
HAL Id: hal-01370442
https://hal.science/hal-01370442v1

Submitted on 31 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Service-Oriented Context for Pervasive
Applications

Colin Aygalinc, Gerbert-Gaillard Eva, German Vega, Philippe Lalanda,
Stéphanie Chollet

To cite this version:
Colin Aygalinc, Gerbert-Gaillard Eva, German Vega, Philippe Lalanda, Stéphanie Chollet. Autonomic
Service-Oriented Context for Pervasive Applications. 13th IEEE International Conference on Services
Computing, Jun 2016, San Fransisco, CA, United States. �10.1109/SCC.2016.70�. �hal-01370442�

https://hal.science/hal-01370442v1
https://hal.archives-ouvertes.fr

Autonomic service-oriented context for pervasive

applications

Colin Aygalinc, Eva Gerbert-Gaillard, German

Vega, Philippe Lalanda

Grenoble University, Laboratoire LIG

38058 Grenoble, France

firstname.lastname@imag.fr

Stephanie Chollet

Grenoble University, Laboratoire LCIS

26900 Valence, France

stephanie.chollet@lcis.grenoble-inp.fr

Abstract—Pervasive computing promotes environments where

smart, communication-enabled devices cooperate to provide

services to people. Due to their inherent complexity, many

pervasive applications are built on top of service-oriented

platforms, providing a set of facilities simplifying their

development and execution. In this paper, we present such a

platform, iCasa, extended with an autonomic, service-oriented

context module. This module is programmed with a domain-

specific service-oriented language built on top of iPOJO, the

Apache service-oriented component model. It is validated on

smart home applications developed with the Orange Labs.

Keywords—pervasive computing; context; service-oriented

components.

I. INTRODUCTION

Pervasive computing envisions environments where smart
devices are blended into everyday objects in order to provide
added-value services to people [1] [2] [3] [4]. These devices
are communication-enabled and can cooperate with each other
in order to deliver advanced applications. Such applications
have to meet very stringent requirements: they are expected to
be available anytime and anywhere while remaining invisible
and non-obstructive.

We believe that advanced software engineering principles
and tools are needed to support the production and execution of
pervasive applications. A common approach is to introduce an
execution platform providing a development model and a set of
technical services that can be used by the applications (also
called functional services). Precisely, the platform is
responsible for dealing with many non-functional properties,
like security or dynamic device integration persistence, on
behalf of the applications.

Several such platforms have thus been proposed in the
pervasive community. For instance, the Gaia platform [5]
manages resources present in a pervasive space, called an
active space. Gaia provides a set of services allowing
application programmers to access the available devices or
resources more easily. After this initial work, many platforms
have been developed on top of the OSGi framework, which
promotes the development of modular and dynamic
applications. Indeed, pervasive platforms are usually based on
the principles of service-oriented computing [6] where loosely
coupled services enable the creation of flexible dynamic

applications. An application is built from several services that
can be distributed on different devices.

Many platforms include the notion of context, which
purpose is to provide timely information about the computing
and user environments. This allows applications to react to
changes, like user behavior or availability of computational
resources for instance. In the early days of pervasive
computing, context was essentially limited to location-
awareness. Since then, context has evolved towards more
elaborated models, and has become a representation of any
information that can be used to characterize an entity that is
relevant to the interaction between a user and an application
[7].

As we will see in more details in section 2, context and
applications are generally kept separated. This architectural
approach makes applications development and execution
easier. It allows application developers to focus on
implementation of business services, while delegating the
complexity of context management to the pervasive platform.
Context management is indeed a complex activity involving
several complicated tasks, ranging from raw data acquisition
(dealing with heterogeneous, dynamic and sometimes
unreliable sensors) to knowledge representation and reasoning.

Many techniques and approaches have been proposed to
deal with context management in pervasive settings [8]. Most
of them are based on data-centric approaches where contextual
information is kept in a knowledge base (database, ontology)
and explicitly retrieved by applications. Such approach is well
suited to knowledge-intensive applications with no hard
deadline to be met. We are targeting applications executed on
Internet gateways, at the edge of the network, with real-time
constraints.

