∫
ϕdp j +

1

2c(ℓ)2

∑

k∈[n]\supp(ti, j)

∫
1σti,n(k),y(k)dpi(y)





= inf
p j∈P(H j)





∫
ϕdp j +

1

2c(ℓ)2

∑

k∈[n]\supp(ti, j)

∫
1σti,n(k),yti, j (k)dp j(y)





≤ inf
p j∈P(H j)





∫
ϕdp j +

1

2c(ℓ)2

∑

k∈[n]\{i}

∫
1σti,n(k),yti, j (k)dp j(y)





≤ inf
q j∈P(Hn)





∫
ϕ

ti,nt−1
i, j dq j +

1

2c(ℓ)2

∑

k∈[n]\{i}

∫
1σti,n(k),yti,n(k)dp j(y)





= inf
q j∈P(Hn)





∫
ϕ

ti,nt−1
i, j dq j +

1

2c(ℓ)2

∑

k∈[n−1]

∫
1σ(k),y(k)dp j(y)





= QHnϕ
ti,nt−1

i, j

where we use successively the following arguments: ti, j(k) = k for any k ∈ [n] \
supp(ti, j); the set [n] \ supp(ti, j) is a subset of [n] \ {i}; for any y ∈ H j one has

yti, jt
−1
i,n ∈ Hn. This ends the proof of Lemma 2.5. �

We will now prove (24) by induction over n. For n = 2, G is the two points

space S 2 which is 2-local. For i ∈ {1, 2}, and for any p ∈ P(G),

1

c(2)2

Å∫
1σ(i),y(i)dp(y)

ã2

+
1

2c(2)2

∑

k,k,i

Å∫
1σ(k),y(k)dp(y)

ã2

=
3

8

Å∫
1σ,ydp(y)

ã2

≤ 1

2

Å∫
1σ,ydp(y)

ã2

.

As a consequence, we get the expected result from Lemma 2.2 applied withX = G.

Let us now present the induction step. We assume that (24) holds at the rank

n − 1 for all j ∈ {1, . . . , n − 1}. By symmetry, we may assume without loss of

generality that j = n in (24) since µ is the uniform probability measure on G.

We assume that orb(n) , {n}, otherwise the induction step is obvious. We first

apply Lemma 2.4,

∫
eαQnϕdµ =

∫
eαQσ(n)ϕ{−1}(σ−1)dµ(σ) =

∫
eαQσ−1(n)ϕ{−1}(σ)dµ(σ).

Let g = ϕ{−1}. According to the decomposition of the measure µ on the sets Hi, i ∈
orb(n),

∫
eαQnϕdµ =

1

|orb(n)|
∑

i∈orb(n)

∫
eαQigdµi,(26)
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where µi is the uniform probability measure on Hi. For k ∈ orb(n), let us note

ĝ(k) := log

Å∫
e−(1−α)gdµk

ã−1/(1−α)

.

We choose j ∈ orb(n) such that

min
k∈orb(n)

ĝ(k) = ĝ( j).

By property (16) and then applying Lemma 2.5, we get

∫
eαQ jgdµ j =

∫
eαQ jg(σti,n)dµn(σ) ≤

∫
eαQHn g

t j,n
dµn.

By the induction hypotheses applied to the measure µn, it follows that

∫
eαQ jgdµ j ≤

Å∫
e−(1−α)g

t jn
dµn

ã−α/(1−α)

=

Å∫
e−(1−α)g dµ j

ã−α/(1−α)

= eαĝ( j).(27)

Let us now consider i , j, i ∈ orb(n), property (16), the second part of Lemma 2.5

and Jensen’s inequality yield: for any θ ∈ [0, 1],

∫
eαQigdµi =

∫
eαQig(σti,n)dµn

≤ exp





1

d

∑

l∈ti,n(Di)

ñ
θ log

∫
eαQHn ,lg

ti,n
dµn + (1 − θ) log

∫
eαQHn g

ti,nt−1
i, j

dµn

ô
+
α

2
(1 − θ)2





By the induction hypotheses applied with the uniform measure µn on the ℓ-local

subgroup Hn, and from property (17), it follows that

∫
eαQigdµi ≤ exp

ß
θαĝ(i) + (1 − θ)αĝ( j) +

α

2
(1 − θ)2

™
.(28)

According to the definition (23) of the infimum-convolution operator R̃ĝ defined

on the space X = orb(n), we may easily check that for every i ∈ orb(n),

R̃ĝ(i) = inf
θ∈[0,1]

ß
θĝ(i) + (1 − θ) min

k∈orb(n)
ĝ(k) +

1

2
(1 − θ)2

™
.

