
A Model-Based Approach to Context Management
in Pervasive Platforms

Colin Aygalinc1, Eva Gerbert-Gaillard1, German Vega1,

Philippe Lalanda1 and Stéphanie Chollet2

1Université Grenoble Alpes
Laboratoire LIG, CS 40700

38058 Grenoble, France
firstname.lastname@imag.fr

2Université Grenoble Alpes
Laboratoire LCIS

26900 Valence, France
stephanie.chollet@lcis.grenoble-inp.fr

Abstract—Pervasive computing envisions environments where
computers are blended into everyday objects in order to provide
added-value services to people. This new form of computing gives
rise to huge economical and societal expectations. However,
pervasive applications raise major challenges in term of software
engineering and remain hard to develop, deploy, execute and
maintain. Context-awareness, in particular, is a salient and
difficult property that must be met by pervasive applications. In
this paper, we propose a service-oriented framework facilitating
the design and execution of a context management module in
pervasive platforms. Our approach is illustrated with a smart
home example and implemented on top of iPOJO, the Service-
Oriented Component Model of our pervasive platform iCasa.

Keywords—context; software engineering; service-oriented
components; pervasive computing.

I. INTRODUCTION
Pervasive computing envisions environments where smart

devices are blended into everyday objects in order to provide
added-value services to people [1] [2] [3] [4]. These devices
are communication-enabled and can cooperate with each other
in order to build up advanced applications (services). This new
form of computing is set to become reality and is raising huge
economical and societal expectations in domains like home,
office, transportation, shopping, or even healthcare. Pervasive
applications are designed to be invisible and non-obstructive.
To provide the expected added-value services to users, they
must rely on information extracted from the environment. Such
information is called context.

Context-awareness is indeed a salient property of pervasive
applications. It means that an application is able to adapt its
operations according to changes in its environment. In the first
days of pervasive computing, context was essentially limited to
location-awareness. Since then, it has evolved towards more
elaborate models. Context represents any information that can
be used to characterize an entity that is relevant to the
interaction between a user and an application [5]. Building and
maintaining context for one or several applications is very
challenging. This is partly due to the fact that smart sensors
used to capture information are heterogeneous, dynamic,
unreliable and sometimes mobile (like a phone for instance).

Current solutions are mostly ad hoc and do not exceed
vertical, proprietary solutions very limited in terms of provided
services. In particular, they are based on a closed world
assumption and cannot deal gracefully with evolutions. We
believe that advanced software engineering support is crucially
needed here. Dealing with device heterogeneity and volatility,
and continuous context evolution, is just too hard without
adapted tooling. It demands too many hard-to-find technical
skills, leading to difficult maintenance and error-prone code.

We believe that developing pervasive applications must be
based upon specific software environments hiding most of the
complexity presented here before. A well-established solution
is to delegate some technical features to an execution platform,
also called middleware [6]. Middleware forms an abstraction
layer that encompasses a set of common features and services,
allowing developers to focus on the development of the added-
value service logic of the application.

This approach can be applied to context management [5]
[7] [8] [9]. Here, some context management operations are
handled by the execution platform, and not by the application
developers. Specifically, context middleware provides ways to
support the development of context-aware applications,
emphasizing the fundamental concerns of gathering, modeling,
processing, and disseminating environmental information.
However, we believe that some limitations remain in terms of
usability, extensibility and degree of assistance.

In this paper, we propose a service-oriented framework
integrated on top of our pervasive platform, iCasa. This
framework allows the straightforward definition of a context
module and, at runtime, the dynamic construction of
synchronized and observable entities. It also comes with
architectural guidelines to ease development.

This paper is divided into seven sections. We provide
background about pervasive platforms and a motivating
example in section II and III. Our approach and proposition are
developed in sections IV and V. Section VI focuses on the
implementation of our example. Finally, we conclude in
section VII and VIII with related works, limitations of our
approach and envisioned future work.

II. PERVASIVE PLATFORMS AND CONTEXT
An execution platform provides a development model and a

set of non-functional services that can be used (often through
annotations) by the applications. Generally, execution
platforms handle a limited number of such services like, for
instance, persistence, security or remote management, on
behalf of the applications. Making the distinction between the
execution platform and the hosted applications simplifies the
complexity of development, debugging and administration.
Pervasive platforms are usually based on the principles of
Service-Oriented Computing (SOC) paradigm [10] where loose
coupling between components enables dynamic adaptation and
runtime evolution. This architecture level adaptability is crucial
in pervasive computing in order to drive seamless adaptations
when the environment changes.