In this paper, we propose a novel approach based on
autonomic computing and service-oriented computing,
targeting a finer integration between context and applications.
Precisely, we have developed a domain-specific service-
oriented language allowing the straightforward definition of
autonomic context modules. This language builds upon the
iPOJO component model and is integrated in the iCasa
platform [9]. It is validated on several applications developed
with the Orange Labs.

The structure of this paper is the following. The coming
section provides background about our context and
requirements. Section 3 presents the overall approach defended
in this paper and section 4 provides details about it. Section 5 is
about its implementation. Finally, related work is developed in
section 6.

II. BACKGROUND AND REQUIREMENTS

A. Context management in pervasive computing

Context is traditionally presented as a synchronized
description of concepts and relationships pertaining to the
execution environment. Precisely, contextual information [10]
comes from the computing environment (memory, network,
etc.), the user environment (location, needs, preference, etc.)
and the physical environment (temperature, noise, etc.). It can
be the description of a fact, a physical object, a physical value,
or even an event (discrete or continuous [11]).

There are several architectural approaches to build context-
aware applications [12]. A popular solution is to use a context
management infrastructure. Error-prone tasks like information
gathering (context acquisition), information modeling and
processing (through inferences or mediation operations),
information storing and presentation lie outside the application
boundaries. This pattern where context management and
applications are clearly separated improves code readability,
debugging and evolution. It also allows context sharing
between pervasive applications.

Figure 1. Separating context and applications.

We subscribe to this latter approach where context and
applications are developed and extended independently (see
Figure 1). However, we readily acknowledge that building a
context management infrastructure remains a daunting task,
and that multiple design trade-off decisions have to be made
regarding data access, synchronization mechanisms,
knowledge representation, reasoning, or presentation.

There are indeed many existing available context modeling
and processing approaches [13] [14]. They mainly differ in the
model used to represent contextual information and in the
supported inferring techniques. However, most of them share a
data-centric approach, where all context information is
collected from sensors, kept in a storage facility, and made
available to applications through queries.

Data-centric approaches are better suited to applications
requiring complex knowledge representation or reasoning

facilities. This is for instance the case of knowledge-intensive
applications run in cloud infrastructure. As explained here
after, we target applications deployed at the edge of the
network, sometimes referred as fog computing [15], in order to
perform immediate, added-value services, rather than long
term, offline data processing.

B. Context management in smart homes

Our research deals with pervasive applications in intelligent
environments like smart homes, smart buildings or smart
manufacturing (industry 4.0). These applications are now
widely distributed, from the sensors up to cloud facilities.
Some code is executed at the edge of the network, in an
Internet gateway for instance, while other code is run in
computing farms. Depending on the code location, various
forms of context are needed with different formalisms,
different real-time constraints, and different interaction
patterns.

To illustrate these various needs, let us consider health care
applications in smart homes. More precisely, let us focus on
the actimetrics application that we have been investigating for
years with the Orange Labs [16]. Two major functions can be
distinguished for actimetrics: the first one is about early
diagnosis of degenerative diseases like Alzheimer while the
second one is concerned with real-time supervision of people at
home.

The first function, identification of degenerative diseases, is
concerned with long term evolutions spanning several months.
It requires complex time-series and event correlation analysis
and is based on a rich, slowly evolving context that is explicitly
accessed and browsed by the analysis algorithms. This is
typically a data-centric context. The second function is about
real-time supervision. It deals, for instance, with fall detection
or automated alerting in case of unusual events like prolonged
inactivity or irregular sleep hours. This second function may
use the same environmental data as the first one, but it is much
less demanding in terms of knowledge representation and
reasoning. On the other hand, it has to deal with stringent real-
time constraints: new information should be made available
very rapidly to the application. Also, interactions are bi-
directional and must meet requirements of low latency and
simplicity. Moreover, due to their location, they have to
support all the burden of dynamism induced by the physical
environment while limiting end-user administration tasks, a
property known as zero administration. Here, most existing
context-management frameworks would impose an unwanted
overhead.

From these features, we identified the following
requirements for a context management middleware adapted to
applications (or code) located at the network edge:

 maintainability: zero administration requires a
modularized and maintainable middleware. Most
approaches neglect the bi-directional interaction
(acquisition/action) aspect although it involves highly
error-prone technical code from low-level
synchronization to high-level mediation or enrichment
operations.

 dynamicity resilience: the middleware should support
dynamic discovery and opportunistic use of new
context sources and elements.

 autonomic management: the middleware must
support dynamic configuration at runtime because
application requirements, and so on context, evolve
over time. For example, a service not used by
application must be discarded and stopped, or
synchronization frequency must be adjusted to avoid
resource waste. However, managing this aspect
manually is cumbersome and inefficient. We thought
that this aspect should be managed in an autonomic
way.

