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Abstract. Automated algorithm configuration procedures play an in-
creasingly important role in the development and application of algo-
rithms for a wide range of computationally challenging problems. Until
very recently, these configuration procedures were limited to optimis-
ing a single performance objective, such as the running time or solution
quality achieved by the algorithm being configured. However, in many
applications there is more than one performance objective of interest.
This gives rise to the multi-objective automatic algorithm configuration
problem, which involves finding a Pareto set of configurations of a given
target algorithm that characterises trade-offs between multiple perfor-
mance objectives. In this work, we introduce MO-ParamILS, a multi-
objective extension of the state-of-the-art single-objective algorithm con-
figuration framework ParamILS, and demonstrate that it produces good
results on several challenging bi-objective algorithm configuration sce-
narios compared to a base-line obtained from using a state-of-the-art
single-objective algorithm configurator.

Keywords: Algorithm Configuration, Parameter Tuning, Multi-objective Op-
timisation, Local Search Algorithms

1 Introduction

The performance of many algorithms strongly depends on the setting of their
parameters. In particular, state-of-the-art solvers for prominent NP-hard com-
binatorial decision and optimisation problems, such as propositional satisfiabil-
ity, scheduling, vehicle routing and mixed integer programming critically rely
on configurable heuristics whose parameters have a strong impact on the over-
all performance achieved on a given class of problem instances. In many cases
these parameters interact with each other in complex and non-intuitive ways,
and manually configuring them to optimise performance on a particular class of
instances is a difficult and tedious task.



State-of-the-art automatic algorithm configuration procedures from the lit-
erature, such as ParamILS [6], SMAC [5], and irace [2], only consider a single
performance objective when optimising the configuration of an algorithm; they
are particularly frequently used for minimisation of running time or maximisa-
tion of solution quality. However, there are many situations in which multiple
competing performance objectives matter when configuring a given algorithm,
such as running time and memory consumption, and running time and solution
quality, and there are well-known benefits in exploring the tradeoffs between
such competing objectives.

To the best of our knowledge, automatic configuration for multiple perfor-
mance objectives has been studied only recently, and only in the context of
racing algorithms [13,14]. In this work, we introduce MO-ParamILS, an exten-
sion of the prominent ParamILS algorithm configuration framework [7,6] that
allows us to deal with multiple performance objectives. Like the single-objective
ParamILS framework that inspired it, MO-ParamILS implements two configu-
ration procedures: MO-BasicILS and MO-FocusedILS. As we will demonstrate,
both are effective in dealing with five bi-objective configuration scenarios, with
MO-FocusedILS producing better results than MO-BasicILS.

The remainder of this paper is organised as follows. Section 2 describes the
single- and multi-objective algorithm configuration problems and introduces def-
initions and notation required later. Section 3 presents the MO-ParamILS frame-
work along with the MO-BasicILS and MO-FocusedILS multi-objective configu-
ration procedures implemented within it. Section 4 presents an empirical evalu-
ation of these configurators on five bi-objective configuration scenarios involving
prominent solvers for MIP and SAT. Finally, Section 5 provides conclusions and
an outlook on future work.

2 Automatic Algorithm Configuration

Automatic algorithm configuration deals with the optimisation of the perfor-
mance of an algorithm through the automatic configuration of its parameters.
In the following, we first describe the general context of algorithm configuration,
before giving a formal definition of the algorithm configuration problem and its
extension to a multi-objective setting.

2.1 General Context

Complex algorithms, especially ones for solving hard computational problems,
often expose numerous parameters that can be optimised to achieve good perfor-
mance in different application scenarios. General-purpose solvers for problems
such as mixed integer programming (MIP) or propositional satisfiability (SAT)
are usually designed to perform well across a broad range of instance types, but
can be tuned manually for performance on particular sets of problem instances.
The algorithm configuration problem is an optimisation problem that aims at
finding the best possible parameter configuration of a given algorithm w.r.t.



its performance on a given set or distribution of problem instances. Note that
when talking about methods for solving this algorithm configuration problem,
there are two levels of algorithms involved: the target algorithm – a lower-level
algorithm for some problem, such as MIP or SAT, whose performance is to be
optimised, and the configurator – a higher-level algorithm used for optimising
the performance of the target algorithm.