Current platforms are today able to provide very effective
technical services. For instance, GatorTech [11] extends the
OSGi framework with heterogeneous device access services.
This is also the case of for PCOM/Base [12] or RoSe [13].
Other platforms introduced autonomic features. For instance,
AMUSE [14] and ACCORD [15] propose specific component
models to build autonomic applications.

Integrating context management in pervasive platforms is a
crucial and challenging task. Context can be defined as “any
information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application.”
[5]. Entities are generally classified in the following categories:

• Computing environment, including available memory,
network, connectivity, devices, etc.

• User environment, including current location, needs,
situation, activity, preferences, etc.

• Physical environment, including temperature,
luminosity, ambient noise, humidity, etc.

Entities are domain specific. Indeed, context is developed
for a unique purpose: building applications. Previous works
[16] [17] [18] have identified the main concerns that context
middleware must handle and current techniques:

• Context gathering: There are varieties of data sources
to be exploited with specific acquisition processes
(single/double way) and synchronization mechanisms.

• Context modeling: Context is primarily a model of the
environment. Many methods can be used to represent
knowledge such as Key-Value, OO model, logic based
model ontology or hybrid approach that combine
precedent previous approaches.

• Context processing: To ease application development,
low-level entities like device state are not sufficient.
Operations like inference, mediation, aggregation, or
enrichment are needed to get higher-level information.

• Context dissemination: Applications need to retrieve
and interact with context information through queries
or programming APIs for instance.

However, implementing these facilities involves highly
error-prone technical code from low-level synchronization to
high-level mediation or enrichment operations.

III. MOTIVATING SCENARIO
Let us introduce our motivating scenario, based on iCasa1

[19]. The iCasa environment is made of three tools:

• An Integrated Development Environment based on an
eclipse plug-in. It supports the development of iPOJO-
based application.

• An execution platform, based on OSGi and RoSe,
running on a home gateway, which hosts several
applications and offers dynamic deployment facilities.

• A smart home simulator (see Fig. 1) that supports the
execution of predefined scenario, in order to quickly
test pervasive applications.

Fig. 1. iCasa simulator

In this environment, several applications belonging to
domains like safety, comfort or healthcare have been
developed. These applications vary a lot in terms of technical
requirements and needed context. For example, iCasa hosts
part of a home care application called actimetrics which
measures and analyses the motor activity of elderly. Its purpose
is to track behavioral changes to early diagnosis degenerative
diseases like Alzheimer [19].

For our motivating scenario, we will consider an
application which runs only on the home gateway in order to
focus on the capabilities delivered by the platform itself. We
designed a simple Light Follow Me application: for each room
of a house, it turns the lights off and on depending on the
presence of a user, and adjusts light intensity as a function of
the moment of the day (morning, afternoon, evening or night).

The context needs of the Light Follow Me can be
decomposed as it follows. First, the application relies on
appropriate abstractions of lightning devices, spatial zones and
time (modeling). Such abstractions must be synchronized with
the physical devices (gathering). Then, the application requires
knowing which device is in which zone (enrichment). The
application computes physical parameters: presence and
illumination per zone (processing). Finally, the application
necessitates retrieving all this information (disseminating) and
applying its business logic to affect the environment.

In this paper, we show how to clearly separate context and
application during development and execution phase. We also
demonstrate how our tool helps the definition, deployment, and
execution of a context program module on top of iCasa.

1 http://self-star.imag.fr

IV. PROPOSAL OVERVIEW
We have defined and implemented a context management

framework on top of iCasa, our operational pervasive platform.
Its purpose is twofold. First, it provides assistance to
developers for context definition through a well-defined set of
abstractions and associated code. Second, it supports the
execution of this context in dynamic environments. Most non-
functional aspects are kept hidden from application developers
to help them focus on business code. Generic technical details
of implementation, like synchronization, are simply specified
with annotations and corresponding code is integrated at build
time.

In our approach, a context is a dynamic program module
provided by the pervasive platform and used through API by
the applications running on top of the platform. This is in
contrast with the “database vision” of context where all
possible information is collected and kept in a storage facility
and made available through queries.

