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Abstract—Pervasive computing promotes environments where 

smart, communication-enabled devices cooperate to provide 

services to people. Due to their inherent complexity, many 

pervasive applications are built on top of service-oriented 

platforms, providing a set of facilities simplifying their 

development and execution. In this paper, we present such a 

platform, iCasa, extended with an autonomic, service-oriented 

context module. This module is programmed with a domain-

specific service-oriented language built on top of iPOJO, the 

Apache service-oriented component model. It is validated on 

smart home applications developed with the Orange Labs. 

Keywords—pervasive computing; context; service-oriented 

components. 

I. INTRODUCTION 

Pervasive computing envisions environments where smart 
devices are blended into everyday objects in order to provide 
added-value services to people [1] [2] [3] [4]. These devices 
are communication-enabled and can cooperate with each other 
in order to deliver advanced applications. Such applications 
have to meet very stringent requirements: they are expected to 
be available anytime and anywhere while remaining invisible 
and non-obstructive. 

We believe that advanced software engineering principles 
and tools are needed to support the production and execution of 
pervasive applications. A common approach is to introduce an 
execution platform providing a development model and a set of 
technical services that can be used by the applications (also 
called functional services). Precisely, the platform is 
responsible for dealing with many non-functional properties, 
like security or dynamic device integration persistence, on 
behalf of the applications. 

Several such platforms have thus been proposed in the 
pervasive community. For instance, the Gaia platform [5] 
manages resources present in a pervasive space, called an 
active space. Gaia provides a set of services allowing 
application programmers to access the available devices or 
resources more easily. After this initial work, many platforms 
have been developed on top of the OSGi framework, which 
promotes the development of modular and dynamic 
applications. Indeed, pervasive platforms are usually based on 
the principles of service-oriented computing [6] where loosely 
coupled services enable the creation of flexible dynamic 

applications. An application is built from several services that 
can be distributed on different devices. 

Many platforms include the notion of context, which 
purpose is to provide timely information about the computing 
and user environments. This allows applications to react to 
changes, like user behavior or availability of computational 
resources for instance. In the early days of pervasive 
computing, context was essentially limited to location-
awareness. Since then, context has evolved towards more 
elaborated models, and has become a representation of any 
information that can be used to characterize an entity that is 
relevant to the interaction between a user and an application 
[7]. 

As we will see in more details in section 2, context and 
applications are generally kept separated. This architectural 
approach makes applications development and execution 
easier. It allows application developers to focus on 
implementation of business services, while delegating the 
complexity of context management to the pervasive platform. 
Context management is indeed a complex activity involving 
several complicated tasks, ranging from raw data acquisition 
(dealing with heterogeneous, dynamic and sometimes 
unreliable sensors) to knowledge representation and reasoning. 

Many techniques and approaches have been proposed to 
deal with context management in pervasive settings [8]. Most 
of them are based on data-centric approaches where contextual 
information is kept in a knowledge base (database, ontology) 
and explicitly retrieved by applications. Such approach is well 
suited to knowledge-intensive applications with no hard 
deadline to be met. We are targeting applications executed on 
Internet gateways, at the edge of the network, with real-time 
constraints. 

In this paper, we propose a novel approach based on 
autonomic computing and service-oriented computing, 
targeting a finer integration between context and applications. 
Precisely, we have developed a domain-specific service-
oriented language allowing the straightforward definition of 
autonomic context modules. This language builds upon the 
iPOJO component model and is integrated in the iCasa 
platform [9]. It is validated on several applications developed 
with the Orange Labs. 



   

The structure of this paper is the following. The coming 
section provides background about our context and 
requirements. Section 3 presents the overall approach defended 
in this paper and section 4 provides details about it. Section 5 is 
about its implementation. Finally, related work is developed in 
section 6. 

II. BACKGROUND AND REQUIREMENTS 

A. Context management in pervasive computing 

Context is traditionally presented as a synchronized 
description of concepts and relationships pertaining to the 
execution environment. Precisely, contextual information [10] 
comes from the computing environment (memory, network, 
etc.), the user environment (location, needs, preference, etc.) 
and the physical environment (temperature, noise, etc.). It can 
be the description of a fact, a physical object, a physical value, 
or even an event (discrete or continuous [11]). 