There is a sizeable literature on automatic algorithm configurators, includ-
ing procedures based on sequential model-based optimisation, such as SMAC [5];
racing algorithms, such as irace [10,12]; and model-free search algorithms, such
as CALIBRA [1] and ParamILS [6,7]. These all address the single-objective au-
tomatic algorithm configuration problem, where the performance of the target
algorithm is assessed by a single scalar value, such as the running time or solution
quality, or a fixed aggregation of multiple scalar values. Recently the idea of a
more general multi-objective automatic algorithm configuration problem has be-
gun to emerge, e.g., in the work of Zhang et al. on multi-objective configurators
based on racing [13,14].

On the other hand, good examples of target algorithms are metaheuristics
for NP-hard problems, or commercial solvers such as CPLEX with a broad
range of parameters. During the development of such algorithms, automated
configurators can be used to assess and optimise the performance of different
design choices, as well as to find good default parameter settings.

Target algorithm parameters can be numerous and varied in their type and
function. They can control low-level aspects of target algorithm behaviour, such
as probabilities for certain types of operations, up to high-level aspects, such as
computation strategies or problem representations. We distinguish three main
types of parameters: categorical parameters, which have a finite number of un-
ordered discrete values, often used to select between alternative mechanisms,
integer parameters, which have discrete and ordered domains, and finally, con-
tinuous parameters that take numerical values on a continuous scale. In addition,
conditional parameters exist that depend on the setting of other parameters, as
well as forbidden parameters, which describe forbidden parameter combinations,
to avoid known incorrect or undesirable behaviour of the target algorithm.

2.2 Problem Statement and Notations

The single-objective algorithm configuration problem is defined as a tuple
< A, Θ,D, o,m >, where
– A is the parameterised target algorithm,
– Θ is the search space of possible configurations of A,
– D is a distribution of problem instances,
– o is a cost function, and
– m is a statistical population parameter.

A configuration θ ∈ Θ is one possible setting of the parameters of A. The cost
function o is the performance objective for a single execution of algorithm A
on an instance π ∈ D, such as the final accuracy or the total running time.
The statistical parameter m is used to aggregate the values of the cost function o



over a set of instances, e.g., the arithmetic mean or the median. The aggregated
cost of one configuration θ ∈ Θ of an algorithm A over all instances π from D is
then defined as c(θ) := m(O(θ)), where O(θ) is the distribution of costs induced
by the function o on D.

The single-objective automatic algorithm configuration problem then consists
of finding a configuration θ∗ ∈ Θ such that c(θ∗) is optimised. While in general,
performance measures may be minimised or maximised, in the following, we
assume (without loss of generality) that c(θ) is to be minimised.

Unfortunately, the cost c(θ) of a configuration θ often cannot be computed
directly, as D is usually not finite or much too large to explore exhaustively.
Usually, the cost is estimated based on a finite set of instances from D. In this
context, we use R to denote a list of runs of a given configurator and represent
each run by a triple < θ, π, o >, where
– θ ∈ Θ is the configuration considered,
– π from D is the instance on which the target algorithm is evaluated,
– o is the observed cost of the run.

The estimated cost ĉ(θ) of a configuration θ given a sequence of runs R is then
determined as the aggregate m over the cost o of all runs < θ, π, o > for some π
from D. If the target algorithm is stochastic, a configuration is combined with a
specific random seed in order to ensure fair comparisons.

As a simple example, let us consider the configuration of a general SAT solver
in an application scenario where we want to minimise the average running time
for a certain type of SAT instances. By using a SAT solver that is specifically
configured to achieve this, we can save time on instances to be solved in the
future compared to using the solver in its default configuration, and eventually
these time savings will exceed the effort required for configuring the solver. Here,
the target algorithm A is the SAT solver, with configuration space Θ, and D
is the distribution of SAT instances of interest. The cost function o reflects the
solving time for a given SAT instance, and m is defined as the arithmetic mean.

However, in many cases, when optimising the performance of a given algo-
rithm, there is more than one performance metric of interest, which gives rise to a
multi-objective optimisation problem. To capture this, we consider an extension
of the single-objective algorithm configuration problem that involves a vector of
cost functions o := (o1, . . . , on) where each oi is a single-objective cost function,
and a vector of statistical parameters m := (m1, . . . ,mn). Theoretical cost vec-
tors c(θ) and estimated cost vectors ĉ(θ) are defined based the component-wise
scalar cost and estimated cost introduced earlier.

