
A Model-Based Approach to Context Management  
in Pervasive Platforms 

 
Colin Aygalinc1, Eva Gerbert-Gaillard1, German Vega1,  

Philippe Lalanda1 and Stéphanie Chollet2 
 

1Université Grenoble Alpes 
Laboratoire LIG, CS 40700 

38058 Grenoble, France 
firstname.lastname@imag.fr 

2Université Grenoble Alpes 
Laboratoire LCIS 

26900 Valence, France 
stephanie.chollet@lcis.grenoble-inp.fr

 
 

Abstract—Pervasive computing envisions environments where 
computers are blended into everyday objects in order to provide 
added-value services to people. This new form of computing gives 
rise to huge economical and societal expectations. However, 
pervasive applications raise major challenges in term of software 
engineering and remain hard to develop, deploy, execute and 
maintain. Context-awareness, in particular, is a salient and 
difficult property that must be met by pervasive applications. In 
this paper, we propose a service-oriented framework facilitating 
the design and execution of a context management module in 
pervasive platforms. Our approach is illustrated with a smart 
home example and implemented on top of iPOJO, the Service-
Oriented Component Model of our pervasive platform iCasa. 

Keywords—context; software engineering; service-oriented 
components; pervasive computing. 

I. INTRODUCTION 
Pervasive computing envisions environments where smart 

devices are blended into everyday objects in order to provide 
added-value services to people [1] [2] [3] [4]. These devices 
are communication-enabled and can cooperate with each other 
in order to build up advanced applications (services). This new 
form of computing is set to become reality and is raising huge 
economical and societal expectations in domains like home, 
office, transportation, shopping, or even healthcare. Pervasive 
applications are designed to be invisible and non-obstructive. 
To provide the expected added-value services to users, they 
must rely on information extracted from the environment. Such 
information is called context. 

Context-awareness is indeed a salient property of pervasive 
applications. It means that an application is able to adapt its 
operations according to changes in its environment. In the first 
days of pervasive computing, context was essentially limited to 
location-awareness. Since then, it has evolved towards more 
elaborate models. Context represents any information that can 
be used to characterize an entity that is relevant to the 
interaction between a user and an application [5]. Building and 
maintaining context for one or several applications is very 
challenging. This is partly due to the fact that smart sensors 
used to capture information are heterogeneous, dynamic, 
unreliable and sometimes mobile (like a phone for instance). 

Current solutions are mostly ad hoc and do not exceed 
vertical, proprietary solutions very limited in terms of provided 
services. In particular, they are based on a closed world 
assumption and cannot deal gracefully with evolutions. We 
believe that advanced software engineering support is crucially 
needed here. Dealing with device heterogeneity and volatility, 
and continuous context evolution, is just too hard without 
adapted tooling. It demands too many hard-to-find technical 
skills, leading to difficult maintenance and error-prone code. 

We believe that developing pervasive applications must be 
based upon specific software environments hiding most of the 
complexity presented here before. A well-established solution 
is to delegate some technical features to an execution platform, 
also called middleware [6]. Middleware forms an abstraction 
layer that encompasses a set of common features and services, 
allowing developers to focus on the development of the added-
value service logic of the application. 

This approach can be applied to context management [5] 
[7] [8] [9]. Here, some context management operations are 
handled by the execution platform, and not by the application 
developers. Specifically, context middleware provides ways to 
support the development of context-aware applications, 
emphasizing the fundamental concerns of gathering, modeling, 
processing, and disseminating environmental information. 
However, we believe that some limitations remain in terms of 
usability, extensibility and degree of assistance. 

In this paper, we propose a service-oriented framework 
integrated on top of our pervasive platform, iCasa. This 
framework allows the straightforward definition of a context 
module and, at runtime, the dynamic construction of 
synchronized and observable entities. It also comes with 
architectural guidelines to ease development.  

This paper is divided into seven sections. We provide 
background about pervasive platforms and a motivating 
example in section II and III. Our approach and proposition are 
developed in sections IV and V. Section VI focuses on the 
implementation of our example. Finally, we conclude in 
section VII and VIII with related works, limitations of our 
approach and envisioned future work. 