There are several architectural approaches to build context-
aware applications [12]. A popular solution is to use a context 
management infrastructure. Error-prone tasks like information 
gathering (context acquisition), information modeling and 
processing (through inferences or mediation operations), 
information storing and presentation lie outside the application 
boundaries. This pattern where context management and 
applications are clearly separated improves code readability, 
debugging and evolution. It also allows context sharing 
between pervasive applications. 

 

Figure 1. Separating context and applications. 

We subscribe to this latter approach where context and 
applications are developed and extended independently (see 
Figure 1). However, we readily acknowledge that building a 
context management infrastructure remains a daunting task, 
and that multiple design trade-off decisions have to be made 
regarding data access, synchronization mechanisms, 
knowledge representation, reasoning, or presentation. 

There are indeed many existing available context modeling 
and processing approaches [13] [14]. They mainly differ in the 
model used to represent contextual information and in the 
supported inferring techniques. However, most of them share a 
data-centric approach, where all context information is 
collected from sensors, kept in a storage facility, and made 
available to applications through queries. 

Data-centric approaches are better suited to applications 
requiring complex knowledge representation or reasoning 

facilities. This is for instance the case of knowledge-intensive 
applications run in cloud infrastructure. As explained here 
after, we target applications deployed at the edge of the 
network, sometimes referred as fog computing [15], in order to 
perform immediate, added-value services, rather than long 
term, offline data processing. 

B. Context management in smart homes 

Our research deals with pervasive applications in intelligent 
environments like smart homes, smart buildings or smart 
manufacturing (industry 4.0). These applications are now 
widely distributed, from the sensors up to cloud facilities. 
Some code is executed at the edge of the network, in an 
Internet gateway for instance, while other code is run in 
computing farms. Depending on the code location, various 
forms of context are needed with different formalisms, 
different real-time constraints, and different interaction 
patterns. 

To illustrate these various needs, let us consider health care 
applications in smart homes. More precisely, let us focus on 
the actimetrics application that we have been investigating for 
years with the Orange Labs [16]. Two major functions can be 
distinguished for actimetrics: the first one is about early 
diagnosis of degenerative diseases like Alzheimer while the 
second one is concerned with real-time supervision of people at 
home. 

The first function, identification of degenerative diseases, is 
concerned with long term evolutions spanning several months. 
It requires complex time-series and event correlation analysis 
and is based on a rich, slowly evolving context that is explicitly 
accessed and browsed by the analysis algorithms. This is 
typically a data-centric context. The second function is about 
real-time supervision. It deals, for instance, with fall detection 
or automated alerting in case of unusual events like prolonged 
inactivity or irregular sleep hours. This second function may 
use the same environmental data as the first one, but it is much 
less demanding in terms of knowledge representation and 
reasoning. On the other hand, it has to deal with stringent real-
time constraints: new information should be made available 
very rapidly to the application. Also, interactions are bi-
directional and must meet requirements of low latency and 
simplicity. Moreover, due to their location, they have to 
support all the burden of dynamism induced by the physical 
environment while limiting end-user administration tasks, a 
property known as zero administration. Here, most existing 
context-management frameworks would impose an unwanted 
overhead. 

From these features, we identified the following 
requirements for a context management middleware adapted to 
applications (or code) located at the network edge:  

 maintainability: zero administration requires a 
modularized and maintainable middleware. Most 
approaches neglect the bi-directional interaction 
(acquisition/action) aspect although it involves highly 
error-prone technical code from low-level 
synchronization to high-level mediation or enrichment 
operations. 

 



   

 dynamicity resilience: the middleware should support 
dynamic discovery and opportunistic use of new 
context sources and elements. 

 autonomic management: the middleware must 
support dynamic configuration at runtime because 
application requirements, and so on context, evolve 
over time. For example, a service not used by 
application must be discarded and stopped, or 
synchronization frequency must be adjusted to avoid 
resource waste. However, managing this aspect 
manually is cumbersome and inefficient. We thought 
that this aspect should be managed in an autonomic 
way. 

We believe that a service-centric context management 
middleware can meet these requirements. A Service-Oriented 
Architecture eases application development by the composition 
of a modularized set of services. It infuses naturally in the 
application interesting characteristics like loose-coupling, 
resiliency to dynamism with late-binding, substitutability and 
location transparency [17]. 