We believe that a service-centric context management
middleware can meet these requirements. A Service-Oriented
Architecture eases application development by the composition
of a modularized set of services. It infuses naturally in the
application interesting characteristics like loose-coupling,
resiliency to dynamism with late-binding, substitutability and
location transparency [17].

By presenting Context as a Service to the application, we
benefit from all these properties and limit the context to the
application needs. In addition, leaving implementation details
of context services to the middleware layer frees the
application developer from technical, high-error prone
development issues related to context. But software
engineering and tooling are still needed to ensure a
maintainable and manageable context middleware.

III. APPROACH

A. Overview

Our approach is based on a clear separation between
application and context and the use of service-oriented
computing. As illustrated by Figure 2, the context management
system publishes context services that can be used by the
applications. Formally, context services form the contract
between the context management layer and the applications.
They are implemented as a graph of context entities, which
perform data acquisition, context modeling and processing and,
in the end, service publication.

Figure 2. Context as a service.

Context entities are implemented with iPOJO, the Apache
service-oriented component model [17]. The integration with
the environments is based on RoSe [18], an open source

communication middleware that is able to dynamically import
and export services [19].

However, we have experienced that this approach remains
hard to put in place. The implementation, provisioning and
management of such context are very complex. It is highly
error-prone, especially because of the need to deal with the
dynamicity and heterogeneity of context sources and
applications, and to ensure synchronization.

To circumvent these limitations, we have defined and
implemented a service-oriented domain-specific language
(DSL) for context definition on top of iPOJO. Our purpose is
to provide assistance to developers for application and context
development. The resulting context is autonomic in the sense
that it can deal on its own with highly dynamic pervasive
environments.

Precisely, our context management system can dynamically
adapt the way it collects information and the way it provides
contextual services to the client applications. This approach
builds on a service-oriented component model to implement a
flexible and maintainable representation of contextual
information in order to increase integration and interoperability
with pervasive applications. At design time, it allows the
straightforward definition of contextual entities with a high
level Java-based language. At runtime, it supports the dynamic
construction of synchronized and observable entities published
as services that can be used by applications. Our approach also
comes with architectural and process guidelines to ease the
work of designers and developers.

We have also enhanced the autonomic capabilities with an
explicit autonomic manager, as illustrated by Figure 3. The
purpose of this manager, using the DSL, is to create the context
entities when needed by an application. Thus, only relevant
concepts are built and maintained by the platform.

Context management is then structured into two modules
(as shown in Figure 3):

 context module is a representation of contextual
information, where entities (relevant persons, places,
and objects) are modeled as components that
implement context services.

 context manager is in charge of building and updating
at runtime the context module, based on high-level
goals and the current situation.

Figure 3. Context modules architecture.

We believe that this approach is well-adapted to reactive
applications (or applications parts) implemented near pervasive

resources. The integration between applications and resources
is straightforward: the needed services are directly proposed by
the context to the applications. In addition, when some data is
changed, provided services are re-evaluated and events are sent
to applications so that they can call the service again.

B. Two-phase approach

Our approach naturally leads to a two-phase context
development process. First, domain engineers define a context
that can be used by a set of applications that are expected to
run on a same platform. Second, applications developers use
this context in order to simplify their code and concentrate on
business logic.

The first step, usually called Domain Engineering, involves
several actors with different skills as illustrated by Figure
4.The tasks to be performed are the following:

 Application and platform developers identify and
determine the necessary concepts to be included in the
context, in conformance with platform capabilities.
Context services are specified in a Java based
description language, presented in the next section, and
are directly used by applications.

 Platform developers implement context services
defined in the first step and additional ones useful for
mediation or processing. Component development is
simplified by using a Domain Specific Language,
presented in the next section, with facilities to express
data source’s synchronization.

Platform developers implement context manager
components in charge of service context provisioning and
configuration. The proposed component DSL also includes
facilities for this task.

Figure 4. Context development and deployment.

