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Abstract

We describe a family of representations in SL(3,C) of the fundamental group π of the Whitehead
link complement. These representations are obtained by considering pairs of regular order three
elements in SL(3,C) and can be seen as factorising through a quotient of π defined by a certain
exceptional Dehn surgery on the Whitehead link. Our main result is that these representations
form an algebraic component of the SL(3,C)-character variety of π.

1 Introduction

Let M be a manifold. The description of the character variety of π1(M) in a Lie group G is closely
related to the study of geometric structures on M modelled on a G-space X. In this setting, repre-
sentations of π1(M) into G appear as holonomies of (X,G)-structures. In the case of a hyperbolic
3-manifold M , a natural target group is PSL(2,C) (or SL(2,C)), as the holonomy of a hyperbolic
structure on M has image contained in PSL(2,C). The study of these character varieties was ini-
tiated by Thurston, in the non-compact case, who described a natural way of constructing explicit
representations of π1(M) in PSL(2,C) using ideal triangulations of M (see [Thu]). The rough idea
is to parametrise hyperbolic ideal tetrahedra using cross-ratios, and to analyse the possible ways of
constructing the hyperbolic structure on M by gluing together these ideal tetrahedra. This method
gives rise to a familly of polynomial equations expressed in terms of a family of cross-ratios, which are
often referred to as Thurston’s gluing equations (see Chapter 4 of [Thu]). The output of this method
is a subvariety of Cn consisting of those tuples of parameters that satisfy Thurston’s equations, which
is called the deformation variety. Representations can be expressed in terms of the cross-ratios, and
one of the main interests of the deformation variety is that it allows explicit computations, which are
very precious for experiments.

Thurston’s approach has been generalized for the target groups SL(n,C) in [BFG14, GTZ15,
DGG13, GGZ15]. This generalisation is geometrically meaningful. Indeed, the subgroups SU(2, 1) and
SL(3,R) of SL(3,C) correspond respectively to spherical CR structures (see below) and real projective
flag structures (see [FST15]), whereas SL(4,R) corresponds to projective structures on 3-manifolds,
well-studied in the convex case [Ben08]. In the case of SU(2,1), the first examples following this point
of view were produced by Falbel in [Fal08], who constructed and studied examples of representations
of the figure 8 knot group to SU(2,1) (see also [DF15, FW14]). A parallel is also to be drawn with
higher Teichmüller theory in case of surfaces. In this note, we focus on the target group SL(3,C).

Though simple in spirit, this method of describing representation varieties becomes very involved
when the number of tetrahedra grows. In fact, the only SL(3,C)-character variety of a hyperbolic
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3-manifold that has been completely described so far with this approach is the one of the figure 8
knot complement [FGK+16], which admits an ideal triangulation by two tetrahedra (see Section 3.1
of [Thu]). Different methods have been used to describe examples of character varieties. In [HMP15],
Heusener, Muñoz and Porti gave another description the character variety of the figure 8 group starting
directly from the group presentation. In [MP16], Munoz and Porti described character varieties for
torus knots. We will consider here the example of the Whitehead link complement (which can be
triangulated by 4 ideal simplices). Denote by π its fundamental group. A possible presentation for π
is:

〈x, y | [x, y][x, y−1][x−1, y−1][x−1, y]〉.
Let χ3(π) be the corresponding SL(3,C)-character variety, that is the GIT quotient

χ3(π) = Hom(π,SL(3,C))//SL(3,C).

The full computation of χ3(π) is not achieved as for today and seems a difficult task. Our goal here is
to describe an algebraic component of χ3(π) that contains many examples of geometrically meaningful
representations.

Our motivation comes from the study of the so-called spherical CR structures on hyperbolic 3-
manifolds. These structures are examples of (G,X)-structures where X is S3 and G is PU(2,1). The
holonomy of such a structure is thus a representation of π1(M) in PU(2,1). This motivates the study
of representations of π to SU(2, 1) which is a real form of SL(3,C). Recall that PU(2, 1) is the group
of holomorphic isometries of the complex hyperbolic plane H2

C and SU(2, 1) is a triple cover of it. The
sphere S3 is the boundary at infinity of H2

C. In particular, spherical CR structures arise naturally
on the boundary at infinity of quotients of H2

C with non-empty discontinuity region. Spherical CR
structures can also be thought of as examples of projective flag structures on 3-manifolds on M , of
which holonomies are representations of π1(M) to PSL(3,C).