By presenting Context as a Service to the application, we 
benefit from all these properties and limit the context to the 
application needs. In addition, leaving implementation details 
of context services to the middleware layer frees the 
application developer from technical, high-error prone 
development issues related to context. But software 
engineering and tooling are still needed to ensure a 
maintainable and manageable context middleware. 

III. APPROACH  

A. Overview 

Our approach is based on a clear separation between 
application and context and the use of service-oriented 
computing. As illustrated by Figure 2, the context management 
system publishes context services that can be used by the 
applications. Formally, context services form the contract 
between the context management layer and the applications. 
They are implemented as a graph of context entities, which 
perform data acquisition, context modeling and processing and, 
in the end, service publication. 

 

Figure 2. Context as a service. 

Context entities are implemented with iPOJO, the Apache 
service-oriented component model [17]. The integration with 
the environments is based on RoSe [18], an open source 

communication middleware that is able to dynamically import 
and export services [19]. 

However, we have experienced that this approach remains 
hard to put in place. The implementation, provisioning and 
management of such context are very complex. It is highly 
error-prone, especially because of the need to deal with the 
dynamicity and heterogeneity of context sources and 
applications, and to ensure synchronization. 

To circumvent these limitations, we have defined and 
implemented a service-oriented domain-specific language 
(DSL) for context definition on top of iPOJO. Our purpose is 
to provide assistance to developers for application and context 
development. The resulting context is autonomic in the sense 
that it can deal on its own with highly dynamic pervasive 
environments. 

Precisely, our context management system can dynamically 
adapt the way it collects information and the way it provides 
contextual services to the client applications. This approach 
builds on a service-oriented component model to implement a 
flexible and maintainable representation of contextual 
information in order to increase integration and interoperability 
with pervasive applications. At design time, it allows the 
straightforward definition of contextual entities with a high 
level Java-based language. At runtime, it supports the dynamic 
construction of synchronized and observable entities published 
as services that can be used by applications. Our approach also 
comes with architectural and process guidelines to ease the 
work of designers and developers. 

We have also enhanced the autonomic capabilities with an 
explicit autonomic manager, as illustrated by Figure 3. The 
purpose of this manager, using the DSL, is to create the context 
entities when needed by an application. Thus, only relevant 
concepts are built and maintained by the platform. 

Context management is then structured into two modules 
(as shown in Figure 3): 

 context module is a representation of contextual 
information, where entities (relevant persons, places, 
and objects) are modeled as components that 
implement context services. 

 context manager is in charge of building and updating 
at runtime the context module, based on high-level 
goals and the current situation. 

 

Figure 3. Context modules architecture. 

We believe that this approach is well-adapted to reactive 
applications (or applications parts) implemented near pervasive 

 



   

resources. The integration between applications and resources 
is straightforward: the needed services are directly proposed by 
the context to the applications. In addition, when some data is 
changed, provided services are re-evaluated and events are sent 
to applications so that they can call the service again. 

B. Two-phase approach 

Our approach naturally leads to a two-phase context 
development process. First, domain engineers define a context 
that can be used by a set of applications that are expected to 
run on a same platform. Second, applications developers use 
this context in order to simplify their code and concentrate on 
business logic. 

The first step, usually called Domain Engineering, involves 
several actors with different skills as illustrated by Figure 
4.The tasks to be performed are the following: 

 Application and platform developers identify and 
determine the necessary concepts to be included in the 
context, in conformance with platform capabilities. 
Context services are specified in a Java based 
description language, presented in the next section, and 
are directly used by applications. 

 Platform developers implement context services 
defined in the first step and additional ones useful for 
mediation or processing. Component development is 
simplified by using a Domain Specific Language, 
presented in the next section, with facilities to express 
data source’s synchronization. 

Platform developers implement context manager 
components in charge of service context provisioning and 
configuration. The proposed component DSL also includes 
facilities for this task. 

 

Figure 4. Context development and deployment. 

Context components are deployed and executed on top of a 
pervasive runtime platform that handles their lifecycle. 
Specifically, our context management system has been 
integrated in a pervasive platform named iCasa [20] that is able 
to host multiple components and applications written with 
iPOJO. The iCasa/iPOJO runtime has been extended to handle 
all the non-functional aspects introduced by our component 
DSL, while retaining its service-oriented properties. The iCasa 
runtime has also been extended to offer appropriate probes and 
touchpoints to enable autonomic management of the context 
module, in accordance with the application needs. 