Context components are deployed and executed on top of a
pervasive runtime platform that handles their lifecycle.
Specifically, our context management system has been
integrated in a pervasive platform named iCasa [20] that is able
to host multiple components and applications written with
iPOJO. The iCasa/iPOJO runtime has been extended to handle
all the non-functional aspects introduced by our component
DSL, while retaining its service-oriented properties. The iCasa
runtime has also been extended to offer appropriate probes and
touchpoints to enable autonomic management of the context
module, in accordance with the application needs.

Application developers use context services defined in the
first step of context development to simplify their code and
concentrate on business logic (Figure 5). At runtime, context
representation depends on deployed applications and available
resources.

Figure 5. Application development and deployment.

IV. DSL FOR CONTEXT

A. Overview

Context is a representation of the surrounding environment.
As such, it can be regarded as an explicit model [21] of the
environment used by the pervasive applications. We use a
service-centric approach to explicit this model. Context
services must be described, implemented and dynamically
provided at runtime. The following steps are necessary:

 Context service aims to provide a service description.

 Context entity aims to provide an implementation of
context services.

 Context provisioning aims to provide a simple way to
dynamically instantiate context entities.

For each of these steps, we provide a support through a
Domain-Specific Language, defined by the meta-model in
Figure 6. The concrete syntax is based on Java annotations and
hides the dependency between concepts and the selected
SOCM. The current implementation is based on iPOJO, the
Apache OSGi service-oriented component model [17]. We
provide build time processing to map our concepts to iPOJO
concepts. Other implementations of our approach can be done,
as long as the selected SOCM supports late-binding and
dynamic instantiation.

Figure 6. DSL meta-model.

B. Context Service

Application development relies only on service description
to reduce coupling between context implementation and
application business logic code. The service description must
contain enough semantic and information to be used without
ambiguity by the application. As depicted in Figure 7, we
extend the OSGi service definition, which relies on a simple
Java interface, with our DSL. It allows to clearly identify
which interface will be exposed as a context service;

@ContextService; and enhanced the service definition by

state properties definition; @State; that will be valued and
exposed at runtime by the service implementations.

At runtime, context service use in application is greatly
simplified by iPOJO injection mechanism. Application
components specify their context service dependencies with
specific goals. Goals can be cardinality, filtering or ranking
strategies. According to these goals, iPOJO autonomically
allows opportunistic use of new context services and
dynamicity resilience by dynamically injecting service
implementation. Additionally, simple event mechanism is
handled by calling application callback each time state
properties are modified.

11 public @ContextService interface BinaryLight implements

12 GenericDevice{

13

14 public final static @State String POWER_STATUS=”status”;

15

16 public void getPowerStatus();

17

18 public void setPowerStatus(boolean state);

19

20 public void turnOn();

21

22 public void turnOff();

23

24 }

Figure 7. Java code for a context entity service.

C. Context Entity

In order to support a reliable, maintainable implementation
of previous described context service and keep it as simple as
possible, our approach is based on a domain-specific
specialization of the iPOJO component model. We extend
iPOJO meta-model, with specific concepts required to deal
with context issues.

The concrete language used in iPOJO to define components
is based on plain Java classes marked with annotations (see
Figure 8) to declare non-functional aspects handled by the
platform. We have enhanced the iPOJO design time tools with
specific annotations required to declare specialized context

concepts. For example, annotation @ContextEntity

allows specifying a context entity that can implement context
services.

Concretely, each state property declared in the
implemented context service specification must be referenced,

through @State.Field, in the implementation class as
simple Java attribute to be easily manipulated during the
service implementation. Each state property is synchronized
through dedicated function:

 Functions to retrieve data from an external entity:
@State.Pull/@State.Push

 Function to influence an external entity:

@State.Apply.

 The synchronization process is bi-directional in order to
enable application to act on the context. These annotations
enable to specify goals, like the frequency to call a

@State.Pull function if it is periodic.

In our approach, a relation represents a link between two
context entities, a pointer from an instance to another. It is
implemented by a service dependency. This pointer is
particular: it contains semantic information on its source, target
and nature. It can be used to enhance context with semantic
information. As a service dependency it can be used for
synchronization process. Goal can be specified like cardinality
or ranking.

