
HAL Id: hal-01370294
https://hal.science/hal-01370294

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Panorama : A Unified Framework for Model
Composition
Amine El Kouhen

To cite this version:
Amine El Kouhen. Panorama : A Unified Framework for Model Composition. 15th International
Conference on Modularity (MODULARITY 2016) , Mar 2016, malaga, Spain. �hal-01370294�

https://hal.science/hal-01370294
https://hal.archives-ouvertes.fr

Panorama : A Unified Framework for Model Composition

Amine El Kouhen
Concordia University

Faculty of Engineering and Computer Science, Montreal (QC), Canada
elkouhen@encs.concordia.ca

Abstract
Model Driven Engineering promotes the separation of concerns to
deal with the design’s complexity and maintainability. However,
using this practice implies the creation of several heterogeneous
models using different notations. It is then necessary to compose
these models to reason on the overall designed system for many
purposes such as : checking the global consistency of the models,
understanding the interactions across the composed models, gener-
ating code, etc.

Currently, model compositions are done in ad-hoc ways. Each
tool provides its own composition operators and tools, preventing
thereby the reuse of these operators. In order to propose a unified
methodology to compose models, we present in this paper a com-
parison of existing composition operators and a framework for inte-
grating these operators to metamodeling languages to support auto-
matic composition capabilities for the models that conform to these
languages.

Keywords Model Composition, Composition Operators, Model-
ing Languages, Separation of Concerns

1. Introduction
In our research projects, we explore diversity as a foundation of
software design. Increasing diversity in a system, provides a set
of software solutions, which could eventually be adapted to unex-
pected situations at the design time. To achieve diversity in our
design process, we use the Model Driven Engineering (MDE)
paradigm, which emphasizes the separation of concerns to bet-
ter handle systems complexity. This practice leads to create several
heterogeneous models, describing for each one of them a point of
view of the designed system. However, in order to reason on the
overall system, it is necessary to compose these models for dif-
ferent reasons (e.g. checking their consistency, generating code,
etc.)

In current state of the art, model compositions are done in ad-
hoc ways, in the sense that each tool uses specific formalisms and
algorithms to perform this technique, preventing by this the reuse
of composition operators and avoiding their formal checking and
verification.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Modularity ’16, March 14–17, 2016, Malaga, Spain.
Copyright c© 2016 ACM 978-1-nnnn-nnnn-n/16/03. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Our Challenge is to uniformize composition methodologies and
provide the adequate tooling to support an automatic (native) com-
position for models. Our proposal is to add composition capabilities
to the metamodeling languages (e.g. UML, Ecore, Kermeta, etc.).
Thereby the models conformant to these metamodeling languages,
should be able to perform automatic compositions instead of using
specific (ad-hoc) techniques. The advantage of our approach is to
reuse composition operators and their formal validation.

Our goal is to provide an integrated environment for the design
of complex ubiquitous systems by providing : i) a formal frame-
work, which integrates the state of the art of model composition
techniques; ii) an open-source modeling platform in which we in-
tegrate and reuse these composition techniques.

In this paper, we start by presenting the basics of model compo-
sition techniques at a high level of abstraction. We describe then,
our approach to compose heterogeneous models in our Framework.
Next, we apply our framework to the Ecore 1 language to show how
can our Framework be integrated to a metamodeling language. In
sections 4 and 5, we summarize respectively other tools providing
composition capabilities and we conclude with our perspectives.

2. Foundations
A model represents a system according to a particular point of
view. Facilitating by this the understanding and the validation of
this particular aspect of the system [9].

Model composition consists in integrating several models repre-
senting different points of view of the designed system into a single
one. A model composition has different parameters : Inputs, Oper-
ators and the Precision of the composition (deterministic, proba-
bilistic, or fuzzy) [1]. In this paper, we focus on the composition
operators and the operands (inputs). Composition precision may be
a criterion among others when we validate a composition operator.

2.1 Composition Inputs
There exist different techniques to compose models. They are clas-
sified into two categories : symmetric and asymmetric.

When the inputs are of the same “types” and the order of the
inputs does not matter (i.e. the composition is commutative), the
Symmetric composition may be supported (A ⊗ B = B ⊗ A).
However, when the input models are of different “types” (e.g.,
conformant to different metamodels) or the order of the inputs is
important, the Asymmetric composition is probably supported in
this case (A⊗B 6= B ⊗A).