The multi-objective automatic algorithm configuration problem, given a dom-
inance relation ≺ over configurations, then consists of finding a set of configura-
tions Θ∗ ⊆ Θ such that no θ ∈ Θ∗ is dominated w.r.t. ≺ by any other θ′ ∈ Θ.

In the following, the dominance relation ≺ we consider is Pareto dominance,
i.e., for u := (u1, . . . , un) and v := (v1, . . . , vn), u is said to dominate v (denoted
by u ≺ v) if, and only if

∀i ∈ {1, . . . , n} : ui ≤ vi ∧ ∃ i ∈ {1, . . . , n} : ui < vi



This relation is transferred to configurations by their costs: a configuration θ1
dominates a configuration θ2 iff c(θ1) dominates c(θ2). We will refer to a set of
mutually non-dominated configurations as an archive. Adding the dominance re-
lation to the multi-objective automatic algorithm configuration problem reflects
the overall aim of generating configurations with performance characteristics
(according to the given objectives) that are not dominated by any other configu-
ration available. Thus, we are interested in (ideally all) existing tradeoff solutions.
We note that, just as in the single-objective case, practical configurators may
only find suboptimal solutions to a given configuration problem.

3 From ParamILS to MO-ParamILS

In this section, we first outline the existing single-objective ParamILS framework
and then describe our new multi-objective framework, along with the two MO-
ParamILS variants we study in the following, MO-BasicILS and MO-FocusedILS.

3.1 Single-objective ParamILS

ParamILS [6] is an automatic algorithm configuration framework that optimises
a single performance metric using iterated local search, a well-known stochastic
local search method [11]. The configuration process starts by evaluating a given
default configuration along with r configurations chosen uniformly at random
from the given configuration space Θ. The best of these r + 1 configurations is
used as the starting point for the iterated local search process, which can be
seen as a sequence of three phases that is repeated until a given time budget
is exhausted. Throughout the search process, we keep track of the incumbent
configuration θ∗, i.e., the best configuration seen so far. In the first phase, the
current configuration θ is perturbed, by performing s random steps in the one-
exchange neighbourhood (where two configurations are neighbours if, and only if,
they differ by the value of a single parameter). In the second phase, randomised
iterative first improvement local search is performed within the same neighbour-
hood, excluding all configurations that have been visited previously during the
same local search phase. The local search process ends when all neighbours of a
given configuration have been checked without achieving an improvement. If the
configuration θ′ thus obtained is better than the configuration θ from which the
last perturbation phase was started, we set θ to θ′ (and update the incumbent).
To provide additional diversification to the search process and guarantee proba-
bilistic approximate completeness, with a fixed probability prestart, θ is reset to
a configuration chosen uniformly at random from the entire space Θ.

We note that, in light of the usually high cost of evaluating configurations of
the given target algorithm, ParamILS maintains a cache of the results from all
target algorithm runs performed during the search process and only performs
target algorithm runs after checking that the respective results are not available
from that cache.



3.2 Multi-objective ParamILS

We now describe our multi-objective extension of the ParamILS framework. The
main difference between ParamILS and MO-ParamILS (outlined in Algorithm 1)
lies in the use of a multi-objective iterated local search process, in which an
archive (i.e., set of non-dominated configurations) is iteratively modified rather
than a single configuration of the given target algorithm. Likewise, the incumbent
is now an archive. Like ParamILS, MO-ParamILS exposes three parameters: the
number r of initial random configurations, the number s of random search steps
performed in each perturbation phase and the restart probability prestart.

Algorithm 1: Multi-objective ParamILS
Data: Initial archive, algorithm parameters r, prestart and s
Result: Archive of incumbents, i.e., overall best configurations found

current_arch ← initial archive;
for i← 1 . . . r do

conf ← random configuration;
update(conf, current_arch);
archive(conf, current_arch);

until termination criterion is met do
if first iteration then

arch ← current_arch;
else

if with probability prestart then // Restart
conf ← random configuration;
current_arch ← {conf};
arch ← current_arch;

else // Random sampling and random walk
/* Incumbents are not forgotten between restarts */
conf ← random configuration of current_arch;
for i← 1 . . . s do

conf ← random neighbour of conf;

arch ← {conf};

arch ← local_search(arch);
foreach conf in arch do

update(conf, current_arch);
archive(conf, current_arch);

return the archive of incumbents;

The initialisation of the search process does not change conceptually, except
that an initial set of default configurations can be provided and is combined, with
the r randomly chosen configurations, into an archive. We ensure that whenever
we add a new configuration to an archive a, all Pareto-dominated configurations



Function 2: archive(new_conf, arch)
Data: Single configuration new_conf, archive arch
Result: Updated archive arch

foreach conf in arch do
if dominates(new_conf, conf) then

arch ← arch \ {conf};
else if dominates(conf, new_conf) then

return arch;

arch ← arch ∪ {new_conf};
return arch;

in a are discarded (see Function 2), so that an archive always contains only
non-dominated configurations.

