Amine El Kouhen
email: elkouhen@encs.concordia.ca

Panorama : A Unified Framework for Model Composition

Keywords: Model Composition, Composition Operators, Modeling Languages, Separation of Concerns

Model Driven Engineering promotes the separation of concerns to deal with the design's complexity and maintainability. However, using this practice implies the creation of several heterogeneous models using different notations. It is then necessary to compose these models to reason on the overall designed system for many purposes such as : checking the global consistency of the models, understanding the interactions across the composed models, generating code, etc.

Currently, model compositions are done in ad-hoc ways. Each tool provides its own composition operators and tools, preventing thereby the reuse of these operators. In order to propose a unified methodology to compose models, we present in this paper a comparison of existing composition operators and a framework for integrating these operators to metamodeling languages to support automatic composition capabilities for the models that conform to these languages.

Introduction

In our research projects, we explore diversity as a foundation of software design. Increasing diversity in a system, provides a set of software solutions, which could eventually be adapted to unexpected situations at the design time. To achieve diversity in our design process, we use the Model Driven Engineering (MDE) paradigm, which emphasizes the separation of concerns to better handle systems complexity. This practice leads to create several heterogeneous models, describing for each one of them a point of view of the designed system. However, in order to reason on the overall system, it is necessary to compose these models for different reasons (e.g. checking their consistency, generating code, etc.)

In current state of the art, model compositions are done in adhoc ways, in the sense that each tool uses specific formalisms and algorithms to perform this technique, preventing by this the reuse of composition operators and avoiding their formal checking and verification.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. Modularity '16, March 14-17, 2016, Malaga, Spain.

Copyright c 2016 ACM 978-1-nnnn-nnnn-n/16/03. . . $15.00. http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn Our Challenge is to uniformize composition methodologies and provide the adequate tooling to support an automatic (native) composition for models. Our proposal is to add composition capabilities to the metamodeling languages (e.g. UML, Ecore, Kermeta, etc.). Thereby the models conformant to these metamodeling languages, should be able to perform automatic compositions instead of using specific (ad-hoc) techniques. The advantage of our approach is to reuse composition operators and their formal validation.

Our goal is to provide an integrated environment for the design of complex ubiquitous systems by providing : i) a formal framework, which integrates the state of the art of model composition techniques; ii) an open-source modeling platform in which we integrate and reuse these composition techniques.

In this paper, we start by presenting the basics of model composition techniques at a high level of abstraction. We describe then, our approach to compose heterogeneous models in our Framework. Next, we apply our framework to the Ecore1 language to show how can our Framework be integrated to a metamodeling language. In sections 4 and 5, we summarize respectively other tools providing composition capabilities and we conclude with our perspectives.

Foundations

A model represents a system according to a particular point of view. Facilitating by this the understanding and the validation of this particular aspect of the system [START_REF] Jezequel | Ingenierie Dirigée par les Modèles : des concepts à la pratique[END_REF].

Model composition consists in integrating several models representing different points of view of the designed system into a single one. A model composition has different parameters : Inputs, Operators and the Precision of the composition (deterministic, probabilistic, or fuzzy) [START_REF] Aksit | The 7 c's for creating living software: A research perspective for quality oriented software engineering[END_REF]. In this paper, we focus on the composition operators and the operands (inputs). Composition precision may be a criterion among others when we validate a composition operator.

Composition Inputs

There exist different techniques to compose models. They are classified into two categories : symmetric and asymmetric.

When the inputs are of the same "types" and the order of the inputs does not matter (i.e. the composition is commutative), the Symmetric composition may be supported (A ⊗ B = B ⊗ A). However, when the input models are of different "types" (e.g., conformant to different metamodels) or the order of the inputs is important, the Asymmetric composition is probably supported in this case (A ⊗ B = B ⊗ A).