As illustrated by Fig. 2, we are defending a two-step
approach. First, domain engineers define a context that can be
used by a set of applications that are expected to run on a same
platform. Applications developers use this context in order to
simplify their code and concentrate on business logic. Specific
tooling based on model-driven engineering [20] is provided for
that purpose. Second, context is transformed into an iCasa
program module and is dynamically executed. This module
relies on service-oriented computing, enhancing flexibility.

Fig. 2. Overall apporach

The first step, called Domain Engineering, can actually be
complex and may involve several persons with different skills.
The tasks to be performed are the following:

• Identify and determine the necessary concepts to be
included in the context.

• Define the context per se (entities and relations between
them) in conformance with a meta-model.

• Select and integrate the communication drivers to
access real devices at runtime.

The execution platform relies on a domain-specific service-
oriented component model, iPOJO [21]. Context entities and
relations are modeled as components. Properties of
components represent the state of the associated entity. Code in
charge of gathering information from the environment, and
keeping the corresponding model synchronized, is
encapsulated in each component. Each component can be
exposed as a service, allowing easy dissemination of context

information to applications. Context relations are represented
as links between entities.

V. PROPOSAL DETAILS

A. Design-time support
Context is a representation of the surrounding environment.

As such, it can be regarded as a model [20] of the environment
used by the pervasive applications. In our approach, context
runtime management is delegated to the pervasive platform.
The context model must then be made explicit, and kept
separated from the application business code.

Context is defined by domain experts. It must conform to a
meta-model defining the different elements of a context and
their possible relationships. This meta-model (presented in Fig.
3) encompasses the different concerns (as depicted by the
enclosed areas in the figure) that must be handled by the
platform.

Specifically, the core of the meta-model concerns context
modeling, and is based on two main concepts:

• Entity represents a concept of the context, characterized
by a finite set of state properties.

• Relation represents a binary relationship between
entities in the context. This relation allows the context
to be navigated by applications. It also enables to extend
the definition of an entity through the extraction of state
property values from a related entity.

Fig. 3. Context metamodel

After designing the conceptual model, made of entities and
relations, a domain expert has to specify how this model has to
be synchronized with the real environment. This is achieved by
associating synchronization functions to the properties of the
defined entities (as shown in the left part of the meta-model in
Fig. 3). Synchronization functions are programmed in Java,
and encapsulated in the code of the component corresponding
to the entity.

To support these design-time activities, our approach is
based on a domain-specific specialization of the iPOJO
component model [21]. Our proposed meta-model is in fact an
extension (see the top right part of Fig. 3) of the iPOJO meta-
model, with the specific concepts required to deal with context.

The concrete language used in iPOJO to define components
is based on plain Java classes marked with annotations to
declare non-functional aspects handled by the platform, see for

illustration the component definition in Fig. 4. We have
enhanced the iPOJO design-time tools to handle the specific
annotations required to declare specialized context concepts
(for example, annotation @ContextEntity in Fig. 4 allows
specifying a context entity with a set of state properties).

Sensors/actuators are represented as services. This is
transparently managed by iPOJO and RoSe [13], as we will see
in the implementation section. These facilities, along with the
use of annotations to declaratively define the components,
enable to keep the code at an abstract level, close to the
conceptual problem space. Moreover, because context entities
are themselves components, they can provide business services
that can be easily discovered and consumed by the
applications, thus facilitating context utilization.

Notice that facilities to actually instantiate the component,
publish the provided service in the service registry, discover
and select the required services are automatically provided by
the iPOJO framework at runtime, without cluttering the
application code.

Let us illustrate this on the Light Follow Me scenario. To
model a lighting device, we can define an entity characterized,
in particular, by a serial number and a property indicating the
current state (on or off).