Application developers use context services defined in the 
first step of context development to simplify their code and 
concentrate on business logic (Figure 5). At runtime, context 
representation depends on deployed applications and available 
resources.

 
Figure 5. Application development and deployment. 

IV. DSL FOR CONTEXT 

A. Overview 

Context is a representation of the surrounding environment. 
As such, it can be regarded as an explicit model [21] of the 
environment used by the pervasive applications. We use a 
service-centric approach to explicit this model. Context 
services must be described, implemented and dynamically 
provided at runtime. The following steps are necessary: 

 Context service aims to provide a service description. 

 Context entity aims to provide an implementation of 
context services. 

 Context provisioning aims to provide a simple way to 
dynamically instantiate context entities. 

For each of these steps, we provide a support through a 
Domain-Specific Language, defined by the meta-model in 
Figure 6. The concrete syntax is based on Java annotations and 
hides the dependency between concepts and the selected 
SOCM. The current implementation is based on iPOJO, the 
Apache OSGi service-oriented component model [17]. We 
provide build time processing to map our concepts to iPOJO 
concepts. Other implementations of our approach can be done, 
as long as the selected SOCM supports late-binding and 
dynamic instantiation. 

 

Figure 6. DSL meta-model. 

 

 

 

 



   

B. Context Service 

Application development relies only on service description 
to reduce coupling between context implementation and 
application business logic code. The service description must 
contain enough semantic and information to be used without 
ambiguity by the application. As depicted in Figure 7, we 
extend the OSGi service definition, which relies on a simple 
Java interface, with our DSL. It allows to clearly identify 
which interface will be exposed as a context service; 

@ContextService; and enhanced the service definition by 

state properties definition; @State; that will be valued and 
exposed at runtime by the service implementations. 

At runtime, context service use in application is greatly 
simplified by iPOJO injection mechanism. Application 
components specify their context service dependencies with 
specific goals. Goals can be cardinality, filtering or ranking 
strategies. According to these goals, iPOJO autonomically 
allows opportunistic use of new context services and 
dynamicity resilience by dynamically injecting service 
implementation. Additionally, simple event mechanism is 
handled by calling application callback each time state 
properties are modified. 

11 public @ContextService interface BinaryLight implements  

12  GenericDevice{ 

13  

14  public final static @State String POWER_STATUS=”status”; 

15  

16  public void getPowerStatus(); 

17 

18  public void setPowerStatus(boolean state); 

19 

20  public void turnOn(); 

21 

22  public void turnOff(); 

23 

24 } 

Figure 7. Java code for a context entity service. 

C. Context Entity 

In order to support a reliable, maintainable implementation 
of previous described context service and keep it as simple as 
possible, our approach is based on a domain-specific 
specialization of the iPOJO component model. We extend 
iPOJO meta-model, with specific concepts required to deal 
with context issues. 

The concrete language used in iPOJO to define components 
is based on plain Java classes marked with annotations (see 
Figure 8) to declare non-functional aspects handled by the 
platform. We have enhanced the iPOJO design time tools with 
specific annotations required to declare specialized context 

concepts. For example, annotation @ContextEntity 

allows specifying a context entity that can implement context 
services. 

Concretely, each state property declared in the 
implemented context service specification must be referenced, 

through @State.Field, in the implementation class as 
simple Java attribute to be easily manipulated during the 
service implementation. Each state property is synchronized 
through dedicated function: 

 Functions to retrieve data from an external entity: 
@State.Pull/@State.Push 

 Function to influence an external entity: 

@State.Apply. 

 The synchronization process is bi-directional in order to 
enable application to act on the context. These annotations 
enable to specify goals, like the frequency to call a 

@State.Pull function if it is periodic. 

In our approach, a relation represents a link between two 
context entities, a pointer from an instance to another. It is 
implemented by a service dependency. This pointer is 
particular: it contains semantic information on its source, target 
and nature. It can be used to enhance context with semantic 
information. As a service dependency it can be used for 
synchronization process. Goal can be specified like cardinality 
or ranking. 