The composition inputs can be done explicitly through basic operators : inheritance (hierarchical composition), aggregartion and composition (as defined in modeling languages), packaging (grouping mechanism). It can be done also by pattern matching (e.g., a regular expression or by using a template), or by binding (i.e., an explicit specification that maps one model element to another model element) [START_REF] Georg | Modeling approach comparison criteria for the cma workshop at models[END_REF].

Composition Operators

According to [START_REF] Herrmann | An algebraic view on the semantics of model composition[END_REF], a model composition operator ⊗ is a function with two models as input, and produces a composed model as output: ⊗ : M1×M2 -→ M3. All composition operators use other atomic / primitive operators to achieve the composition of models. These atomic operators are : Union ∪, Intersect ∩, Add (Sum) ⊕, Replace (Substitution) ≡, Wrap (inclusion) ⊆ and Concatenation. In this paper, we focus on composition operators at a high level of granularity (methodic level).

Symmetric composition operators

1. Merging : The action of combining the input models by unifying their overlaps [START_REF] Chechik | A relationship-based approach to model integration[END_REF]: their common elements are included once and the other ones are preserved. Merging is symmetric, in the sense that the result of the merge does not depend on the order of the inputs, because in the end, the inputs are translated into a common notation.

The merge mechanism has been introduced in several metamodeling languages such as UML and MOF to improve modularity. It takes as input two packages, and extends one of them (receiving one) with the other by merging their common content, and deep copying the other ones (Figure 1). In the case where some elements in these packages represent the same entity, we talk then about Match. A Match occurs when two elements that have the same identifier are detected (table 1). When two model elements have the same identifier, they form a match candidate. The next step is to compare the signatures of these elements : when signatures of two matching elements are unequal, a conflict is detected and their contents must be combined according to several rules. For UML, the conflict management of the Package Merge is defined in [START_REF] Group | Unified modeling language 2.5[END_REF].

When there are no conflicts between the two inputs, the Merge is then a Union of these inputs.

The output of the merge replaces the receiving (called also preserving or absorbing) package. However, except for the place where the merged model is stored, the result does not depend on the order of the inputs. The content of both packages and produces a new package (resulting) that merges the contents of the initial packages [START_REF] Hamiaz | A formal framework to prove the correctness of model driven engineering composition operators[END_REF]. As the two inputs of a weaving (the base model and the aspect) are not idempotent, in the sense that they do not play the same role. The order of inputs is very important in the composition process, weaving is then asymmetric. More precisely, in the merging (symmetric), each element is considered as unique and should appear only once in the output, whereas in the weaving, each element of the aspect should be duplicated as many times as there are joinpoints.

⊗ : M1 × M2 = M 2 (M2
2. Sequential Integration (Ordered Composition) • : It is possible to order a merge. In this case, the user needs an operator that allows the precedence on events. We can then talk about the Superimposition. Per example, this operator is useful when we need to compose two Sequence Diagrams SD. As we know, the order in such diagram (i.e. regarding the lifetime) is very important and the preservation of this order in the composition process is a major constraint, whereas the composition ⊗ :

SD1 • SD2 = SD2 • SD1.

Panorama : a Framework for Model Composition

According to [START_REF] Herrmann | An algebraic view on the semantics of model composition[END_REF], model composition has impacts on at least three different levels: Syntactic level, Semantic level and Tooling level.

Our work aims to describe composition at the two first levels and to provide the adequate tooling to support native composition capabilities natively into metamodeling languages. Thus, the framework called Panorama allows composing models that conform to these languages. The composition mechanism implemented in our framework transcribes a four-steps process : OwOadviceElement OO [START_REF] Aksit | The 7 c's for creating living software: A research perspective for quality oriented software engineering[END_REF] OwObaseElementOO [START_REF] Aksit | The 7 c's for creating living software: A research perspective for quality oriented software engineering[END_REF] OwOmergeableElement OO [START_REF] Aksit | The 7 c's for creating living software: A research perspective for quality oriented software engineering[END_REF] Figure 2. Panorma Composition Framework -Applied to Ecore