1 @Component
 2 @Provides(specifications = ContextEntity.class)
 3 @ContextEntity
 4 @State({
 5 BinaryLightContextEntityImpl.DEVICE_TYPE,
 6 BinaryLight.DEVICE_SERIAL_NUMBER,
 7 BinaryLight.BINARY_LIGHT_POWER_STATUS,
 8 BinaryLight.BINARY_LIGHT_MAX_POWER_LEVEL
 9 })
10
11 public class BinaryLightContextEntityImpl implements
12 fr.liglab.adele.icasa.context.model.ContextEntity,
13 DeviceListener<BinaryLight> {
14
15 @Requires(id = "context.entity.device",
16 filter ="(device.serialNumber=${context.entity.id})")
17
18 BinaryLight device;
19
20 @Pull(state = BinaryLight.BINARY_LIGHT_POWER_STATUS,
21 period = 30, unit = TimeUnit.SECONDS)
22 private final Function<String,Boolean> syncStatus =
23 (String property)-> { return device.getPowerStatus();};
24
25 @Set(state = BinaryLight.BINARY_LIGHT_POWER_STATUS)
26 private final Consumer<Boolean> propagateStatus =
27 (Boolean newStatus)-> {
28 if (newStatus) { device.turnOn(); }
29 else { device.turnOff();}
30 };
31
32 @Override public void devicePropertyModified(
33 BinaryLight device, String propertyName,
34 Object oldValue, Object newValue) {
35 pushState(propertyName, newValue);
36 }
37 }

Fig. 4. Java code for a context entity component

The corresponding iPOJO component is shown in Fig. 4:
the component is implemented by class
BinaryLightContextEntityImpl (marked as a
@Component, and concretely a @ContextEntity) that
provides (line 2) and requires (line 15-18) services (in this
case, we require a reference to the physical actuator that allows
to control the light). The example also shows a @Pull
synchronization function (line 20-23) that will be invoked
periodically (every 30 seconds) to keep the context property
BINARY_LIGHT_POWER_STATUS updated with the last

value from the physical sensor. Similarly, it shows a @Set
function (line 25-30) that will be invoked each time an
application changes the value of the state property, to
propagate it to the environment, using the appropriate physical
actuator.

Likewise, spatial zones can be represented by another
entity. These entities can further be enriched by adding
relations. For example, relating a light with a room will
provide an additional location state for the light. The main
interest of clearly separating entity and relation is to enhance
the extensibility of our system. At runtime, the platform will
dynamically build a graph of instances of the defined
components to represent the current state of the environment.

B. Runtime support
Our framework has been designed to be integrated in the

operational pervasive platform iCasa [19]. iCasa supports the
execution of dynamic Java applications, on top of the OSGi
service platform and the iPOJO service-oriented component
model [21]. The iCasa infrastructure offers various technical
services necessary to develop pervasive applications, like task
scheduling, event management or autonomic managers.
However, iCasa currently focuses only on developing
pervasive applications, and does not provide specific tools to
handle dynamic and extensible context management.

Fig. 5. Simplified example of context model – Component and service view

Because context components are iPOJO components, they
can be directly packaged and deployed to the iCasa platform.
However, the iPOJO runtime must be extended to handle the
newly added context-related functions. The iPOJO framework
is based on the concept of runtime containers, in charge of the
life-cycle of components, as depicted in Fig. 5. Containers use
bytecode instrumentation to take full control of the execution
of the component: they can, for example, instantiate objects,
intercept method invocations or field accesses.

Component containers can be extended by iPOJO modules,
called handers. The framework provides a number of off-the-
shelf handlers in charge of global aspects of the platform, like
service publishing or dependency injection. More importantly,
as shown in Fig. 5, it is possible to develop new iPOJO
handlers to take charge at runtime of particular concerns.

We implemented two new iPOJO handlers dealing with
specific context concerns. The handlers are described as
follow:

• Synchronization Handler: It is in charge of dealing
with the state synchronization of entity components. It
keeps the state properties up-to-date by managing the
synchronization functions. Different strategies can be
specified to do so. For example, the handler can
periodically call pull functions or just wait for push
callbacks to keep the state up-to-date. Additionally, the
handler is in charge of publishing state properties as
service properties. This publication has two main
interests. It allows processing of more advanced filters
and state updates can be reported to the application
without the burden of an Observer pattern, by relying
on iPOJO notification mechanism.

• Relation Handler: It is in charge of dealing with
relations and extending properly the state of an entity.
It tracks and filters all the relations targeting its
attached entity component. If an instance of entity
disappears (e.g. a light is removed from a house),
associated relations and linked state extensions are
automatically invalidated and deleted.

VI. IMPLEMENTATION AND APPLICATION
In order to validate the framework, we developed the Light

Follow Me application; it corresponds to the scenario
previously described in part III. Fig. 6 shows an overview of
the application on the iCasa simulator. This is a typical
pervasive scenario in which the light must “follow” the user
(simulation shown in the left part of Fig. 6). The idea is simple
but the implementation fulfilling pervasive needs is complex.
Indeed, it is not an easy task to model the relevant concepts as
a whole and not independently.