10 @ContextEntity(services = {BinaryLight.class,…})

11 public class ZigbeeBinaryLightImpl implements BinaryLight{

12

13 @ContextEntity.State.Field(service =

14 BinaryLight.class,state = BinaryLight. POWER_STATUS)

15 public boolean powerStatus;

16

… /**Service Implementation relying only on state field**/

20 public void setPowerStatus(boolean status){

21 powerStatus = status; }

22

20 public boolean getPowerStatus(){

21 return powerStatus; }

21

… /**Specific Zigbee synchronization for powerStatus**/

26 @ContextEntity.State.Pull(… frequency = 10

27 ,unit=TimeUnit.SECONDS)

28 Supplier<Boolean> getPowerStatusFromDevice = () -> {

…

30 };

31

32 @ContextEntity.State.Push(…)

33 public boolean getPowerStatus(){

…

36 }

37 @ContextEntity.State.Apply(…)

38 Supplier<Boolean> getPowerStatusFromDevice = () -> {

…

45 };

… /**Injected Relation field**/

58 @ContextEntity.Relation.Field(value = “isIn”,…)

59 @Require (optional = true,…)

60 private Zone injectedZone;

61 }

Figure 8. Java code for a context entity service implementation.

At runtime, context entities are wrapped as iPOJO
components. Component containers can be extended by iPOJO
modules, called handers. The framework provides a number of
off-the-shelf handlers in charge of global aspects of the
platform, like service publishing or dependency injection.
More importantly, it is possible to develop new iPOJO
handlers to take charge at runtime of particular concerns.

We implemented two new iPOJO handlers, as show in
Figure 9, dealing with specific context concerns. The handlers
are described as follow:

 Synchronization Handler: It deals with the state

synchronization of entity components. It keeps the state

properties up-to-date by managing the synchronization

functions. Different strategies can be specified to do so.

For example, the handler can periodically call pull

functions or just wait for push callbacks to keep the

state up-to-date. Additionally, the handler is in charge

of publishing state properties as service properties.

This publication has two main interests: it allows

processing of more advanced filters and state updates

can be reported to the application without the burden of

an Observer pattern, by relying on iPOJO notification

mechanism.

 Relation Handler: The relation handler is in charge of

the dynamic service binding of relations.

Figure 9. Service-oriented component view of context model.

D. Context Provisioning

Context service provisioning is guided by the discovery of
external events, e.g. a device joining the network or a user
interaction with a web dashboard. Approaches like RoSe [18]
or MUSIC [22] provide pattern to modularized and maintain
the discovery of external event at runtime but, no support is
provided for dynamic instantiation of context service provider.
iPOJO runtime supports this behavior but its establishment
remains highly technical, tightly coupled to the iPOJO model
and de facto become less feasible for developers. Our
middleware provides autonomic facilities regarding this issue,
without cluttering the discovery code. As depicted in Figure
10, discovery code emits now instantiation requests (previously
it was direct instantiation) and the middleware choose to
process or stock the requests according to the application
contextual service requirements.

13 @Creator.Field Creator.Entity<ZigbeeBinaryLightImpl>

14 zigbeeBinaryLightCreator

15

16 public void catchZigbeeDiscoveryEvent(Map<Parameter>

17 param){

18 String id = …;

…

20 zigbeeBinaryLightCreator.create(id,param);

21 }

Figure 10. Java code for a context service dynamic provisionning.

E. Autonomic Execution

As depicted in previous section, each step of context

development is probed with autonomic touchpoints. We will

see how our context management middleware can benefit

from this and provide autonomic features.

First, we assume that applications are developed following

the iPOJO model. Each application can be composed of

several components and relies on context services. Regarding

to dynamicity, iPOJO naturally infuses autonomic behavior in

the component’s container. Therefore, application can benefit

of late-binding and dynamic service substitutability. This level

of adaption is specified within iPOJO annotation.

Secondly, when a context-aware application is deployed

and executed, our context manager knows its context service

dependency. Based on this knowledge, adaptation can be

acted. Hence, it is possible to dynamically realize the

following changes:

 Enable or disable context entity provisioning;

 Modify specific synchronization parameters;

 Replace context providers.
This autonomic behavior allows managing fault tolerance

by switching of context provider, if a new one is available. All

of this adaption logic is hard coded in our context manager.

We are currently investigating integration with dynamic

deployment [23], to provide fine grained context management.