   

II. PERVASIVE PLATFORMS AND CONTEXT 
An execution platform provides a development model and a 

set of non-functional services that can be used (often through 
annotations) by the applications. Generally, execution 
platforms handle a limited number of such services like, for 
instance, persistence, security or remote management, on 
behalf of the applications. Making the distinction between the 
execution platform and the hosted applications simplifies the 
complexity of development, debugging and administration. 
Pervasive platforms are usually based on the principles of 
Service-Oriented Computing (SOC) paradigm [10] where loose 
coupling between components enables dynamic adaptation and 
runtime evolution. This architecture level adaptability is crucial 
in pervasive computing in order to drive seamless adaptations 
when the environment changes. 

Current platforms are today able to provide very effective 
technical services. For instance, GatorTech [11] extends the 
OSGi framework with heterogeneous device access services. 
This is also the case of for PCOM/Base [12] or RoSe [13]. 
Other platforms introduced autonomic features. For instance, 
AMUSE [14] and ACCORD [15] propose specific component 
models to build autonomic applications.  

Integrating context management in pervasive platforms is a 
crucial and challenging task. Context can be defined as “any 
information that can be used to characterize the situation of an 
entity. An entity is a person, place, or object that is considered 
relevant to the interaction between a user and an application.” 
[5]. Entities are generally classified in the following categories: 

• Computing environment, including available memory, 
network, connectivity, devices, etc. 

• User environment, including current location, needs, 
situation, activity, preferences, etc. 

• Physical environment, including temperature, 
luminosity, ambient noise, humidity, etc. 

Entities are domain specific. Indeed, context is developed 
for a unique purpose: building applications. Previous works 
[16] [17] [18] have identified the main concerns that context 
middleware must handle and current techniques: 

• Context gathering: There are varieties of data sources 
to be exploited with specific acquisition processes 
(single/double way) and synchronization mechanisms. 

• Context modeling: Context is primarily a model of the 
environment. Many methods can be used to represent 
knowledge such as Key-Value, OO model, logic based 
model ontology or hybrid approach that combine 
precedent previous approaches. 

• Context processing: To ease application development, 
low-level entities like device state are not sufficient. 
Operations like inference, mediation, aggregation, or 
enrichment are needed to get higher-level information. 

• Context dissemination: Applications need to retrieve 
and interact with context information through queries 
or programming APIs for instance. 

However, implementing these facilities involves highly 
error-prone technical code from low-level synchronization to 
high-level mediation or enrichment operations.  

III. MOTIVATING SCENARIO 
Let us introduce our motivating scenario, based on iCasa1 

[19]. The iCasa environment is made of three tools: 

• An Integrated Development Environment based on an 
eclipse plug-in. It supports the development of iPOJO-
based application. 

• An execution platform, based on OSGi and RoSe, 
running on a home gateway, which hosts several 
applications and offers dynamic deployment facilities. 

• A smart home simulator (see Fig. 1) that supports the 
execution of predefined scenario, in order to quickly 
test pervasive applications. 

 
Fig. 1. iCasa simulator 

In this environment, several applications belonging to 
domains like safety, comfort or healthcare have been 
developed. These applications vary a lot in terms of technical 
requirements and needed context. For example, iCasa hosts 
part of a home care application called actimetrics which 
measures and analyses the motor activity of elderly. Its purpose 
is to track behavioral changes to early diagnosis degenerative 
diseases like Alzheimer [19]. 

For our motivating scenario, we will consider an 
application which runs only on the home gateway in order to 
focus on the capabilities delivered by the platform itself. We 
designed a simple Light Follow Me application: for each room 
of a house, it turns the lights off and on depending on the 
presence of a user, and adjusts light intensity as a function of 
the moment of the day (morning, afternoon, evening or night). 