The composition inputs can be done explicitly through basic op-
erators : inheritance (hierarchical composition), aggregartion and
composition (as defined in modeling languages), packaging (group-
ing mechanism). It can be done also by pattern matching (e.g.,
a regular expression or by using a template), or by binding (i.e.,

1 https://www.eclipse.org/modeling/emf/

an explicit specification that maps one model element to another
model element) [6].

2.2 Composition Operators
According to [8], a model composition operator ⊗ is a function
with two models as input, and produces a composed model as
output:⊗ : M1×M2 −→M3. All composition operators use other
atomic / primitive operators to achieve the composition of models.
These atomic operators are : Union ∪, Intersect ∩, Add (Sum) ⊕,
Replace (Substitution) ≡, Wrap (inclusion) ⊆ and Concatenation.
In this paper, we focus on composition operators at a high level of
granularity (methodic level).

2.2.1 Symmetric composition operators
1. Merging : The action of combining the input models by unify-

ing their overlaps [3]: their common elements are included once
and the other ones are preserved. Merging is symmetric, in the
sense that the result of the merge does not depend on the order
of the inputs, because in the end, the inputs are translated into a
common notation.
The merge mechanism has been introduced in several meta-
modeling languages such as UML and MOF to improve modu-
larity. It takes as input two packages, and extends one of them
(receiving one) with the other by merging their common con-
tent, and deep copying the other ones (Figure 1).

Merged Package Receiving Package

Resulting Package

Package Merge

becomes

Actor
 + age: Integer [1]

Actor
 + name: String [1]

Actor
 + name: String [1]
 + age: Integer [1]

Figure 1. Merging Process

In the case where some elements in these packages represent
the same entity, we talk then about Match. A Match occurs
when two elements that have the same identifier are detected
(table 1). When two model elements have the same identifier,
they form a match candidate. The next step is to compare the
signatures of these elements : when signatures of two matching
elements are unequal, a conflict is detected and their contents
must be combined according to several rules. For UML, the
conflict management of the Package Merge is defined in [7].
When there are no conflicts between the two inputs, the Merge
is then a Union of these inputs.
The output of the merge replaces the receiving (called also pre-
serving or absorbing) package. However, except for the place
where the merged model is stored, the result does not depend
on the order of the inputs. The content of both packages and
produces a new package (resulting) that merges the contents of
the initial packages [10]. ⊗ : M1 × M2 = M ′

2 (M2 is the
receiving input).

Element Identifier Signature
Package Name Qualified Name

Class Name + Package Name Identifier + Kind
(abstract, final, static) +

Visibility (public,
private, protected) +

SuperClasses
Method Name + Number of

Parameters + Class
Name + Package Name

Identifier + Exceptions
+ List of Parameters
(names and types) +
Kind + Visibility +

Return Type
Attribute Name + Class Name +

Package Name
Identifier + Kind +
Visibility + Type

Association Name + Roles Name +
Ends Types

Name + Roles Names
+ Ends Types

Table 1. Model elements : identifiers and signatures

2. Parallel integration (commutative composition) ‖ : This opera-
tor is defined as a set union, which is commutative. However,
the union operator may lead to inconsistent models in the out-
put (redundancy, relation constraints, deletion constraints, etc.).
⊗ : M1 ‖M2 = M2 ‖M1 = M1 ∪M2

2.2.2 Asymmetric composition operators
1. Weaving : In Aspect-Oriented paradigm, weaving is used to in-

tegrate cross-cutting concerns (aspects) into a base system. The
aspect consists of a pointcut, which is the pattern to match in
the base model, and an advice, which represents the modifica-
tion made to the base model during the weaving. The parts of
the base model that match the pointcut are called joinpoints.
During the weaving, each joinpoint is replaced by the advice.
⊗ : M1 • JP •M2 −→

w
M1 •Ad •M2.

As the two inputs of a weaving (the base model and the aspect)
are not idempotent, in the sense that they do not play the same
role. The order of inputs is very important in the composition
process, weaving is then asymmetric. More precisely, in the
merging (symmetric), each element is considered as unique and
should appear only once in the output, whereas in the weaving,
each element of the aspect should be duplicated as many times
as there are joinpoints.