V. EVALUATION

The iCasa environment [24] is made of three tools: an

Integrated Development Environment based on an eclipse

plug-in; an execution platform based on OSGi and RoSe; a

smart home simulator to quickly test pervasive applications.

The execution platform is running on a home gateway,

which hosts several applications and offers dynamic

deployment facilities. Applications belonging to domains like

safety, comfort or health care have been developed. For

example, iCasa hosts part of a home care application called

actimetrics which measures and analyses the motor activity of

elderly. Its purpose is to track behavioral changes to early

diagnosis degenerative diseases like Alzheimer [16].

We provide an evaluation from a software engineering

point of view, encompassing several metrics link to design

time activity. We choose the following metrics: number of

lines of code, cyclomatic complexity (this metric gives

indication on maintainability, reliability and testability) and

technical debt (evaluation of the effort needed to fix all

issues). All this metrics are computed and provided by an

open source quality management platform, SonarQube [25].

We run our evaluation on two different projects: we entirely

restructured the context of the iCasa execution platform and

its associated simulator; and we refactored an application on

the top on the restructured platform. Graphics on Figure 11

and Figure 12 present the chosen measurement comparisons,

respectively for the iCasa execution platform and the

application.

Figure 11. Evaluation on iCasa platform and simulator.

The first evaluation concerns the iCasa platform and its

associated simulator. In the reference, contextual information

in iCasa execution platform and simulator was computed in an

ad hoc way. It was heterogeneously developed according

developer’s will and spread into the platform. It was difficult

to extend the context or make it evolve since there wasn’t any

consistency. For the evaluation, we redesigned the context by

applying our approach and we compared the two versions

(Figure 11). Functionalities provided by the reference and our

approach are:

 A set of abstraction for device, location and user and
their implementations;

 A web interface acting as a dashboard;

 A script language allowing to dynamically instantiate
simulated device, location and user.

Thanks to the code provided by the handler and the simple

event mechanism, the number of line of code decrease. By

clearly identifying synchronization functions and limiting their

number, cyclomatic complexity have been reduced. We also

noticed that the restructured implementation presents a high

percentage of duplicated lines (approach 7%, reference 3%)

due to iPOJO technical limitations: it doesn’t support

inheritance. The number of lines could therefore be reduced

more.

Our approach notably improves context development. It

offers non-functional technical facilities. The context is

modularized, extensible, and autonomic. The whole software

is more consistent, testable and maintainable.

Figure 12. Evaluation on Light Follow Me application.

The second evaluation compares two versions of Light

Follow Me application build upon the reference and the

restructured platform (Figure 12). Light Follow Me turns the

lights off and on depending on the presence of a user for each

room of a house. This application is simple yet it encompasses

all requirements presented before. It is a typical home

pervasive application that doesn’t need complex reasoning

algorithm, facing the dynamism of the environment (light and

sensor can appear/disappear) and directly influencing the user

environment through switching on/off the light. In the

reference implementation, the application manually processes

information like presence per zone by directly reasoning over

the sensors and their location. In our approach we choose to

externalize the processing of this information with a dedicated

presence per zone context service (blue part on Figure 12).

This presence per zone service can be shared between

applications and evolves independently regarding to the

business code of these applications.

The externalization of the presence service produces an

overhead in terms of line of code and complexity. This is due

to the fact that all the logic of provisioning the service must

implemented in our solution. However, this overhead can be

shared by many applications. So if we analyze only the

application business code (orange part on Figure 12), it is

approximately divided by 2 and de facto become easy to test,

maintain and evolve.

We can summarize that externalizing the context adds an

additional development task and the resulting architecture is

more complicated, but this cost can be mutualized and shared

among several applications. Moreover, new applications can

be develop on top of more abstract services, easing their

implementation.

VI. RELATED WORK

Developing context-aware applications is one of the hot

research topics for the last decade. Naturally many software

architectures emerged to reach this goal. We compare our

proposed architecture to the existing ones: The Context

Toolkit [7], COSMOS [26] SOCAM [27] and another SOC-

based context model [28]. Many more architectures are

available, but these ones are representative of the global trend.
The Context Toolkit [7] promotes code-reuse through the

composition of distinct artifact called widgets to build the
context. These widgets are used to hide the complexity of
sensors and abstract context information in a suitable way to fit
applications need. These reusable blocks are explicitly linked
at design time, each block deciding which blocks to use. Our
approach is similar in the sense that we divide the context in
individual small pieces. The key differences with our work are
that we delegate the composition at runtime with more
variability expressed at design time thanks to SOCM
properties. Moreover our entity relation like model offers more
flexibility to design complex context.