MO-ParamILS prominently uses the two following functions: dominates()
and update(). The function dominates() compares two configurations using
strict Pareto dominance on the respective cost (estimate) vectors. The function
update() is, unless explicitly specified otherwise, the only function that runs the
target algorithm and updates the cost vector of a configuration; it ensures that a
given configuration can subsequently be compared to another configuration using
dominates(). It also maintains a cache of all target algorithm runs performed
throughout the multi-objective search process and ensures that the overall best
configurations, the archive of incumbents, is kept up-to-date. We will discuss
the instantiations of update() and dominates() for MO-BasicILS and MO-
FocusedILS, the two MO-ParamILS variants we used in our experiments, later
in this section.

We use a simple variant of the perturbation mechanism from ParamILS, in
which a single configuration is selected uniformly at random from the current
archive and modified by a sequence of s random search steps in the 1-exchange
neighbourhood; the resulting configuration is then stored as a new archive, which
forms the starting point of the subsequent local search phase [4]. The restart
mechanism remains unchanged, except that it now replaces the current archive
with one containing a single configuration chosen uniformly at random from the
entire configuration space Θ. As in ParamILS, we use default values of r := 10,
prestart := 0.01, and s := 3 in our experiments.

The subsidiary local search process used in MO-ParamILS is outlined in
Function 3. From a wide range of existing multi-objective local search proce-
dures [9], we chose this one, because it is conceptually simple and resembles the
subsidiary local search procedure used in ParamILS; it has also been shown to be
very efficient [3]. At each step of the local search process, all configurations in the
current archive are explored individually. When exploring a configuration θ, its
neighbours are evaluated in random order (excluding any configurations already
visited earlier in the same local search phase), until one is found that strictly
dominates θ or all neighbours have been visited. All non-dominated neighbours



Function 3: localSearch(init_arch)
Data: Initial archive of configurations init_arch
Result: Best archive of configurations found
Side effect: Change or update the incumbent if necessary

current_arch ← init_arch;
tabu_set ← current_arch;
repeat

/* Selection */
current_set ← current_arch;
candidate_set ← ∅;
foreach current in current_set do

foreach neighbour in randomised neighbourhood of current do
/* Exploration */
if neighbour ∈ tabu_set then

next;

tabu_set ← tabu_set ∪ {neighbour};
update(neighbour, current);
if dominates(neighbour, current) then

candidate_set ← candidate_set ∪ {neighbour};
break;

if not dominates(current, neighbour) then
candidate_set ← candidate_set ∪ {neighbour};

/* Archive */
foreach conf in candidate_set do

archive(conf, current_arch);

until candidate_set = ∅;
return current_arch;

encountered during this process are added to the current archive, making sure
that dominated solutions are removed. (Notice how this can be seen as a gener-
alised version of the acceptance criterion used in the single-objective ParamILS
framework.) The local search then stops when there is no more unvisited neigh-
bour that can be added to the archive.

3.3 MO-BasicILS

The key idea behind BasicILS(n) is to evaluate configurations on a fixed set of
n training instances, selected uniformly at random (without replacement) from
the given training set D [7]. This can be easily carried over to the MO-ParamILS
framework of Algorithm 1, by defining update() and dominates() the way that
the latter always compares configurations based on their quality vectors on the
same instances set, and the former ensures that all target algorithm runs required
in this context are performed.



The disadvantage of the resulting MO-BasicILS procedure, as in the case of
BasicILS, lies in the difficulty of choosing n: if n is too small, solution quality
estimates can be inaccurate, leading to poor generalisation of the performance of
the configurations obtained from MO-BasicILS to unseen test instances; if n is
too large, much effort is wasted on evaluating poorly performing configuration,
compromising the efficiency of the search process. In our experiments, we used
a default setting of n := 100.