2. Sequential Integration (Ordered Composition) • : It is possible
to order a merge. In this case, the user needs an operator that
allows the precedence on events. We can then talk about the
Superimposition. Per example, this operator is useful when we
need to compose two Sequence Diagrams SD. As we know,
the order in such diagram (i.e. regarding the lifetime) is very
important and the preservation of this order in the composition
process is a major constraint, whereas the composition ⊗ :
SD1 • SD2 6= SD2 • SD1.

3. Panorama : a Framework for Model
Composition

According to [8], model composition has impacts on at least three
different levels: Syntactic level, Semantic level and Tooling level.
Our work aims to describe composition at the two first levels and
to provide the adequate tooling to support native composition ca-
pabilities natively into metamodeling languages. Thus, the frame-
work called Panorama allows composing models that conform to
these languages. The composition mechanism implemented in our
framework transcribes a four-steps process :

Weaving
OwOsequencialPosition:OPositionO[1]

«Interface»
AsymmetricCompositionOperator

Pointcut AdviceJoinpoint

«Enumeration»
Position

before
around
after

AsymmetricComposition

Weaving
OwOsequencialPosition:OPositionO[1]

«Interface»
AsymmetricCompositionOperator

Pointcut AdviceJoinpoint

«Enumeration»
Position

before
around
after

«Interface»
SymmetricCompositionOperator

Merge

MergeableElement
OwOreceiving:OBooleanO[1]

OwOgetSignature()

MatchingStrategy

OwOmatch()

SymmetricComposition

«Interface»
SymmetricCompositionOperator

Merge

MergeableElement
OwOreceiving:OBooleanO[1]

OwOgetSignature()

MatchingStrategy

OwOmatch()

(Ecore)

EModelElement

implements

OwOownedAdvices
OO[1]

OwOjointpoint

OO[1**h]

OwOownedPointcuts
OO[1] OwOmergeableElements OO[1**h]

OwOmatchingStrategy

OO[1]

implementsimplements

OwOownedAdvices
OO[1]

OwOownedPointcuts
OO[1]

OwOjointpoint

OO[1**h]

implements

OwOmergeableElements OO[1**h]

OwOmatchingStrategy

OO[1]

OwOadviceElementOO[1]

OwObaseElementOO[1]

OwOmergeableElementOO[1]

Figure 2. Panorma Composition Framework - Applied to Ecore

• First, there is a pre-processing step, during which the inputs
may be modified. Some composition approaches require that
only consistent models could be composed, implying that in-
consistent models must be repaired prior to or during the com-
position process [4]. Inputs may necessitate some transforma-
tion, particularly when they are heterogeneous (i.e. represented
in different notations or have different metamdodels), in this
case they need to be translated into a common notation first
[11].

• Then, there is a mapping step, during which a one-to-one rela-
tion, in which elements to be composed are linked. A mapping
is the result of the application of the match on every elements
of the two composed inputs. If two elements a and b are related
by a binding (mapping), the pair (a, b) is called : alignment
rule [11]. Note that we only consider binary bindings. In the
symmetric case, n-ary bindings can be decomposed in a set of
binary bindings. The n-ary bindings in the asymmetric compo-
sitions need further investigations.

• The third step is the composition operation (described in sec-
tion 2.2), where the models are effectively composed. It uses
the mapping step in order to identify elements that should be
composed and resolve matching conflicts.

• Finally, the post-processing step performs various operations to
the output model (e.g. to conform the output to its metamodel,
the break of containment cycles...).

Figure 2 describes the metamodel on which Panorama is based.
At the current state of our work, we applied our framework to Ecore
metamodel to make models that are conformant to this language
composable. The architecture of our composition framework con-
sists of three packages :

1. CompositionUtil : we define CompositionOperator as Interface
to be implemented by other composition operators. The exe-
cute() operation has to be specialized to define the composi-
tion rules of the operator. As we explain above, a Composition
Operation may need pre-processing and post-processing treat-
ments (e.g. to force matches, to override default merge rules of
the inputs, etc.) For this reason, we associate the composition
operation to Pre and Post processing statements. The operation
execute() in Statement has to be specialized to define the algo-
rithm for pre and post processing steps in a composition process
(Figure 3).

2. Asymmetric Composition : we specialize the CompositionOper-
ator to define asymmetric operators such as weaving or super-

imposition. In this case, the weaving operator defines an advice
and a pointcut. The Pointcut may be composed of several join-
points. As the order of composition is important in the asym-
metric composition, we define in the AsymmetricOperator an
attribute to define the position of the advice in the base model.