COSMOS, COntext entitieS coMpositiOn and Sharing
[26], is a component based context middleware. Each pieces of
context is reified as a component called Context Node
organized in a hierarchical structure. This approach and ours
address the separation of concerns by offering several built-in
mechanisms like push/pull notifications and reduce the
developer’s work. However, the strictly hierarchical approach
of COSMOS context makes it difficult to model with
horizontal relations. Moreover, component specifications are
strictly defined at design time, so runtime extensibility
proposed by our system of relation will be hard to achieve.

The Service-Oriented Context Aware Middleware
(SOCAM) [27] is an ontology-based context middleware.
SOCAM architectures rely on several components: Context
Providers (extracting context from internal and external data
sources, and converting them in ontological instance), Context
Interpreter (reasoning engine performing inference to extract
high-level context and store it in knowledge base), Context-
aware Mobile Service (application that consume context), and
Service Locating Service (a registry where providers and
interpreters are registered, where other components can search
specific providers or interpreters to fit their needs). SOCAM
envisions a highly structured context model with ontology in
order to benefit from all the powerful processing tools induced
by this approach, like reasoning engine. So it generates a
programming model through a query language and rules,
contrary to our programming model that relies on Java service
specifications that we consider more adapted to develop added-
value services.

1 http://self-star.imag.fr
2 http://www.sonarqube.org

http://self-star.imag.fr/
http://www.sonarqube.org/

In [28], a work dealing with proactive adaptation and
context management based on a SOCM architecture is
presented. It underlines the fact that context interactivity is not
just about providing the most powerful modeling and reasoning
engine. Indeed, applications also can deal with context in a
proactive manner, with the ability to change the context
through actuators. Our approach, in this sense, is very similar
because previous works say little about how to influence
context. However, to achieve this goal, a specific query
language that generates a cost on the learning curve is
provided, whereas we prefer a traditional Java programming
model.

VII. CONCLUSION

In this paper we presented a comprehensive approach to
build and run Context as a Service. We provide a simple way
to address service description, implementation and
provisioning in a modular, maintainable and autonomic way.
This solution can be integrated in an enriched execution
platform as demonstrated. Our work focuses on providing tools
to build and execute a runtime autonomic model of context.
This model is probed with autonomic touchpoint, synchronized
with external entities and can be enriched dynamically by new
relations or services. Applications developed using SOC
paradigm upon this model can also dynamically add new
elements in the context in order to better fit their needs.

As limitations, we notice that our runtime implementation
currently maintains a possibly large, in-memory, representation
of context. Additional performance optimizations are required
to cope with the needs of realistic applications, in terms of
memory scalability and footprint.

Further perspectives of our work include extensions to
handle more complex synchronization scenarios and provide
off-the-shelf processing components like aggregation
processing. Moreover, as depicted in the background section,
our work focuses on integrating context in the network edge
like home pervasive gateway, but as explained many
applications can be divided in two parts. On one hand, these
applications performed immediate action on the user
environment and are located in the network edge. On the other
hand, they handle complex reasoning on large historical set of
data and are in most case execute in the cloud. It will be very
interesting to investigate how our context model can cohabitate
with a more “data-centric” context management located in the
cloud.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” in Scientific American,
vol. 265, pp. 94-104, 1991.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” in
Personal Communications, IEEE, vol. 8, pp. 10–17, 2001.

[3] F. Mattern, “The vision and technical foundations of ubiquitous
computing,” in Upgrade European Online Magazine, pp. 5-8, 2001.

[4] L. Atzori, A. Iera and G. Morabito, “The Internet of things: a survey,” in
Computer Networks, vol. 54, pp. 2787-2805, October 2010.

[5] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell and
K. Nahrstedt, "A middleware infrastructure for active spaces," in IEEE
Pervasive Computing, vol. 1, no. 4, pp. 74-83, Oct.-Dec. 2002.

[6] M.P. Papazouglou and D. Georgakopoulos, “Service-oriented
computing,” in Communications of the ACM, vol. 46, issue 10, 2003.