Fig. 6. Light Follow Me application – iCasa simulator overview

Our framework gives an understandable representation of
the global context. The bottom right corner of Fig. 6 presents
the graph of the model displayed on the iCasa simulator:
devices are gathered by location, each room is enhanced with
a physical parameter aggregating and synthesizing presence
status, and an independent entity provides the moment of the
day. In addition of the graph view, the simulator can display
state properties and state extensions of an entity. This
functionality is shown on Fig. 7 with light_A. Both reflect
data at runtime.

Fig. 7. Light Follow Me application – zoom on the kitchen

Our framework gives significant results from application
development perspective (see TABLE I). Inevitably, formally
building the context adds an additional development task and
the resulting architecture is more complicated. However, it’s
easier to implement applications on top of it. The context is
shared among applications, is extensible, and can be adjusted
to fit new needs. The whole software is more consistent,
testable and maintainable.

TABLE I. LIGHT FOLLOW ME APPLICATION IMPLEMENTATION
STATISTICS

Implementation
Statistics

Application impl. Number of
LOCa for the

moment of
the day impl.

Total number
of LOCa

Number of LOCa
per component

Initial impl. 829 581 95
Impl. with our
framework 623 217 107

Framework
improvement 25% 62% -13%

a. LOC: Lines Of Code

VII. RELATED WORK
Developing context-aware applications is one of the hot

research topics for the last decade. Naturally many software
architectures emerged to reach this goal. We compare our
proposed architecture to the existing ones: The Context Toolkit
[5], COSMOS [7], SOCAM [8] and another SOC-based
context model [9]. Many more architectures are available, but
these ones are representative of the global trend.

The Context Toolkit promotes code-reuse through the
composition of distinct artifact called widgets to build the
context. These widgets are used to hide the complexity of
sensors and abstract context information in a suitable way to
fit applications need. These reusable blocks are explicitly
linked at design-time, each block deciding which blocks to
use. Our approach is similar in the sense that we divide the
context in individual small pieces. The key differences with
our work are that we delegate the composition at runtime with
more variability expressed at design-time thanks to SOCM
properties. Moreover our entity relation like model offers
more flexibility to design complex context.

COSMOS, COntext entitieS coMpositiOn and Sharing, is a
component based context middleware. Each pieces of context
is reified as a component called Context Node organized in a

hierarchical structure. This approach and ours address the
separation of concerns by offering several built-in mechanisms
like push/pull notifications and reduce the developer’s work.
However, the strictly hierarchical approach of COSMOS
context makes difficult to model it with horizontal relation.
Moreover, component specifications are strictly defined at
design-time, so runtime extensibility proposed by our system
of relation will be hard to achieve.

The Service-Oriented Context Aware Middleware
(SOCAM) is an ontology based context middleware. SOCAM
architectures relying on several components: Context Providers
(extracting context from internal and external data sources, and
converting them in ontological instance), Context Interpreter
(reasoning engine performing inference to extract high-level
context and store it in knowledge base), Context-aware Mobile
Service (application that consume context), and Service
Locating Service (a registry where provider and interpreter are
registered, where other components can search specific
providers or interpreters to fit their needs). SOCAM envisions
a highly structured context model with ontology in order to
benefit from all the powerful processing tools induced by this
approach, like reasoning engine. So it generates a
programming model through a query language and rules,
contrary to our programming model that relies on Java services
specifications that we consider more adapted to develop added-
value services.

In [9], a work dealing with proactive adaptation and context
management based on a SOCM architecture is presented. It
underlines the fact that context interactivity is not just about
providing the most powerful modeling and reasoning engine.
Indeed, applications also can deal with context in a proactive
manner, with the ability to change the context through
actuators. Our approach, in this sense, is very similar because
previous works say little about how to influence context.
However, to achieve this goal, a specific query language that
generates a cost on the learning curve is provided, whereas we
prefer a traditional Java programming model.

VIII. CONCLUSION
In this paper we presented a comprehensive approach to

build and run context that specifically addresses fundamental
concerns like gathering, modeling, processing and
disseminating information. This solution can be integrated in
an enriched execution platform as demonstrated. Our work
focuses on providing tools to build and execute a runtime
extensible model of context. This model is synchronized with
external entities and can be enriched dynamically by new
relations or entities. Applications developed using SOC
paradigm upon this model can also dynamically add new
elements in the context in order to better fit their needs.