«Interface»
(AsymmetricComposition)

AsymmetricCompositionOperator

«Interface»
(SymmetricComposition)

SymmetricCompositionOperator

«Interface»
CompositionOperator

1+1execute()

Statement

1+1execute()

PreProcessingStatement PostProcessingStatement

CompositionUtil

«Interface»
CompositionOperator

1+1execute()

Statement

1+1execute()

PreProcessingStatement PostProcessingStatement

1+1statements

11[1..*]

1+1statements

11[1..*]

Figure 3. CompositionUtil Package

3. Symmetric Composition : defines the concepts related to un-
ordered composition like merging. A Merge operator needs to
define MergeableElements and uses the getSignature() opera-
tion to define the matching rules into a matching strategy. We
can also define if a MergeableElement is a receiving element
or not. When all mergeable elements in a merge operation are
not receiving elements, Panorama interprets this as a parallel
composition. We may have then, redundancy and some incon-
sistency in the output as we explain in section 2.2 (Parallel inte-
gration). The getSignature() operation defines the signature of
the model elements. This signature is compared with the sig-
nature of other model elements to check if these elements have
to be merged. If two model elements match according to their
signature, this operation tries to merge them into a new model
elements. The algorithm compares the values of each property
of the elements to merge to detect possible conflict. If no con-
flict is detected the new model element is created, otherwise the
conflict must be solved using pre-processing statements. The
signatures of elements are defined as we present in Table 1.

Figure 4 summarizes how Panorama adds composition capa-
bilities to a metamodel. The framework has been defined in such
a way that it can be used on top of any language that conforms to
EMOF. Panorama metamodel consists of basic concepts of compo-
sition techniques. In this level, these concepts are generic and could
be reused for different metamodeling languages. Next, we create an

conformant to

applied to

conformant to conformant to

Panorama Metamodel

Metamodel M
(e.g. Ecore)

Composable
Metamodel M

Specific for Metamodel M

Generic and Reusable

Composition capabilities
added to M

Panorama Instance
for Metamodel M

Figure 4. Adding composition capabilities to a Metamodeling lan-
guage

instance of Panorma that fits with a specific language (in this case
Ecore) and we apply the Panorama instance to the core elements
of Ecore. We get then, a composable version of Ecore in which we
can describe models supporting native composition capabilities.

In the current state of our work, Panorama still at the prototype
state. We succeed to implement the symmetric composition capa-
bilities and to apply them to the Ecore language. The next step will
be the implementation of the asymmetric operators and to provide
a public release of our tooling. We have also to validate our tool re-
garding composition properties [3] which are: completeness, min-
imality, totality, idempotency, validity and non-redundancy (only
for symmetric operators). This validation and the complete imple-
mentation will be the objects of a detailed publication.

4. Related Work
There exist several tools, which can compose models such as Kom-
pose 2 [5], EMF Diff/Merge 3. All of them allow to merge two
homogeneous models (instances of the same metamodel) by com-
paring the signatures of their elements. However, these tools are
limited to merge only structural languages and did not support be-
havioural languages composition. TreMer+ 4 proposes to match and
merge behavioural languages as state chart diagrams while preserv-
ing their semantics by ensuring bisimulation. However, preserving
bisimulation may lead to the duplication of states in the two dia-
grams, thus not respecting the non-redundancy [12] property in the
merge operation. The only one that allows asymmetric composi-
tion is KerTheme [2], which is based on Aspect-Oriented paradigm.
However, as for TreMer+, it uses asymmetric operators to perform
symmetric compositions that may lead to redundancy and other in-
consistencies in the output models.

5. Conclusion
In this paper we introduced a reusable framework for model com-
position. This framework implements symmetric and asymmet-
ric composition operators that can be specialized for any specific
meta-modeling language. The proposed technique has been imple-
mented to unify composition capabilities into the meta-modeling
languages.

The proposed approach can be integrated to any metamodeling
language based on EMOF and allows the reuse of existing compo-
sition operators and the definition of new composition operators as
needed.

2 http://www.kermeta.org/mdk/kompose
3 http://eclipse.org/diffmerge
4 http://se.cs.toronto.edu/index.php/TReMer+

The existing approaches to compose models are limited to the
structural languages (e.g. structural models such as class diagrams,
database schemas or components model). However, it becomes
a clear limitation when we have to compose behavioural models
such as sequence diagrams. Our proposal allows to overcome this
limitation by proposing sequential asymmetric composition, which
can specify the element to be composed and the location (pointcut)
of the composition. In addition, we can specify the position of
this composition, which can be a real advantage in behavioural
languages composition.