10 @ContextEntity(services = {BinaryLight.class,…})  

11 public class ZigbeeBinaryLightImpl implements BinaryLight{ 

12  

13  @ContextEntity.State.Field(service =  

14  BinaryLight.class,state = BinaryLight. POWER_STATUS) 

15  public boolean powerStatus; 

16   

…  /**Service Implementation relying only on state field**/ 

20  public void setPowerStatus(boolean status){ 

21   powerStatus = status; } 

22   

20  public boolean getPowerStatus(){ 

21   return powerStatus; } 

21   

… /**Specific Zigbee synchronization for powerStatus**/ 

26  @ContextEntity.State.Pull(… frequency = 10  

27  ,unit=TimeUnit.SECONDS) 

28  Supplier<Boolean> getPowerStatusFromDevice = () -> { 

… 

30  }; 

31  

32  @ContextEntity.State.Push(…) 

33  public boolean getPowerStatus(){ 

… 

36  } 

37  @ContextEntity.State.Apply(…)  

38  Supplier<Boolean> getPowerStatusFromDevice = () -> { 

… 

45  }; 

…  /**Injected Relation field**/ 

58  @ContextEntity.Relation.Field(value = “isIn”,…) 

59  @Require (optional = true,…) 

60  private Zone injectedZone; 

61 } 

Figure 8. Java code for a context entity service implementation. 

At runtime, context entities are wrapped as iPOJO 
components. Component containers can be extended by iPOJO 
modules, called handers. The framework provides a number of 
off-the-shelf handlers in charge of global aspects of the 
platform, like service publishing or dependency injection. 
More importantly, it is possible to develop new iPOJO 
handlers to take charge at runtime of particular concerns. 

We implemented two new iPOJO handlers, as show in 
Figure 9, dealing with specific context concerns. The handlers 
are described as follow: 

 Synchronization Handler: It deals with the state 

synchronization of entity components. It keeps the state 

properties up-to-date by managing the synchronization 

functions. Different strategies can be specified to do so. 

For example, the handler can periodically call pull 

functions or just wait for push callbacks to keep the 

state up-to-date. Additionally, the handler is in charge 

of publishing state properties as service properties. 

This publication has two main interests: it allows 



   

processing of more advanced filters and state updates 

can be reported to the application without the burden of 

an Observer pattern, by relying on iPOJO notification 

mechanism. 

 Relation Handler: The relation handler is in charge of 

the dynamic service binding of relations. 

 
Figure 9. Service-oriented component view of context model. 

D. Context Provisioning 

Context service provisioning is guided by the discovery of 
external events, e.g. a device joining the network or a user 
interaction with a web dashboard. Approaches like RoSe [18] 
or MUSIC [22] provide pattern to modularized and maintain 
the discovery of external event at runtime but, no support is 
provided for dynamic instantiation of context service provider. 
iPOJO runtime supports this behavior but its establishment 
remains highly technical, tightly coupled to the iPOJO model 
and de facto become less feasible for developers. Our 
middleware provides autonomic facilities regarding this issue, 
without cluttering the discovery code. As depicted in Figure 
10, discovery code emits now instantiation requests (previously 
it was direct instantiation) and the middleware choose to 
process or stock the requests according to the application 
contextual service requirements. 

13  @Creator.Field Creator.Entity<ZigbeeBinaryLightImpl>  

14 zigbeeBinaryLightCreator 

15  

16  public void catchZigbeeDiscoveryEvent(Map<Parameter>  

17 param){ 

18  String id = …; 

… 

20  zigbeeBinaryLightCreator.create(id,param); 

21 } 

Figure 10. Java code for a context service dynamic provisionning. 

E. Autonomic Execution 

As depicted in previous section, each step of context 

development is probed with autonomic touchpoints. We will 

see how our context management middleware can benefit 

from this and provide autonomic features. 

First, we assume that applications are developed following 

the iPOJO model. Each application can be composed of 

several components and relies on context services. Regarding 

to dynamicity, iPOJO naturally infuses autonomic behavior in 

the component’s container. Therefore, application can benefit 

of late-binding and dynamic service substitutability. This level 

of adaption is specified within iPOJO annotation. 