3.4 MO-FocusedILS

The key idea behind FocusedILS is to avoid the potential problems arising from
the use of a fixed number of instances for evaluating configurations by start-
ing comparisons between configurations on a small initial set of instances and
then increasing the number of instances as better and better configurations are
found [7]. Based on the same idea, MO-FocusedILS allows poor configurations to
be dominated very soon, while promising configurations are evaluated increas-
ingly more accurately as the search process progresses.

Towards this end, MO-FocusedILS uses a slightly weaker dominance relation
in the function dominates(), which adds the condition that a configuration θ
dominates a configuration θ′ if, and only if, θ has been run on every instance θ′
has been run and θ dominates θ′ on those instances. Note that when θ and θ′ have
been run on the same instances, this corresponds to standard Pareto domination,
and as the number of instances grows, it approximates Pareto domination on the
true (theoretical) cost vectors arbitrarily accurately.

In practice, new runs are performed for the configuration that has been eval-
uated on fewer instances so far, until either of the two configurations being com-
pared dominates another; the instances for these new runs are chosen according
to a random permutation of the training instance set that has been determined
when initialising MO-FocusedILS and then remains fixed. This ensures that for
two configurations θ and θ′ and their respective sequences of runs Rθ and Rθ′ ,
either Rθ ⊆ Rθ′ or Rθ ⊇ Rθ′ , and that Rθ ∩Rθ′ is either equal to Rθ or to Rθ′ .

The update() function of MO-FocusedILS handles the comparison of a single
configuration θ and an archive a by adding new runs of θ until there is at least
one configuration θ′ ∈ a for which Rθ ⊇ Rθ′ or θ′ dominates θ.

Like Focused-ILS, MO-FocusedILS additionally requires an intensification
mechanism that ensures that over the course of the search process, good config-
urations are evaluated on an increasing number of instances. This mechanism is
outlined in Procedure 4: it simply performs new runs for a given configuration
until its new cost vector Pareto dominates its cost vector before intensification.
Procedure 4 is called at the beginning of every local search phase, to help start
the local search process with a better cost estimate, after every local search
phase, to further increase the accuracy of cost estimates, and each time the
update() function compares two configurations with the same number of runs.
(Alternative, but less efficient intensification mechanisms might perform a fixed
number of new runs, or a number of runs given by a function of the time spent
since intensification was last performed.)



Procedure 4: intensify(conf)
Data: Single configuration conf
Side effect: Updates the level of detail of conf

repeat
old_cost ← cost(conf);
perform a new run of conf;
new_cost ← cost(conf);

until pareto_dominates(old_cost, new_cost) ;

Table 1: Configuration scenarios
Dataset Algorithm Walltime Performance objectives Abbrv.

Regions200 CPLEX 1 day [ Quality, Cutoff ] RCut
Regions200 CPLEX 1 day [ Quality, Running Time ] RRun
CORLAT CPLEX 1 day [ Quality, Cutoff ] CCut
CORLAT CPLEX 1 day [ Quality, Running Time ] CRun
QUEENS CLASP 1 day [ Memory usage, Running Time ] QUEENS

4 Experiments

In this section, we present results for MO-ParamILS for two different multi-
objective automatic algorithm configuration problems. First, we study the trade-
off between running time and solution quality for an anytime optimisation algo-
rithm. Our second example involves the simultaneous optimisation running time
and memory usage. In both cases, we consider two optimisation objectives; how-
ever, MO-ParamILS is not restricted to such bi-objective algorithm configuration
problems.

4.1 Experimental protocol

To assess the performance of MO-ParamILS we consider five configuration sce-
narios, described by Table 1. These scenarios use three datasets and two target
algorithms, which belongs to ACLib5, a comprehensive algorithm configuration
library, and are already known and have been studied in single-objective algo-
rithm configuration.

Details of the two algorithms are precised by Table 2. Note that the neigh-
bourhood relation of ParamILS considers all parameters as categorical; hence-
forth for integer or continuous parameters the set of values have been discretised
before all experiments.