Striking examples of spherical CR structures have been produced by R. Schwartz in [Sch01, Sch07]
about fifteen years ago. There, Schwartz described what is now called a spherical CR uniformisation
of the Whitehead link complement, that is a spherical CR structure with the additional property
that the holonomy representation has non-empty discontinuity region with quotient homeomorphic to
the Whitehead link complement (see [Der15] for a precise definition). Since then, Deraux and Falbel
[DF15] produced a spherical CR uniformisation of the complement of the figure eight knot, Deraux
[Der] and Acosta [Aco15] deformed this uniformisation, Deraux [Der15] described a uniformisation of
the manifold m009, and Parker-Will [PW15] described another uniformisation of the Whitehead link
complement, different from Schwartz’s one. All these examples have the common property that the
image of their holonomy representation is a subgroup of PU(2, 1) generated by a pair of regular order
three elements (see the introdution of [PW15] for a list).

Our goal here is to provide a common frame for all these examples. We will show that all these
representations belong to a common algebraic component of the character variety of π in SL(3,C).
This component is formed by representations ρ : π −→ SL(3,C) that factor through the group π′ =
Z3 ∗Z3. The latter group is a quotient of π, and more precisely is the fundamental group of a compact
exceptional Dehn filling of the Whitehead link complement, as we will see later on. Define X0 as the
subset of the character variety of π′ corresponding to representations generated by two regular order
three elements of SL(3,C) (recall that an order three element in SL(3,C) is regular if and only if its
trace is 0).

Theorem 1. The character variety χ3(π) contains X0 as an algebraic component of dimension 4. All
representation classes in this component factor through π′.

We observe here a very similar situation to what happens in the case of the 8-knot complement.
There, a 2-dimensional component of the character variety is formed by representations factorising
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through a quotient. This quotient is the fundamental group of a non-hyperbolic Dehn surgery on the
8-knot complement (see [HMP15, Proposition 10.3] or [FGK+16, Section 5.3]). Moreover this quotient
is isomorphic to the (3, 3, 4)-triangle group, which is a quotient of π′. As such (see Proposition 3), the
aforementioned 2-dimensional component for the 8-knot complement is a slice of the 4-dimensional
component for the Whitehead link complement described in Theorem 1.

The proof of Theorem 1 has two steps.

• First we prove that X0 is a closed Zariski subset in χ3(π) and has dimension at least 4 (see
Proposition 6).

• Secondly we consider the particular point of X0 associated to a representation ρ0 and show
that the dimension of the Zariski tangent space to χ3(π) at this point is also 4 (see Proposition
7). As a consequence, the dimension of the complex algebraic variety X0 is at most 4. The
representation ρ0 has been analysed geometrically in [PW15] and corresponds to a spherical CR
uniformisation of the Whitehead link complement.

The main technical part in our work is the proof of Proposition 7. We choose to prove this
proposition using a method that is not specific to the Whitehead link complement, and we believe
that it could be used to study further examples. It involves the so-called deformation variety as
described in [FGK+16]. The latter is an affine algebraic set, which is – at least around [ρ0] – a
ramified covering of the character variety. The purpose of shifting to the deformation variety is that
it allows effective computations via decorated representations and triangulations, as in [FGK+16].

In the last section, we describe an explicit family of pairwise unconjugate representations of π′, of
which conjugacy classes form a Zariski open subset of X0. This is called, in the works of Culler, Morgan
and Shalen [CS83, MS84] a tautological representation of X0 [CS83, MS84]. These representations
are defined by pairs of regular order three matrices (A,B) with no common eigenvector that are
parametrised by the traces of the four products AB, A−1B, A−1B−1 and AB−1. These parameters
are natural coordinates on X0, in view of Lawton’s description of the character variety of the rank 2
free group given in Theorem 5.