The context needs of the Light Follow Me can be 
decomposed as it follows. First, the application relies on 
appropriate abstractions of lightning devices, spatial zones and 
time (modeling). Such abstractions must be synchronized with 
the physical devices (gathering). Then, the application requires 
knowing which device is in which zone (enrichment). The 
application computes physical parameters: presence and 
illumination per zone (processing). Finally, the application 
necessitates retrieving all this information (disseminating) and 
applying its business logic to affect the environment. 

In this paper, we show how to clearly separate context and 
application during development and execution phase. We also 
demonstrate how our tool helps the definition, deployment, and 
execution of a context program module on top of iCasa. 

 

1 http://self-star.imag.fr 



   

IV. PROPOSAL OVERVIEW 
We have defined and implemented a context management 

framework on top of iCasa, our operational pervasive platform. 
Its purpose is twofold. First, it provides assistance to 
developers for context definition through a well-defined set of 
abstractions and associated code. Second, it supports the 
execution of this context in dynamic environments. Most non-
functional aspects are kept hidden from application developers 
to help them focus on business code. Generic technical details 
of implementation, like synchronization, are simply specified 
with annotations and corresponding code is integrated at build 
time. 

In our approach, a context is a dynamic program module 
provided by the pervasive platform and used through API by 
the applications running on top of the platform. This is in 
contrast with the “database vision” of context where all 
possible information is collected and kept in a storage facility 
and made available through queries. 

As illustrated by Fig. 2, we are defending a two-step 
approach. First, domain engineers define a context that can be 
used by a set of applications that are expected to run on a same 
platform. Applications developers use this context in order to 
simplify their code and concentrate on business logic. Specific 
tooling based on model-driven engineering [20] is provided for 
that purpose. Second, context is transformed into an iCasa 
program module and is dynamically executed. This module 
relies on service-oriented computing, enhancing flexibility. 

 
Fig. 2. Overall apporach 

The first step, called Domain Engineering, can actually be 
complex and may involve several persons with different skills. 
The tasks to be performed are the following: 

• Identify and determine the necessary concepts to be 
included in the context. 

• Define the context per se (entities and relations between 
them) in conformance with a meta-model. 

• Select and integrate the communication drivers to 
access real devices at runtime. 

The execution platform relies on a domain-specific service-
oriented component model, iPOJO [21]. Context entities and 
relations are modeled as components. Properties of 
components represent the state of the associated entity. Code in 
charge of gathering information from the environment, and 
keeping the corresponding model synchronized, is 
encapsulated in each component. Each component can be 
exposed as a service, allowing easy dissemination of context 

information to applications. Context relations are represented 
as links between entities. 

V. PROPOSAL DETAILS 

A. Design-time support 
Context is a representation of the surrounding environment. 

As such, it can be regarded as a model [20] of the environment 
used by the pervasive applications. In our approach, context 
runtime management is delegated to the pervasive platform. 
The context model must then be made explicit, and kept 
separated from the application business code. 

Context is defined by domain experts. It must conform to a 
meta-model defining the different elements of a context and 
their possible relationships. This meta-model (presented in Fig. 
3) encompasses the different concerns (as depicted by the 
enclosed areas in the figure) that must be handled by the 
platform. 

Specifically, the core of the meta-model concerns context 
modeling, and is based on two main concepts: 

• Entity represents a concept of the context, characterized 
by a finite set of state properties. 

• Relation represents a binary relationship between 
entities in the context. This relation allows the context 
to be navigated by applications. It also enables to extend 
the definition of an entity through the extraction of state 
property values from a related entity. 

 
Fig. 3. Context metamodel 

After designing the conceptual model, made of entities and 
relations, a domain expert has to specify how this model has to 
be synchronized with the real environment. This is achieved by 
associating synchronization functions to the properties of the 
defined entities (as shown in the left part of the meta-model in 
Fig. 3). Synchronization functions are programmed in Java, 
and encapsulated in the code of the component corresponding 
to the entity. 

To support these design-time activities, our approach is 
based on a domain-specific specialization of the iPOJO 
component model [21]. Our proposed meta-model is in fact an 
extension (see the top right part of Fig. 3) of the iPOJO meta-
model, with the specific concepts required to deal with context. 