Secondly, when a context-aware application is deployed 

and executed, our context manager knows its context service 

dependency. Based on this knowledge, adaptation can be 

acted. Hence, it is possible to dynamically realize the 

following changes: 

 Enable or disable context entity provisioning; 

 Modify specific synchronization parameters; 

 Replace context providers. 
This autonomic behavior allows managing fault tolerance 

by switching of context provider, if a new one is available. All 

of this adaption logic is hard coded in our context manager. 

We are currently investigating integration with dynamic 

deployment [23], to provide fine grained context management.  

V. EVALUATION 

The iCasa environment [24] is made of three tools: an 

Integrated Development Environment based on an eclipse 

plug-in; an execution platform based on OSGi and RoSe; a 

smart home simulator to quickly test pervasive applications.  

The execution platform is running on a home gateway, 

which hosts several applications and offers dynamic 

deployment facilities. Applications belonging to domains like 

safety, comfort or health care have been developed. For 

example, iCasa hosts part of a home care application called 

actimetrics which measures and analyses the motor activity of 

elderly. Its purpose is to track behavioral changes to early 

diagnosis degenerative diseases like Alzheimer [16]. 

We provide an evaluation from a software engineering 

point of view, encompassing several metrics link to design 

time activity. We choose the following metrics: number of 

lines of code, cyclomatic complexity (this metric gives 

indication on maintainability, reliability and testability) and 

technical debt (evaluation of the effort needed to fix all 

issues). All this metrics are computed and provided by an 

open source quality management platform, SonarQube [25]. 

We run our evaluation on two different projects: we entirely 

restructured the context of the iCasa execution platform and 

its associated simulator; and we refactored an application on 

the top on the restructured platform. Graphics on Figure 11 

and Figure 12 present the chosen measurement comparisons, 

respectively for the iCasa execution platform and the 

application. 

 

Figure 11. Evaluation on iCasa platform and simulator. 

The first evaluation concerns the iCasa platform and its 

associated simulator. In the reference, contextual information 

in iCasa execution platform and simulator was computed in an 

ad hoc way. It was heterogeneously developed according 

developer’s will and spread into the platform. It was difficult 

to extend the context or make it evolve since there wasn’t any 

 

 

 

 



   

consistency. For the evaluation, we redesigned the context by 

applying our approach and we compared the two versions 

(Figure 11). Functionalities provided by the reference and our 

approach are: 

 A set of abstraction for device, location and user and 
their implementations; 

 A web interface acting as a dashboard; 

 A script language allowing to dynamically instantiate 
simulated device, location and user. 

Thanks to the code provided by the handler and the simple 

event mechanism, the number of line of code decrease. By 

clearly identifying synchronization functions and limiting their 

number, cyclomatic complexity have been reduced. We also 

noticed that the restructured implementation presents a high 

percentage of duplicated lines (approach 7%, reference 3%) 

due to iPOJO technical limitations: it doesn’t support 

inheritance. The number of lines could therefore be reduced 

more. 

Our approach notably improves context development. It 

offers non-functional technical facilities. The context is 

modularized, extensible, and autonomic. The whole software 

is more consistent, testable and maintainable. 

 

Figure 12. Evaluation on Light Follow Me application. 

The second evaluation compares two versions of Light 

Follow Me application build upon the reference and the 

restructured platform (Figure 12). Light Follow Me turns the 

lights off and on depending on the presence of a user for each 

room of a house. This application is simple yet it encompasses 

all requirements presented before. It is a typical home 

pervasive application that doesn’t need complex reasoning 

algorithm, facing the dynamism of the environment (light and 

sensor can appear/disappear) and directly influencing the user 

environment through switching on/off the light. In the 

reference implementation, the application manually processes 

information like presence per zone by directly reasoning over 

the sensors and their location. In our approach we choose to 

externalize the processing of this information with a dedicated 

presence per zone context service (blue part on Figure 12). 

This presence per zone service can be shared between 

applications and evolves independently regarding to the 

business code of these applications. 

The externalization of the presence service produces an 

overhead in terms of line of code and complexity. This is due 

to the fact that all the logic of provisioning the service must 

implemented in our solution. However, this overhead can be 

shared by many applications. So if we analyze only the 

application business code (orange part on Figure 12), it is 

approximately divided by 2 and de facto become easy to test, 

maintain and evolve. 