This paper is organised as follows. In Section 2, we describe the Whitehead link complement and
its fundamental group from the perspective of (real) hyperbolic geometry. In particular, we gather
together classical information on presentations and parabolic subgroups of π that will be needed
further. Section 3 is devoted to the character variety of π. We provide basic definitions and facts
on these objects. We prove Proposition 6, state Proposition 7 and derive Theorem 1 from them. In
Section 4, we present the deformation variety and prove Proposition 7. Eventually, in Section 5, we
describe an explicit parametrisation of the representations in X0. The interested reader may also want
to use the companion Sage notebook [Gui] which combines the use of SnapPy [CDW] and SageMath
[Dev16] to illustrate our method.

Aknowledgement: We wish to thank Miguel Acosta, Martin Deraux, Elisha Falbel and John Parker
for numerous stimulating conversations. We thank Neil Hofmann, Craig Hodgson, Bruno Martelli and
Carlo Petronio for kindly answering our questions.

2 Hyperbolic geometry of the Whitehead Link Complement

The Whitehead link is depicted on Figure 1. We denote by W its complement in S3 and by π the
fundamental group of W . It is a well-known fact that W carries a (unique) complete hyperbolic
structure.
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2.1 The ideal octahedron

The hyperbolic structure of W can be explicitely described by considering an ideal regular octahedron
(Figure 1) together with identifications of its faces by hyperbolic isometries. We refer the reader to
Section 3.3 of [Thu], or to Example 1 in [Wie78] for details. We briefly recall here the description of
this structure which is given in [Wie78]. We will keep the notation used there.

Figure 1: The Whitehead link, and a hyperbolic regular ideal octahedron.

We denote by O the ideal octahedron of which vertices are given, in the upper half-space model
of H3

R by

∞, 0, −1, −1 + i, i,
−1 + i

2
.

A flattened version of this octahedron is pictured on Figure 2. We denote by u, w1 and t2 the isometries
of H3

R associated to the following elements of SL(2,C); this choice of notation is the same as in [Wie78].

u =

[
1 i
0 1

]
, t2 =

[
1 2
0 1

]
andw1 =

[
1 0

−1− i 1

]
. (1)

Note that t2 belongs to the group 〈u,w1〉, since t2 = (w−11 u)2w1uw
−1
1 u. We equip O with the face

identifications described on Figure 2. This particular choice gives a holonomy representation with
image a subgroup of the Bianchi group PSL(2,Z[i]) isomorphic to the fundamental group of the
Whitehead link complement. This subgroup can be seen to have index 12 in PSL(2,Z[i]) (see [Wie78]).
The octahedron from Figure 2 is a fundamental domain for the action on H3

R of the group generated
by u and w1. Applying Poincaré’s polyhedron theorem, one obtains the following presentation for π.

〈x, y | [x, y][x, y−1][x−1, y−1][x−1, y]〉. (2)

The correspondance between (2) and the face identifications on Figure 2 is given by x ↔ u and
y ↔ w1. Identifying projective transformations and matrices, we denote by Γ the subgroup of PSL(2,C)
generated by u and w1.

2.2 Triangulating the ideal octahedron

Connecting the vertices with coordinates ∞ and −1+i2 by an edge, one obtains a decomposition of the
octahedron O as a union of four ideal tetrahedra, which we label as follows (see Figure 2).
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AB′

D′

A′

C

D

C ′

0

i
−1 + i

−i

B

−1+i
2

∞∞

∞ ∞

α = w1u
−1 : A 7−→ A′

β = w1u
−1w−11 : B 7−→ B′

γ = t−12 uw−11 : C 7−→ C ′

δ = u−1 : D 7−→ D′,

Figure 2: An octahedron with face identifications

∆0 =
(
i, 0,
−1 + i

2
,∞
)

∆1 =
(
−1 + i, i,

−1 + i

2
,∞
)