The concrete language used in iPOJO to define components 
is based on plain Java classes marked with annotations to 
declare non-functional aspects handled by the platform, see for 

 

 



   

illustration the component definition in Fig. 4. We have 
enhanced the iPOJO design-time tools to handle the specific 
annotations required to declare specialized context concepts 
(for example, annotation @ContextEntity in Fig. 4 allows 
specifying a context entity with a set of state properties). 

Sensors/actuators are represented as services. This is 
transparently managed by iPOJO and RoSe [13], as we will see 
in the implementation section. These facilities, along with the 
use of annotations to declaratively define the components, 
enable to keep the code at an abstract level, close to the 
conceptual problem space. Moreover, because context entities 
are themselves components, they can provide business services 
that can be easily discovered and consumed by the 
applications, thus facilitating context utilization. 

Notice that facilities to actually instantiate the component, 
publish the provided service in the service registry, discover 
and select the required services are automatically provided by 
the iPOJO framework at runtime, without cluttering the 
application code. 

Let us illustrate this on the Light Follow Me scenario. To 
model a lighting device, we can define an entity characterized, 
in particular, by a serial number and a property indicating the 
current state (on or off). 

1 @Component 
 2 @Provides(specifications = ContextEntity.class) 
 3 @ContextEntity  
 4  @State({ 
 5   BinaryLightContextEntityImpl.DEVICE_TYPE, 
 6   BinaryLight.DEVICE_SERIAL_NUMBER, 
 7   BinaryLight.BINARY_LIGHT_POWER_STATUS, 
 8   BinaryLight.BINARY_LIGHT_MAX_POWER_LEVEL 
 9  }) 
10  
11 public class BinaryLightContextEntityImpl implements  
12  fr.liglab.adele.icasa.context.model.ContextEntity, 
13  DeviceListener<BinaryLight> { 
14  
15  @Requires(id = "context.entity.device", 
16  filter ="(device.serialNumber=${context.entity.id})") 
17   
18  BinaryLight device; 
19  
20  @Pull(state = BinaryLight.BINARY_LIGHT_POWER_STATUS, 
21   period = 30, unit = TimeUnit.SECONDS) 
22  private final Function<String,Boolean> syncStatus = 
23  (String property)-> { return device.getPowerStatus();}; 
24  
25  @Set(state = BinaryLight.BINARY_LIGHT_POWER_STATUS) 
26  private final Consumer<Boolean> propagateStatus = 
27  (Boolean newStatus)-> { 
28   if (newStatus) { device.turnOn(); }  
29   else { device.turnOff();} 
30  }; 
31  
32  @Override public void devicePropertyModified( 
33   BinaryLight device, String propertyName, 
34   Object oldValue, Object newValue) { 
35   pushState(propertyName, newValue); 
36  } 
37 } 

Fig. 4. Java code for a context entity component 

The corresponding iPOJO component is shown in Fig. 4: 
the component is implemented by class 
BinaryLightContextEntityImpl (marked as a 
@Component, and concretely a @ContextEntity) that 
provides (line 2) and requires (line 15-18) services (in this 
case, we require a reference to the physical actuator that allows 
to control the light). The example also shows a @Pull 
synchronization function (line 20-23) that will be invoked 
periodically (every 30 seconds) to keep the context property 
BINARY_LIGHT_POWER_STATUS updated with the last 

value from the physical sensor. Similarly, it shows a @Set 
function (line 25-30) that will be invoked each time an 
application changes the value of the state property, to 
propagate it to the environment, using the appropriate physical 
actuator. 

Likewise, spatial zones can be represented by another 
entity. These entities can further be enriched by adding 
relations. For example, relating a light with a room will 
provide an additional location state for the light. The main 
interest of clearly separating entity and relation is to enhance 
the extensibility of our system. At runtime, the platform will 
dynamically build a graph of instances of the defined 
components to represent the current state of the environment. 