• First, there is a pre-processing step, during which the inputs may be modified. Some composition approaches require that only consistent models could be composed, implying that inconsistent models must be repaired prior to or during the composition process [START_REF] Fischbein | Weak alphabet merging of partial behavior models[END_REF]. Inputs may necessitate some transformation, particularly when they are heterogeneous (i.e. represented in different notations or have different metamdodels), in this case they need to be translated into a common notation first [START_REF] Marchand | A categorical model of model merging and weaving[END_REF]. • Then, there is a mapping step, during which a one-to-one relation, in which elements to be composed are linked. A mapping is the result of the application of the match on every elements of the two composed inputs. If two elements a and b are related by a binding (mapping), the pair (a, b) is called : alignment rule [START_REF] Marchand | A categorical model of model merging and weaving[END_REF]. Note that we only consider binary bindings. In the symmetric case, n-ary bindings can be decomposed in a set of binary bindings. The n-ary bindings in the asymmetric compositions need further investigations.

• The third step is the composition operation (described in section 2.2), where the models are effectively composed. It uses the mapping step in order to identify elements that should be composed and resolve matching conflicts. • Finally, the post-processing step performs various operations to the output model (e.g. to conform the output to its metamodel, the break of containment cycles...).

Figure 2 describes the metamodel on which Panorama is based. At the current state of our work, we applied our framework to Ecore metamodel to make models that are conformant to this language composable. The architecture of our composition framework consists of three packages :

1. CompositionUtil : we define CompositionOperator as Interface to be implemented by other composition operators. The execute() operation has to be specialized to define the composition rules of the operator. As we explain above, a Composition Operation may need pre-processing and post-processing treatments (e.g. to force matches, to override default merge rules of the inputs, etc.) For this reason, we associate the composition operation to Pre and Post processing statements. The operation execute() in Statement has to be specialized to define the algorithm for pre and post processing steps in a composition process (Figure 3).

2.

Asymmetric Composition : we specialize the CompositionOperator to define asymmetric operators such as weaving or super-imposition. In this case, the weaving operator defines an advice and a pointcut. The Pointcut may be composed of several joinpoints. As the order of composition is important in the asymmetric composition, we define in the AsymmetricOperator an attribute to define the position of the advice in the base model. flict is detected the new model element is created, otherwise the conflict must be solved using pre-processing statements. The signatures of elements are defined as we present in Table 1.

Figure 4 summarizes how Panorama adds composition capabilities to a metamodel. The framework has been defined in such a way that it can be used on top of any language that conforms to EMOF. Panorama metamodel consists of basic concepts of composition techniques. In this level, these concepts are generic and could be reused for different metamodeling languages. Next, we create an instance of Panorma that fits with a specific language (in this case Ecore) and we apply the Panorama instance to the core elements of Ecore. We get then, a composable version of Ecore in which we can describe models supporting native composition capabilities.

In the current state of our work, Panorama still at the prototype state. We succeed to implement the symmetric composition capabilities and to apply them to the Ecore language. The next step will be the implementation of the asymmetric operators and to provide a public release of our tooling. We have also to validate our tool regarding composition properties [START_REF] Chechik | A relationship-based approach to model integration[END_REF] which are: completeness, minimality, totality, idempotency, validity and non-redundancy (only for symmetric operators). This validation and the complete implementation will be the objects of a detailed publication.

Related Work

There exist several tools, which can compose models such as Kompose 2 [START_REF] Fleurey | Models in software engineering. chapter A Generic Approach for Automatic Model Composition[END_REF], EMF Diff/Merge 3 . All of them allow to merge two homogeneous models (instances of the same metamodel) by comparing the signatures of their elements. However, these tools are limited to merge only structural languages and did not support behavioural languages composition. TreMer+ 4 proposes to match and merge behavioural languages as state chart diagrams while preserving their semantics by ensuring bisimulation. However, preserving bisimulation may lead to the duplication of states in the two diagrams, thus not respecting the non-redundancy [START_REF] Nejati | Matching and merging of variant feature specifications[END_REF] property in the merge operation. The only one that allows asymmetric composition is KerTheme [START_REF] Barais | Composing multi-view aspect models[END_REF], which is based on Aspect-Oriented paradigm. However, as for TreMer+, it uses asymmetric operators to perform symmetric compositions that may lead to redundancy and other inconsistencies in the output models.