Our experimental protocol involves three consecutive steps, namely training,
validation and test. In the training step, the configurator is run 25 times on 25
different permutations of the training set, resulting in 25 archives. Because the
5 http://aclib.net
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Table 2: Target algorithm parameters (with number of possible values)
Algorithm Categorical Integer Continuous Total configurations

CPLEX 5 (2) 65 (2–7) 2 (5–6) 2.26 · 1046
CLASP 15 (2–5) 43 (2–16) 8 (6–14) 9.96 · 1048

configurations produced at the end of the training phase have not necessarily
been evaluated on precisely the same training instances, in the validation step,
each final configuration of the 25 training runs is reassessed on the same subset
of the training instances. At the end of this validation phase, all configurations
have been assessed on the same set of problem instances and can therefore be
meaningfully compared in order to identify the ones that are Pareto-optimal
w.r.t. performance objectives on solved problem instances and percentage of
unsolved problem instances. Then, in the test step, the configurations of the
archive obtained from the validation step are reassessed on a disjoint set of
testing instances. We use this protocol to compare the configurations obtained
from MO-BasicILS, from MO-FocusedILS, from an approach only using SO-
FocusedILS, as well as the default configuration. In each of these cases, we use
the same 25 permutations of the 1000 training instances, the same subset of 100
training instances for the validation, and the same 1000 testing instances.

Regarding MO-BasicILS, its parameter n is set to 100, meaning that esti-
mations of configuration performance use 100 training instances. Regarding the
SO approach, we used SO-FocusedILS with every available improvement (e.g.,
aggressive capping). For the four CPLEX scenarios, we ran SO-FocusedILS sep-
arately on the 5 different cutoff values chosen to obtain a total wall-clock time
of one day (that is, for 1, 2, 3, 5 and 10 CPU seconds cutoffs, the walltime for
the 1 CPU second cutoff is 1/(1+2+3+5+10)×24 hours). For the CLASP scenario,
we ran SO-FocusedILS separately on each of the two objectives for 12 hours.

In the CLASP scenario, failure by CLASP to find a solution within 300
seconds in a particular instance is penalised by counting any such run as 10
times the cutoff time (i.e., using the well-known PAR10 performance metric [6]).
In the CPLEX scenarios, we penalised failure by CPLEX to return a MIP gap
value by setting the MIP gap value to 1010 for such runs, thus making sure that
such configurations tend to be avoided by our configuration approaches.

Performance assessment has been carried out using the PISA framework [8].
For the CPLEX scenarios, we used the data without timeout. For validation and
test steps, the final fronts are compared using the hypervolume and ε indicators.
First, all fronts for a given step and scenario are normalised so the values of every
objective vector lie in the interval [1, 2]. Then, a reference front is computed by
merging every front and applying Pareto dominance. The indicator values are
then computed between each front and the reference front.

SPRINT-Race [14] is a recent multi-objective racing algorithm, and we orig-
inally considered including it in our performance comparison. However, both
CPLEX and CLASP algorithms have very large configuration spaces (1046 and



Table 3: Average percentages of timeouts for final CPLEX configurations
Validation Test

Approach RCut RRun CCut CRun RCut RRun CCut CRun

MO-FocusedILS 1.3 0.7 4.2 3.6 0 0 1.06 2.89
MO-BasicILS 0.1 0.6 3.6 2.9 0.04 0 0.47 3.78
SO Approach 0.3 0.4 4.8 5.1 0.12 0 1.87 1.87

Default 0 0 2.2 2.2 0 0 0.14 0.14

Table 4: Hypervolume (top) and ε indicator values (bottom) for final test fronts.
Approach RCut RRun CCut CRun Queens

MO-FocusedILS 9.02e-03 2.07e-03 2.37e-02 7.63e-04 1.57e-02
MO-BasicILS 2.46e-03 5.41e-02 5.53e-02 1.02e-01 5.49e-02
SO Approach 3.82e-02 5.82e-02 3.35e-01 1.72e-01 3.04e-02

Default 2.43e-01 3.57e-01 2.70e-01 5.30e-01 1.08e+00

MO-FocusedILS 1.44e-02 9.05e-03 9.00e-02 8.06e-04 2.64e-02
MO-BasicILS 1.80e-02 1.71e-01 1.11e-01 1.48e-01 8.35e-02
SO Approach 5.77e-02 1.38e-02 3.33e-01 1.42e-01 6.52e-02

Default 2.22e-01 2.69e-01 2.33e-01 3.90e-01 1.00e+00

1048 configurations, respectively), which implies that the only way to apply
SPRINT-Race would be in combination with a sampling technique. Furthermore,
the implementation of SPRINT available from its authors requires as input the
exhaustive evaluation of all configurations on all instances, making it impractical
to use for our configuration scenarios.