So far, we have focused on feasibility of the approach, so a
number of limitations remain, especially at the implementation
level. While the model is extensible at runtime, applications
can only access extended entities using a generic API, losing
all usability advantages of Java strong typing. Moreover, our
runtime implementation currently maintains a possibly large,
in-memory, representation of context. Additional performance

optimizations are required to cope with the needs of realistic
applications, in terms of memory scalability and footprint.

Further perspectives of our work include extensions to
handle more complex synchronization scenarios. Particularly,
the platform should support developers to handle automatic
creation of application-specific entities and relations. We argue
that the usage of software engineering tools, like the proposed
domain-specific context language, can provide an adapted
support for this case.

REFERENCES
[1] M. Weiser, “The computer for the 21st century,” in Scientific american,

vol. 265, pp. 94-104, 1991.
[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” in

Personal Communications, IEEE, vol. 8, pp. 10–17, 2001.
[3] F. Mattern, “The vision and technical foundations of ubiquitous

computing,” in Upgrade European Online Magazine, pp. 5-8, 2001.
[4] L. Atzori, A. Iera and G. Morabito, “The Internet of things: a survey,” in

Computer Networks, vol. 54, pp. 2787-2805, October 2010.
[5] A. K. Dey, “Understanding and using context,” in Personal and

ubiquitous computing, vol. 5, pp. 4-7, 2001.
[6] V. Issarny, M. Caporuscio and N. Georgantas, “A perspective on the

future of middleware-based software engineering,” in 2007 Future of
Software Engineering, pp. 244-258, May 2007.

[7] D. Conan, R. Rouvoy and L. Seinturier, “Scalable processing of context
information with COSMOS,” in Distributed Applications and
Interoperable Systems, pp. 210-224, January 2007.

[8] T. Gu, H. K. Pung and D. Q. Zhang, “A service-oriented middleware for
building context-aware services,” in Journal of Network and computer
applications, vol. 28,pp. 1-18, 2005.

[9] S. VanSyckel, G. Schiele and C. Becker, “Extending context management
for proactive adaptation in pervasive environments,” in Ubiquitous
Information Technologies and Applications, pp. 823-831, 2013.

[10] M.P. Papazouglou and D. Georgakopoulos, “Service-oriented
computing,” in Communications of the ACM, vol. 46, issue 10, 2003.

[11] S. Helal et al., “The gator tech smart house: a programmable pervasive
space,” in Computer, vol. 38, pp. 50–60, 2005.

[12] C. Becker, M. Handte, G.Schiele and K.Rothermel, “PCOM – a
component system for pervasive computing,” in Pervasive Computing
Communications, pp.67-76, 2004.

[13] J. Bardin, P. Lalanda and C. Escoffier, “Towards an automatic integration
of heterogeneous services and devices,” in Service Computing
Conference, pp. 171-178, December 2010.

[14] E. Lupu et al., “AMUSE: Autonomic management of ubiquitous e-health
systems,” in Concurrency and Computation: Practice and Experience,
vol. 20, pp. 277–295, 2008.

[15] H. Liu, M. Parashar, and S. Hariri, “A component-based programming
model for autonomic applications,” in Autonomic Computing, pp. 10-
17, 2004.

[16] S. Lee, J. Chang and S. G. Lee, “Survey and trend analysis of context-
aware systems,” in Information-An International Interdisciplinary
Journal, vol. 14, pp. 527-548, 2011.

[17] C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos, “Context
aware computing for the internet of things: a survey,” in
Communications Surveys & Tutorials, vol. 16, pp. 414-454, 2014.

[18] C. Bettini et al., “A survey of context modelling and reasoning
techniques,” in Pervasive and Mobile Computing, pp. 161-180, 2010.

[19] P. Lalanda, S. Chollet, C. Aygalinc and E. Gerbert-Gaillard, “Service-
based architecture and frameworks for pervasive health application,” in
Emerging Technologies & Factory Automation, pp. 1-8, 2015.

[20] E. Seidewitz, “What models mean,” in IEEE software, pp. 26-32, 2003.
[21] C. Escoffier, R. S. Hall and P. Lalanda, “iPOJO: an extensible service-

oriented component framework,” in Service Computing, pp. 474-481,
2007.