The next step of our work is to provide an open-source imple-
mentation and validate the composition operators against a set of
formal properties to be respected in the outputs.

References
[1] M. Aksit. The 7 c’s for creating living software: A research perspective

for quality oriented software engineering. Turkish Journal of Electri-
cal Engineering and Computer Sciences, 12(2):61–95, 2004. URL
http://doc.utwente.nl/48771/.

[2] O. Barais, J. Klein, B. Baudry, A. Jackson, and S. Clarke. Composing
multi-view aspect models. In Composition-Based Software Systems,
2008. ICCBSS 2008. Seventh International Conference on, pages 43–
52, Feb 2008. .

[3] M. Chechik, S. Nejati, and M. Sabetzadeh. A relationship-based
approach to model integration. Innov. Syst. Softw. Eng., 8(1):3–18,
Mar. 2012. ISSN 1614-5046. . URL http://dx.doi.org/10.
1007/s11334-011-0155-2.

[4] D. Fischbein, N. D’Ippolito, G. Brunet, M. Chechik, and S. Uchitel.
Weak alphabet merging of partial behavior models. ACM Trans. Softw.
Eng. Methodol., 21(2):9:1–9:47, Mar. 2012. ISSN 1049-331X. . URL
http://doi.acm.org/10.1145/2089116.2089119.

[5] F. Fleurey, B. Baudry, R. France, and S. Ghosh. Models in soft-
ware engineering. chapter A Generic Approach for Automatic Model
Composition, pages 7–15. Springer-Verlag, Berlin, Heidelberg, 2008.
ISBN 978-3-540-69069-6. . URL http://dx.doi.org/10.1007/
978-3-540-69073-3_2.

[6] G. Georg, A. Shaukat, B. H. Cheng, B. Combemale, R. France,
J. Kienzle, J. Klein, P. Lahire, M. Luckey, A. Moreira, and G. Muss-
bacher. Modeling approach comparison criteria for the cma workshop
at models 2012. ACM / IEEE, 2012.

[7] O. M. Group. Unified modeling language 2.5, 2014. http://www.
omg.org/spec/UML/2.5.

[8] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, and S. Volkel. An
algebraic view on the semantics of model composition. Springer.
ISBN 978-3-540-72900-6. . URL http://dx.doi.org/10.1007/
978-3-540-72901-3_8.

[9] J.-M. Jezequel, B. Combemale, and D. Vojtisek. Ingenierie Dirigée
par les Modèles : des concepts à la pratique. Editions ellipses, Paris,
2012.

[10] M. Kezadri Hamiaz, M. Pantel, B. Combemale, and X. Thirioux. A
formal framework to prove the correctness of model driven engineer-
ing composition operators. Springer. ISBN 978-3-319-11736-2.

[11] J. Y. Marchand, B. Combemale, and B. Baudry. A categorical model of
model merging and weaving. In Proceedings of the 4th International
Workshop on Modeling in Software Engineering, MiSE ’12, pages
70–76, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-
1757-3. URL http://dl.acm.org/citation.cfm?id=2664431.
2664442.

[12] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave.
Matching and merging of variant feature specifications. IEEE Trans-
actions on Software Engineering, 38(6):1355–1375, 2012. ISSN
0098-5589. .

http://doc.utwente.nl/48771/
http://dx.doi.org/10.1007/s11334-011-0155-2
http://dx.doi.org/10.1007/s11334-011-0155-2
http://doi.acm.org/10.1145/2089116.2089119
http://dx.doi.org/10.1007/978-3-540-69073-3_2
http://dx.doi.org/10.1007/978-3-540-69073-3_2
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://dx.doi.org/10.1007/978-3-540-72901-3_8
http://dx.doi.org/10.1007/978-3-540-72901-3_8
http://dl.acm.org/citation.cfm?id=2664431.2664442
http://dl.acm.org/citation.cfm?id=2664431.2664442

	Introduction
	Foundations
	Composition Inputs
	Composition Operators
	Symmetric composition operators
	Asymmetric composition operators

	Panorama : a Framework for Model Composition
	Related Work
	Conclusion