Therefore optimizing over all θ ∈ [0, 1], we get from (27) and (28): for all i ∈
orb(n),

∫
eαQigdµi ≤ eαR̃ĝ(i).
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Finally, from Lemma 2.2 applied with the uniform probability measure µ̂ on orb(n),

the equality (26) gives

∫
eαQnϕdµ ≤

∫
eαR̃ĝ dµ̂ ≤

Å∫
e−(1−α)ĝ dµ̂

ã−α/(1−α)

=

Ñ
1

|orb(n)|
∑

i∈orb(n)

∫
e−(1−α)g dµi

é−α/(1−α)

=

Å∫
e−(1−α)g dµ

ã−α/(1−α)

.

The proof of (24) is completed. �

3. Transport-entropy inequalities on the slice of the cube.

Proof of (a) in Theorem 1.4. We adapt to the spaceXk,n−k the proof of (a) in Theorem1.3.

In order to avoid redundancy, we only present the main steps of the proof.

By duality, it suffices to prove that for all functions ϕ on Xk,n−k and all λ ≥ 0,
∫

eλQϕdµk,n−k ≤ e

∫
λϕ dµk,n−k+Ck,n−kλ

2/2,(29)

where

Qϕ(x) = inf
p∈P(Xk,n−k)

ß∫
ϕdp +

∫
dh(x, y) dp(x)

™
, x ∈ Xk,n−k,

and for any 0 < α < 1,
Å∫

e
αQ̃Ck,n−k

ϕ
dµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(30)

where for t > 0,

‹Qtϕ(x) = inf
p∈P(Xk,n−k)

®∫
ϕ dp +

1

2t

Å∫
dh(x, y) dp(y)

ã2
´
, x ∈ Xk,n−k.

The proof is by induction over n and 0 ≤ k ≤ n.

For any n ≥ 1, if k = n or k = 0, the set Xk,n−k is reduced to a singleton and the

inequalities (29) or (30) are obvious.

For n = 2 and k = 1, Xk,n−k is a two points set, (29) and (30) directly follows

from property (19) and Lemma 2.2 on X = X1,1.

For the induction step, we consider the collection of subset Ωi, j, with i, j ∈
{1, . . . , n}, i , j, defined by

Ω
i, j :=

{
x ∈ Xk,n−k, xi = 0, x j = 1

}
.

Since for any x ∈ Xk,n−k,
∑

(i, j),i, j

1Ωi, j (x) = k(n − k),

any probability measure p on Xk,n−k admits a unique decomposition defined by

p =
∑

(i, j),i, j

p̂(i, j)pi, j, with pi, j
=

1Ωi, j p

p(Ωi, j)
and p̂(i, j) =

p(Ωi, j)

k(n − k)
.
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Thus, we define probability measures pi, j ∈ P(Ωi, j) and a probability measure p̂ on

the set I(n) = {(i, j) ∈ {1, . . . , n}2, i , j}. For the uniform law µ on Xk,n−k, one has

µ =
1

n(n − 1)

∑

(i, j)∈I(n)

µi, j,

where µi, j is the uniform law on Ωi, j, µi, j(x) =
(n−2

k−1

)
, for any x ∈ Ωi, j.

For any (i, j), (l,m) ∈ I(n), let s(i, j),(l,m) : Xk,n−k → Xk,n−k denote the map that

exchanges the coordinates xi by xl and x j by xm for any point x ∈ Xk,n−k. This map

is one to one from Ωi, j to Ωl,m. For any (i, j) ∈ I(n), the set Ωi, j can be identify to

Xk−1,n−k−1 and therefore the induction hypotheses apply for the uniform law µi, j on

Ω
i, j with Hamming distance

d
i, j
h (x, y) =

1

2

∑

k∈[n]\{i, j}
1xk,yk

, x, y ∈ Ωi, j.