4.2 Results

Empirical results from the test phases are shown in Figure 1, considering only
instances solved before the given timeout. The corresponding number of unsuc-
cessful runs are given in Table 3. Table 4 shows the performance assessment for
test results for both indicators. For each scenario, the best value is highlighted.

As can be seen from Table 4, MO-FocusedILS finds considerably better
Pareto fronts for the test sets of all our multi-objective configuration scenar-
ios than our baseline single-objective approach in terms of hypervolume and
ε indicator. In all but one case, MO-FocusedILS also produces better results
than MO-BasicILS, which, in most cases, still produces better results than the
single-objective approach, but with less of a margin. Figure 1 provides additional
details by showing the Pareto fronts for all three multi-objective configuration
approaches as well as the performance (trade-off) achieved by the default con-
figuration; we note that the latter still produces a trade-off curve, because of the
anytime nature of CPLEX.



Fig. 1: Final test fronts for all five scenarios



When analysing these results, we noticed that MO-FocusedILS evaluates
many more unique configurations than MO-BasicILS (4752 vs 166 on average,
over all five scenarios). This clearly indicates the efficacy of the way in which
MO-FocusedILS controls the number of runs per configuration performed and
mirrors analogous findings for BasicILS vs FocusedILS in the single-objective
case [6].

On all five scenarios, the default configuration of CPLEX or CLASP produce
few unsuccessful runs on training or test instances. Our three approaches lead to
configurations generating about as many timeouts as the default configuration.
However, by also taking in account the configurations returned that have both
more timeouts and better performances on successful instances, we were able
to achieve even better results at the cost of a small loss of generality, as shown
in Table 3. While our CLASP scenario uses PAR10 scores to take into account
instances that could not be solved within the given cutoff time, as previously
mentioned, the final Pareto fronts we produce for the CPLEX scenarios do not
reflect a small number of instances for which no MIP gap was obtained within the
allotted running time. The fraction of the validation and test sets on which this
happened is shown in Table 3; as seen there, timeouts generally occur for a small
fraction of instances, and while that fraction tends to increase as we configure
CPLEX, it remains low enough in all cases to not raise serious concerns.

5 Conclusion

We have introduced MO-ParamILS, an extension of the prominent ParamILS au-
tomatic algorithm configuration framework for solving the multi-objective algo-
rithm configuration problem. To the best of our knowledge, while MO-ParamILS
is not the first multi-objective algorithm configurator, it is the first to be able to
effectively deal with the highly-parameterised target algorithms usually consid-
ered in standard, single-objective algorithm configuration scenarios, as demon-
strated in our experiments on five bi-objective configuration scenarios involving
CPLEX and clasp, two prominent solvers for mixed integer programming (MIP)
and propositional satisfiability (SAT) problems, respectively.

As is the case for their single-objective analogues, MO-FocusedILS typically
performs better tha MO-BasicILS, but both approaches are able to produce sets
of non-dominated configurations that cover an interesting range of trade-offs in
all five scenarios we studied, and were considerably more effective in doing so
than a base-line approach using a state-of-the-art single-objective configurator.

We believe that automatic multi-objective configurators, such as MO-
FocusedILS, will be very useful in many application situations where there is
no clear and obvious way to trade off multiple performance criteria for a given
target algorithm. In future work, it might be interesting to apply multi-objective
configuration to multi-objective optimisation procedures as target algorithms;
these are notoriously difficult to configure, and we believe that doing so auto-
matically, based on multiple performance objectives, could be quite attractive.
It would also be interesting to exploit the potential for parallelisation inherent



in the MO-ParamILS framework; while using standard configuration protocols,
the current version of MO-ParamILS can exploit parallel computing resources
(just like single-objective ParamILS), there is considerably more room for easy
parallelisation in the multi-objective extension presented here. Furthermore, we
believe that it might be interesting to explore advanced methods for ensuring ef-
fective coverage of the true tradeoff curves (or surfaces) of a given multi-objective
configuration scenario within the MO-ParamILS framework.

Finally, we are interested in exploring multi-objective extensions of sequen-
tial model-based algorithm configuration methods, in particular SMAC [5]. We
also see potential value in effective multi-objective extensions of configuration
procedures such as irace [2].
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