[7] A.K. Dey, “Understanding and using context,” in Personal and ubiquitous
computing, vol. 5, pp. 4-7, 2001.

[8] S. Lee, J. Chang and S. G. Lee, “Survey and trend analysis of context-
aware systems,” in Information-An International Interdisciplinary
Journal, vol. 14, pp. 527-548, 2011.

[9] iCasa platform and simulator releases available at
http://adeleresearchgroup.github.io/iCasa.

[10] C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos, “Context
aware computing for the internet of things: a survey,” in
Communications Surveys & Tutorials, vol. 16, pp. 414-454, 2014.

[11] S. Ahn and D. Kim. “Proactive context-aware sensor networks,”.Proc.
Wireless Sensor Networks Workshop (EWSN 2006), Springer LNCS
vol. 3868, pp. 38-53, 2006.

[12] P. Hu, M. Portmann, R. Robinson, and J. Indulska. “Context-aware
routing in wireless mesh networks,” Proc. ACM international
Conference on Context-awareness for self-managing systems
(CASEMANS '08), ACM, pp. 16-23, 2008.

[13] K. Henricksen, J. Indulska and A. Rakotonirainy. “Modeling of context
information for pervasive computing applications,” Proc. Pervasive
Computing: Conference (Pervasive 2002), Springer LNCS vol. 2414,
pp. 167-180, 2002.

[14] D. Preuveneers and Y. Berbers. “Adaptive context management using a
component-based approach,” Proc. IFIP Distributed Applications and
Interoperable Systems (DAIS 2005), Springer LNCS vol. 3543, pp. 14-
26, 2005.

[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog computing and its
role in the internet of things;” Proc. Workshop on Mobile cloud
computing (MCC 12), ACM, pp. 13-16. 2012.

[16] P. Lalanda, S. Chollet, C. Aygalinc and E. Gerbert-Gaillard, “Service-
based architecture and frameworks for pervasive health application,” in
Emerging Technologies & Factory Automation, pp. 1-8, 2015.

[17] C. Escoffier, R. S. Hall and P. Lalanda, “iPOJO: an extensible service-
oriented component framework,” in Service Computing, pp. 474-481,
2007.

[18] J. Bardin, P. Lalanda and C. Escoffier, “Towards an automatic integration
of heterogeneous services and devices,” Proc. IEEE Service Computing
Conference, IEEE, pp. 171-178, 2010.

[19] RoSe framework source code available at
https://github.com/AdeleResearchGroup/ROSE.

[20] C. Escoffier, S. Chollet and P. Lalanda, "Lessons learned in building
pervasive platforms," Proc. IEEE Consumer Communications and
Networking Conference (CCNC), IEEE, pp. 7-12, 2014.

[21] E. Seidewitz, “What models mean,” in IEEE software, vol. 20, issue 5,
pp. 26-32, 2003.

[22] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo,
A. Mamelli and U. Scholz. “MUSIC: Middleware support for self-
adaptation in ubiquitous and service-oriented environments,” In
Software Engineering for Self-Adaptive Systems, Springer LNCS vol.
5525, pp. 164-182, 2009

[23] O. Günalp, C. Escoffier and P. Lalanda, "Rondo: A tool suite for
continuous deployment in dynamic environments," Proc. IEEE Services
Computing Conference (SCC), IEEE, pp. 720-727, 2015.

[24] Pervasive Computing in Practice teaching website (featuring iCasa
environment): http://self-star.imag.fr.

[25] SonarQube ; an open platform to manage code quality; website:
http://www.sonarqube.org.

[26] D. Conan, R. Rouvoy and L. Seinturier, “Scalable processing of context
information with COSMOS,” Proc. Distributed Applications and
Interoperable Systems (DAIS 2007), Springer LNCS vol. 4531 pp. 210-
224, 2007.

[27] T. Gu, H. K. Pung and D. Q. Zhang, “A service-oriented middleware for
building context-aware services,” in Journal of Network and computer
applications, vol. 28,pp. 1-18, 2005.

[28] S. VanSyckel, G. Schiele and C. Becker, “Extending context management
for proactive adaptation in pervasive environments,” in Ubiquitous
Information Technologies and Applications, pp. 823-831, 2013.