For any function f : Ωi, j → R and any x ∈ Ωi, j, we define

QΩ
i, j

f (x) := inf
p∈P(Ωi, j)

ß∫
f dp +

∫
d

i, j
h (x, y) dp(y)

™
,

and

‹QΩi, j

t f (x) := inf
p∈P(Hn)

®∫
f dp +

1

2t

Å∫
d

i, j
h (x, y) dp(x)

ã2
´
.

The key lemma of the proof that replaces Lemma 2.1 and 2.3 is the following.

Lemma 3.1. For any function ϕ : Ωi, j → R and any x ∈ Ωi, j, one has

Qϕ(x) ≤ inf
p̂∈P(I(n))





∑

(l,m)∈I(n)

QΩ
i, j

(ϕ ◦ s(i, j),(l,m))(x)p̂(l,m) +
∑

(l,m)∈I(n)

1(l,m),(i, j) p̂(l,m)



 ,

and

‹QCk,n−k
ϕ(x) ≤ inf

p̂∈P(I(n))





∑

(l,m)∈I(n)

‹QΩi, j

Ck−1,n−k−1
(ϕ ◦ s(i, j),(l,m))(x)p̂(l,m)

+
1

2

Å ∑

(l,m)∈I(n)

1(l,m),(i, j) p̂(l,m)

ã2



 .

The proof of this lemma is obtained by decomposition of the measures p ∈
P(Xk,n−k) on the sets Ωi, j, and using the following inequality

dh(x, y) ≤ d
i, j
h (x, s(i, j),(l,m))(y)) + dh(s(i, j),(l,m))(y), y) ≤ d

i, j
h (x, s(i, j),(l,m))(y)) + 2,

for any x ∈ Ωi, j, y ∈ Ωl,m.

Finally, the proof of the induction step based on Lemma 3.1 and the identity

Ck,n−k = Ck−1,n−k−1 + 1, is let to the reader. �

Proof of (b) in Theorem 1.4. We will explain the projection argument on the dual

formulations of the transport-entropy inequalities. According to Proposition 4.5
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and Theorem 9.5 of [GRST14], the weak transport-entropy inequality (11) is equiv-

alent to the following property that we want to establish: for any real function f on

Xk,n−k and for any 0 < α < 1,

Å∫
eαQ̂ f dµk,n−k

ã1/α Å∫
e−(1−α) f dµk,n−k

ã1/(1−α)

≤ 1,(31)

where

“Q f (x) := inf
p∈P(Xk,n−k

{∫
ϕ dp +

1

8

n∑

k=1

Å∫
1xk,yk

dp(y)

ã2
}
, x ∈ Xk,n−k.

Let us apply property (10) to the function f ◦ P : S n → R. Since µk,n−k = P#µ,

we get

Å∫
eα
ÛQ( f◦P)dµ

ã1/α Å∫
e−(1−α) f dµk,n−k

ã1/(1−α)

≤ 1.

The inequality (31) is an easy consequence of the following result.

Lemma 3.2. For any σ ∈ S n, ÙQ( f ◦ P)(σ) ≥ “Q f (P(σ)).

It remains to prove this lemma. By definition, one has

ÙQ( f ◦ P)(σ) = inf
p∈P(S n)





∫
f ◦ P dp +

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2





= inf
q∈P(Xk,n−k)

inf
p∈S n,P#p=q





∫
f ◦ P dp +

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2





= inf
q∈P(Xk,n−k)





∫
f dq + inf

p∈S n,P#p=q




n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2





 .

Let p ∈ S n such that P#p = q.

∫
1σ( j),τ( j)dp(τ) =

∑

y∈Xk,n−k

∑

τ∈S n

1U(τ)=y,σ( j),τ( j) p(τ).

For y ∈ Xk,n−k, let us note Y = {i ∈ [n], yi = 1}. Then P(τ) = y if and only if

τ([k]) = Y .

Assume that j ∈ [k], if τ([k]) = Y and σ( j) < Y then τ( j) , σ( j). Therefore one

has
{
τ, τ([k]) = Y, σ( j) < Y

}
⊂
{
τ, P(τ) = y, σ( j) , τ( j)

}
.

Assume now that j < [k], if τ([k]) = Y and σ( j) ∈ Y then we also have τ( j) , σ( j).