We can summarize that externalizing the context adds an 

additional development task and the resulting architecture is 

more complicated, but this cost can be mutualized and shared 

among several applications. Moreover, new applications can 

be develop on top of more abstract services, easing their 

implementation. 

VI. RELATED WORK 

Developing context-aware applications is one of the hot 

research topics for the last decade. Naturally many software 

architectures emerged to reach this goal. We compare our 

proposed architecture to the existing ones: The Context 

Toolkit [7], COSMOS [26] SOCAM [27] and another SOC-

based context model [28]. Many more architectures are 

available, but these ones are representative of the global trend. 
The Context Toolkit [7] promotes code-reuse through the 

composition of distinct artifact called widgets to build the 
context. These widgets are used to hide the complexity of 
sensors and abstract context information in a suitable way to fit 
applications need. These reusable blocks are explicitly linked 
at design time, each block deciding which blocks to use. Our 
approach is similar in the sense that we divide the context in 
individual small pieces. The key differences with our work are 
that we delegate the composition at runtime with more 
variability expressed at design time thanks to SOCM 
properties. Moreover our entity relation like model offers more 
flexibility to design complex context. 

COSMOS, COntext entitieS coMpositiOn and Sharing 
[26], is a component based context middleware. Each pieces of 
context is reified as a component called Context Node 
organized in a hierarchical structure. This approach and ours 
address the separation of concerns by offering several built-in 
mechanisms like push/pull notifications and reduce the 
developer’s work. However, the strictly hierarchical approach 
of COSMOS context makes it difficult to model with 
horizontal relations. Moreover, component specifications are 
strictly defined at design time, so runtime extensibility 
proposed by our system of relation will be hard to achieve. 

The Service-Oriented Context Aware Middleware 
(SOCAM) [27] is an ontology-based context middleware. 
SOCAM architectures rely on several components: Context 
Providers (extracting context from internal and external data 
sources, and converting them in ontological instance), Context 
Interpreter (reasoning engine performing inference to extract 
high-level context and store it in knowledge base), Context-
aware Mobile Service (application that consume context), and 
Service Locating Service (a registry where providers and 
interpreters are registered, where other components can search 
specific providers or interpreters to fit their needs). SOCAM 
envisions a highly structured context model with ontology in 
order to benefit from all the powerful processing tools induced 
by this approach, like reasoning engine. So it generates a 
programming model through a query language and rules, 
contrary to our programming model that relies on Java service 
specifications that we consider more adapted to develop added-
value services. 
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In [28], a work dealing with proactive adaptation and 
context management based on a SOCM architecture is 
presented. It underlines the fact that context interactivity is not 
just about providing the most powerful modeling and reasoning 
engine. Indeed, applications also can deal with context in a 
proactive manner, with the ability to change the context 
through actuators. Our approach, in this sense, is very similar 
because previous works say little about how to influence 
context. However, to achieve this goal, a specific query 
language that generates a cost on the learning curve is 
provided, whereas we prefer a traditional Java programming 
model. 

VII. CONCLUSION 

In this paper we presented a comprehensive approach to 
build and run Context as a Service. We provide a simple way 
to address service description, implementation and 
provisioning in a modular, maintainable and autonomic way. 
This solution can be integrated in an enriched execution 
platform as demonstrated. Our work focuses on providing tools 
to build and execute a runtime autonomic model of context. 
This model is probed with autonomic touchpoint, synchronized 
with external entities and can be enriched dynamically by new 
relations or services. Applications developed using SOC 
paradigm upon this model can also dynamically add new 
elements in the context in order to better fit their needs. 

As limitations, we notice that our runtime implementation 
currently maintains a possibly large, in-memory, representation 
of context. Additional performance optimizations are required 
to cope with the needs of realistic applications, in terms of 
memory scalability and footprint. 

Further perspectives of our work include extensions to 
handle more complex synchronization scenarios and provide 
off-the-shelf processing components like aggregation 
processing. Moreover, as depicted in the background section, 
our work focuses on integrating context in the network edge 
like home pervasive gateway, but as explained many 
applications can be divided in two parts. On one hand, these 
applications performed immediate action on the user 
environment and are located in the network edge. On the other 
hand, they handle complex reasoning on large historical set of 
data and are in most case execute in the cloud. It will be very 
interesting to investigate how our context model can cohabitate 
with a more “data-centric” context management located in the 
cloud. 
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