B. Runtime support 
Our framework has been designed to be integrated in the 

operational pervasive platform iCasa [19]. iCasa supports the 
execution of dynamic Java applications, on top of the OSGi 
service platform and the iPOJO service-oriented component 
model [21]. The iCasa infrastructure offers various technical 
services necessary to develop pervasive applications, like task 
scheduling, event management or autonomic managers. 
However, iCasa currently focuses only on developing 
pervasive applications, and does not provide specific tools to 
handle dynamic and extensible context management.  

 
Fig. 5. Simplified example of context model – Component and service view 

Because context components are iPOJO components, they 
can be directly packaged and deployed to the iCasa platform. 
However, the iPOJO runtime must be extended to handle the 
newly added context-related functions. The iPOJO framework 
is based on the concept of runtime containers, in charge of the 
life-cycle of components, as depicted in Fig. 5. Containers use 
bytecode instrumentation to take full control of the execution 
of the component: they can, for example, instantiate objects, 
intercept method invocations or field accesses. 

Component containers can be extended by iPOJO modules, 
called handers. The framework provides a number of off-the-
shelf handlers in charge of global aspects of the platform, like 
service publishing or dependency injection. More importantly, 
as shown in Fig. 5, it is possible to develop new iPOJO 
handlers to take charge at runtime of particular concerns. 

 



   

We implemented two new iPOJO handlers dealing with 
specific context concerns. The handlers are described as 
follow: 

• Synchronization Handler: It is in charge of dealing 
with the state synchronization of entity components. It 
keeps the state properties up-to-date by managing the 
synchronization functions. Different strategies can be 
specified to do so. For example, the handler can 
periodically call pull functions or just wait for push 
callbacks to keep the state up-to-date. Additionally, the 
handler is in charge of publishing state properties as 
service properties. This publication has two main 
interests. It allows processing of more advanced filters 
and state updates can be reported to the application 
without the burden of an Observer pattern, by relying 
on iPOJO notification mechanism. 

• Relation Handler: It is in charge of dealing with 
relations and extending properly the state of an entity. 
It tracks and filters all the relations targeting its 
attached entity component. If an instance of entity 
disappears (e.g. a light is removed from a house), 
associated relations and linked state extensions are 
automatically invalidated and deleted. 

VI. IMPLEMENTATION AND APPLICATION 
In order to validate the framework, we developed the Light 

Follow Me application; it corresponds to the scenario 
previously described in part III. Fig. 6 shows an overview of 
the application on the iCasa simulator. This is a typical 
pervasive scenario in which the light must “follow” the user 
(simulation shown in the left part of Fig. 6). The idea is simple 
but the implementation fulfilling pervasive needs is complex. 
Indeed, it is not an easy task to model the relevant concepts as 
a whole and not independently. 

 
Fig. 6. Light Follow Me application – iCasa simulator overview 

Our framework gives an understandable representation of 
the global context. The bottom right corner of Fig. 6 presents 
the graph of the model displayed on the iCasa simulator: 
devices are gathered by location, each room is enhanced with 
a physical parameter aggregating and synthesizing presence 
status, and an independent entity provides the moment of the 
day. In addition of the graph view, the simulator can display 
state properties and state extensions of an entity. This 
functionality is shown on Fig. 7 with light_A. Both reflect 
data at runtime. 

 
Fig. 7. Light Follow Me application – zoom on the kitchen 

Our framework gives significant results from application 
development perspective (see TABLE I). Inevitably, formally 
building the context adds an additional development task and 
the resulting architecture is more complicated. However, it’s 
easier to implement applications on top of it. The context is 
shared among applications, is extensible, and can be adjusted 
to fit new needs. The whole software is more consistent, 
testable and maintainable. 

TABLE I. LIGHT FOLLOW ME APPLICATION IMPLEMENTATION 
STATISTICS 

Implementation 
Statistics 

Application impl. Number of 
LOCa for the 

moment of 
the day impl. 