It follows that

{
τ, τ([k]) = Y, σ( j) ∈ Y

}
⊂
{
τ, P(τ) = y, σ( j) , τ( j)

}
.
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From these observations, we get

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2

≥
∑

j∈[k]

Å∫
1P(τ)=y,σ( j)<Y dp(τ)

ã2

+

∑

j∈[n]\[k]

Å∫
1P(τ)=y,σ( j)∈Ydp(τ)

ã2

=

∑

j∈[k]

Å∫
1σ( j)<Ydq(y)

ã2

+

∑

j∈[n]\[k]

Å∫
1σ( j)∈Ydq(y)

ã2

=

∑

i∈σ([k])

Å∫
1i<Ydq(y)

ã2

+

∑

i<σ([k])

Å∫
1i∈Ydq(y)

ã2

=

∑

i∈σ([k])

Å∫
1yi=0dq(y)

ã2

+

∑

i<σ([k])

Å∫
1yi=1dq(y)

ã2

Setting x = P(σ), it follows that

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2

≥
n∑

i=1

ñ
1xi=1

Å∫
1yi=0dq(y)

ã2

+ 1xi=0

Å∫
1yi=1dq(y)

ã2
ô

=

n∑

i=1

Å∫
1yi,xi

dq(y)

ã2

.

This inequality provides

ÙQ( f ◦ P)(σ) ≥ “Q f (x) = “Q f (P(σ)).

The proof of Lemma 3.2 and (b) in Theorem 1.4 is completed. �

4. Appendix

Proof of Lemma 2.2. Let α ∈ (0, 1) and f be a real function on the finite set X. We

want to show that for any probability measure ν on X,
Å∫

eαR̃α f dν

ã1/α Å∫
e−(1−α)hdν

ã1/(1−α)

≤ 1.

We will apply the following lemma whose proof is given at the end of this section.

Lemma 4.1. Let F be a real function on X and K ∈ R. Let us consider the set

C :=

ß
ν ∈ P(X),

∫
F dν = K

™
.

If C is not empty, then the extremal points of this convex set are Dirac measures or

convex combinations of two Dirac measures on X.

Given a real function f on X, for any K ∈ R, let

CK =

ß
ν ∈ P(X),

∫
e−(1−α) f dν = K

™
.

One has

sup
ν∈P(X)

Å∫
eαR̃α f dν

ã1/α Å∫
e−(1−α) f dν

ã1/(1−α)

= sup
K,CK,∅

Ç
sup
ν∈CK

∫
eαR̃α f dν

å1/α

K1/(1−α)
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The supremum of the linear function ν 7→
∫

eαR̃α f dν on the non empty convex set

CK is reached at an extremal point of CK . Therefore, by Lemma 4.1, we get

sup
ν∈P(X)

Å∫
eαR̃α f dν

ã1/α Å∫
e−(1−α)hdν

ã1/(1−α)

= sup
x,y∈X

sup
λ∈[0,1]

(
(1 − λ)eαR̃α f (x)

+ λeαR̃α f (y)
)1/α Ä

(1 − λ)e−(1−α) f (x)
+ λe−(1−α) f (y)

ä1/(1−α)

Now, let x and y be some fixed points of X. It remains to show that for any real

function f on E and for any x, y ∈ X,
(

(1 − λ)eαR̃α f (x)
+ λeαR̃α f (y)

)1/α Ä
(1 − λ)e−(1−α) f (x)

+ λe−(1−α) f (y)
ä1/(1−α) ≤ 1.

The left-hand side of this inequality is invariant by translation of the function

f by a constant. Therefore, by symmetry, we may assume that 0 = f (y) ≤ f (x).

It follows that R̃α f (y) = 0. Therefore we want to check that for any non-negative

function f on {x, y}, for any λ ∈ [0, 1],
(

(1 − λ)eαR̃α f (x)
+ λ
)1/α Ä

(1 − λ)e−(1−α) f (x)
+ λ
ä1/(1−α) ≤ 1,

or equivalently, setting ψ(λ) =
Ä
(1 − λ)e−(1−α) f (x)

+ λ
ä−α/(1−α) − λ,

eαR̃α f (x) ≤ inf
λ∈[0,1)

ψ(λ) − ψ(1)

1 − λ = −ψ′(1) =
α

1 − α
Ä
1 − e−(1−α) f (x)

ä
+ 1,

since ψ is a convex function on [0, 1].