Conclusion

In this paper we introduced a reusable framework for model composition. This framework implements symmetric and asymmetric composition operators that can be specialized for any specific meta-modeling language. The proposed technique has been implemented to unify composition capabilities into the meta-modeling languages.

The proposed approach can be integrated to any metamodeling language based on EMOF and allows the reuse of existing composition operators and the definition of new composition operators as needed.

2 http://www.kermeta.org/mdk/kompose 3 http://eclipse.org/diffmerge 4 http://se.cs.toronto.edu/index.php/TReMer+

The existing approaches to compose models are limited to the structural languages (e.g. structural models such as class diagrams, database schemas or components model). However, it becomes a clear limitation when we have to compose behavioural models such as sequence diagrams. Our proposal allows to overcome this limitation by proposing sequential asymmetric composition, which can specify the element to be composed and the location (pointcut) of the composition. In addition, we can specify the position of this composition, which can be a real advantage in behavioural languages composition.

The next step of our work is to provide an open-source implementation and validate the composition operators against a set of formal properties to be respected in the outputs.

Figure 1 .

 1 Figure 1. Merging Process

2 .

 2 Parallel integration (commutative composition) : This operator is defined as a set union, which is commutative. However, the union operator may lead to inconsistent models in the output (redundancy, relation constraints, deletion constraints, etc.).⊗ : M1 M2 = M2 M1 = M1 ∪ M2 2.2.2 Asymmetric composition operators 1. Weaving : In Aspect-Oriented paradigm, weaving is used to integrate cross-cutting concerns (aspects) into a base system. The aspect consists of a pointcut, which is the pattern to match in the base model, and an advice, which represents the modification made to the base model during the weaving. The parts of the base model that match the pointcut are called joinpoints. During the weaving, each joinpoint is replaced by the advice. ⊗ : M1 • JP • M2 -→ w M1 • Ad • M2.

Figure 3 .

 3 Figure 3. CompositionUtil Package 3. Symmetric Composition : defines the concepts related to unordered composition like merging. A Merge operator needs to define MergeableElements and uses the getSignature() operation to define the matching rules into a matching strategy.We can also define if a MergeableElement is a receiving element or not. When all mergeable elements in a merge operation are not receiving elements, Panorama interprets this as a parallel composition. We may have then, redundancy and some inconsistency in the output as we explain in section 2.2 (Parallel integration). The getSignature() operation defines the signature of the model elements. This signature is compared with the signature of other model elements to check if these elements have to be merged. If two model elements match according to their signature, this operation tries to merge them into a new model elements. The algorithm compares the values of each property of the elements to merge to detect possible conflict. If no conflict is detected the new model element is created, otherwise the conflict must be solved using pre-processing statements. The signatures of elements are defined as we present in Table1.

Figure 4 .

 4 Figure 4. Adding composition capabilities to a Metamodeling language

Table 1 .

 1 Model elements : identifiers and signatures

	Element	Identifier	Signature
	Package	Name	Qualified Name
	Class	Name + Package Name	Identifier + Kind
			(abstract, final, static) +
			Visibility (public,
			private, protected) +
			SuperClasses
	Method	Name + Number of	Identifier + Exceptions
		Parameters + Class	+ List of Parameters
		Name + Package Name	(names and types) +
			Kind + Visibility +
			Return Type
	Attribute	Name + Class Name +	Identifier + Kind +
		Package Name	Visibility + Type
	Association	Name + Roles Name +	Name + Roles Names
		Ends Types	+ Ends Types

is the receiving input).

https://www.eclipse.org/modeling/emf/