Total number 
of LOCa 

Number of LOCa 
per component 

Initial impl. 829 581 95 
Impl. with our 
framework 623 217 107 

Framework 
improvement 25% 62% -13% 

a. LOC: Lines Of Code 

VII. RELATED WORK 
Developing context-aware applications is one of the hot 

research topics for the last decade. Naturally many software 
architectures emerged to reach this goal. We compare our 
proposed architecture to the existing ones: The Context Toolkit 
[5], COSMOS [7], SOCAM [8] and another SOC-based 
context model [9]. Many more architectures are available, but 
these ones are representative of the global trend. 

The Context Toolkit promotes code-reuse through the 
composition of distinct artifact called widgets to build the 
context. These widgets are used to hide the complexity of 
sensors and abstract context information in a suitable way to 
fit applications need. These reusable blocks are explicitly 
linked at design-time, each block deciding which blocks to 
use. Our approach is similar in the sense that we divide the 
context in individual small pieces. The key differences with 
our work are that we delegate the composition at runtime with 
more variability expressed at design-time thanks to SOCM 
properties. Moreover our entity relation like model offers 
more flexibility to design complex context. 

COSMOS, COntext entitieS coMpositiOn and Sharing, is a 
component based context middleware. Each pieces of context 
is reified as a component called Context Node organized in a 

 

 



   

hierarchical structure. This approach and ours address the 
separation of concerns by offering several built-in mechanisms 
like push/pull notifications and reduce the developer’s work. 
However, the strictly hierarchical approach of COSMOS 
context makes difficult to model it with horizontal relation. 
Moreover, component specifications are strictly defined at 
design-time, so runtime extensibility proposed by our system 
of relation will be hard to achieve. 

The Service-Oriented Context Aware Middleware 
(SOCAM) is an ontology based context middleware. SOCAM 
architectures relying on several components: Context Providers 
(extracting context from internal and external data sources, and 
converting them in ontological instance), Context Interpreter 
(reasoning engine performing inference to extract high-level 
context and store it in knowledge base), Context-aware Mobile 
Service (application that consume context), and Service 
Locating Service (a registry where provider and interpreter are 
registered, where other components can search specific 
providers or interpreters to fit their needs). SOCAM envisions 
a highly structured context model with ontology in order to 
benefit from all the powerful processing tools induced by this 
approach, like reasoning engine. So it generates a 
programming model through a query language and rules, 
contrary to our programming model that relies on Java services 
specifications that we consider more adapted to develop added-
value services. 

In [9], a work dealing with proactive adaptation and context 
management based on a SOCM architecture is presented. It 
underlines the fact that context interactivity is not just about 
providing the most powerful modeling and reasoning engine. 
Indeed, applications also can deal with context in a proactive 
manner, with the ability to change the context through 
actuators. Our approach, in this sense, is very similar because 
previous works say little about how to influence context. 
However, to achieve this goal, a specific query language that 
generates a cost on the learning curve is provided, whereas we 
prefer a traditional Java programming model. 

VIII. CONCLUSION 
In this paper we presented a comprehensive approach to 

build and run context that specifically addresses fundamental 
concerns like gathering, modeling, processing and 
disseminating information. This solution can be integrated in 
an enriched execution platform as demonstrated. Our work 
focuses on providing tools to build and execute a runtime 
extensible model of context. This model is synchronized with 
external entities and can be enriched dynamically by new 
relations or entities. Applications developed using SOC 
paradigm upon this model can also dynamically add new 
elements in the context in order to better fit their needs. 

So far, we have focused on feasibility of the approach, so a 
number of limitations remain, especially at the implementation 
level. While the model is extensible at runtime, applications 
can only access extended entities using a generic API, losing 
all usability advantages of Java strong typing. Moreover, our 
runtime implementation currently maintains a possibly large, 
in-memory, representation of context. Additional performance 

optimizations are required to cope with the needs of realistic 
applications, in terms of memory scalability and footprint. 

Further perspectives of our work include extensions to 
handle more complex synchronization scenarios. Particularly, 
the platform should support developers to handle automatic 
creation of application-specific entities and relations. We argue 
that the usage of software engineering tools, like the proposed 
domain-specific context language, can provide an adapted 
support for this case. 
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