So, it suffices to check that R̃α f (x) ≤ φ( f (x)), where

φ(h) =
1

α
log

Å
α

1 − α
Ä
1 − e−(1−α)h

ä
+ 1

ã
, h ≥ 0.

The function φ is concave and φ(0) = 0. For all h ≥ 0, one has

φ′(h) =
1 − α

e(1−α)h − α.

The function φ′ is a bijection from [0,+∞) to (0, 1]. It follows that

φ(h) = inf
θ∈(0,1]

{θh + cα(1 − θ)} , h ≥ 0,

where cα is the convex function defined by

cα(1 − θ) = sup
h∈[0,+∞)

{−θh + φ(h)} , θ ∈ (0, 1].

After computations, we get

cα(u) :=
α(1 − u) log(1 − u) − (1 − αu) log(1 − αu)

α(1 − α)
,

and therefore we exactly have for any x ∈ X,

φ( f (x)) = inf
θ∈[0,1]

{θ f (x) + cα(1 − θ)} = R̃α f (x).

The proof of Lemma 2.2 is completed. �
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Proof of Lemma 4.1. We will show that, if ν ∈ C is a convex combination of three

probability measures ν1, ν2, ν3,

ν = α1ν1 + α2ν2 + α3ν3,

with α1 , 0, α2 , 0, α3 , 0, and α1 + α2 + α3 = 1, and ν1(X) > 0, ν2(X) > 0,

ν3(X) > 0, then there exists two measures ν̂1, ν̂2 in C and λ ∈ [0, 1] such that

ν = λν̂1 + (1 − λ)ν̂2.

Setting Fi =
∫

Fdνi, for i = 1, 2, 3, we may assume, without loss of generality,

that F1 ≤ F2 ≤ F3. Then one has either F1 ≤ K ≤ F2, either F2 ≤ K ≤ F3.

We will assume that F1 ≤ K ≤ F2. The case F2 ≤ K ≤ F3 can be treated

identically and the proof in that case is let to the reader. Since F1 ≤ K ≤ F2 and

F1 ≤ K ≤ F3, there exists β, γ ∈ [0, 1] such that

K = βF1 + (1 − β)F2 and K = γF1 + (1 − γ)F3.(32)

If F1 = F3 then F1 = F2 = F3 = K and therefore ν1, ν2, ν3 ∈ C. We may choose

λ = α1, ν̂1 = ν1 and ν̂2 =
α2ν2+α3ν3

α2+α3
.

If F1 = F2 then necessarily F1 = F2 = F3 = K and we are reduced to the

previous case.

So, we may now assume that F1 , F3 and F1 , F2 and therefore F1 < K ≤
F2 ≤ F3. In that case, we exactly have

β =
F2 − K

F2 − F1

and γ =
F3 − K

F3 − F1

.

Let us choose

λ =
α2

1 − β = α2
F2 − F1

K − F1

, ν̂1 = βν1 + (1 − β)ν2, ν̂2 = γν1 + (1 − γ)ν2.

The equalities (32) ensure that ν̂1 ∈ C and ν̂2 ∈ C. The proof of Lemma 4.1 ends

by checking that λν̂1 + (1 − λ)ν̂2 = µ̂. One has

λν̂1 + (1 − λ)ν̂2 = (λβ + (1 − λ)γ)ν1 + λ(1 − β)ν2 + (1 − λ)(1 − γ)ν3.(33)

According to the definitions of λ, β, γ, we may easily check that λ(1− β) = α2, and

(1 − λ)(1 − γ) =
K − F1

F3 − F1

− α2
F2 − F1

F3 − F1

.

Since µ̂ ∈ C, one has (1 − (α2 + α3))F1 + α2F2 + α3F3 and therefore

(1 − λ)(1 − γ) = α3.

As a consequence λβ + (1 − λ)γ = 1 − α2 − α3 = α1 and according to (33), we get

λν̂1 + (1 − λ)ν̂2 = α1ν1 + α2ν2 + α3ν3 = ν.

�
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