∆2 =
(
−i,−1 + i,

−1 + i

2
,∞
)

∆3 =
(

0,−i, −1 + i

2
,∞
) (3)

This gives an ideal triangulation of the manifold W which is the one used by the software SnapPy
[CDW] to provide another presentation of π given by

〈a, b|aba−3b2a−1b−1a3b−2〉. (4)

Since the relator in (4) satisfies aba−3b2a−1b−1a3b−2 = a[ba−3b2, a−1b]a−1, this second presentation is
actually equivalent to

〈a, b|[ba−3b2, a−1b]〉. (5)

An isomorphism between (2) and (4) is given by the changes of generators

(x, y) = (ab−1, ab−1a) and (a, b) = (x−1y, x−2y). (6)

Definition 1. The geometric representation of π is the morphism ρgeom : π −→ PSL(2,C) defined by

ρgeom(a) = u−1w1 =

[
i −i

−1− i 1

]
and ρgeom(b) = u−2w1 =

[
−1 + 2i −2i
−1− i 1

]
. (7)

The geometric representation is thus a discrete and faithful representation of π in PSL(2,C) with
image Γ. The above matrices for a and b are obtained by identifying respectively x and y to u and w1

in (6). Note that ρ(b−1a3b−1a−1) = t2.

5



2.3 Stabilizers of the vertices and peripheral curves

There are two orbits of vertices modulo the identifications in the octahedron O, the one of ∞ and the
one of 0. It is a simple exercise using the face identifications to verify that the stabilisers of these two
points are respectively Γ∞ = 〈u, t2〉, and Γ0 = 〈w1, uw

−1
1 u−1t−12 u−1w−11 u〉. The second generator for

Γ0 is the projective transformation associated to[
1 0

2− 2i 1

]
.

We express now these stabilisers in terms of a and b.

Proposition 2. The stabilizers of 0 and ∞ in Γ are the images by ρgeom of the two subgroups
of π respectively given by 〈ab−1a, s0〉 and 〈ab−1, s∞〉, where s0 = [a, b−1]a−1b2a−3[b, a] and s∞ =
b−1a3b−1a−1.

Remark 1. SnapPy provides the following generators for the first homology of the boundary tori
of the Whitehead link complement using the presentation (5) (mi stands for meridian, and li for
longitude):

m1 = a−2b, l1 = a−2bab−2ab, m2 = b−1a, l2 = b−1ab−1aba−3ba. (8)

By a direct computation, on verifies that

ρgeom(am1a
−1) = w1 ρgeom(al1a

−1) = w−21 s0

ρgeom(am2a
−1) = x ρgeom(al2a

−1) = t−12 u2

We see therefore that m1 and l1 correspond to the cusp of W associated to the (orbit of) 0, and that
m2 and l2 correspond to the one associated to the (orbit of) ∞.

3 The SL(3,C)-character variety

3.1 Generalities

Definition 2. Let G be a finitely generated group. The representation variety of G in SL(3,C) is

Hom(G,SL(3,C).

Its GIT quotient
Hom(G,SL(3,C))//SL(3,C)

is called the SL(3,C)-character variety, denoted by χ3(G).

We refer the reader to [Sik12, Heu16] for classical definitions about representation and character
varieties and associated objects. A remark is important for our purposes: if G′ is a quotient of G,
then there is a natural map:

Hom(G′,SL(3,C)) ↪→ Hom(G,SL(3,C)).

Indeed, a representation ρ′ : G′ → SL(3,C) is naturally promoted to a representation

ρ : G� G′
ρ′−→ SL(3,C).

As the projection G� G′ is surjective, this map is injective and moreover two representation ρ′ and
ρ̄′ in Hom(G′,SL(3,C)) are conjugate if and only if their associated ρ and ρ̄ in Hom(G,SL(3,C)) are
conjugate.

As a consequence of this discussion, we obtain

Proposition 3. If G′ is a quotient of G, then χ3(G
′) ⊂ χ3(G).
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3.2 A quotient of π

We denote by π′ the quotient of π defined by the extra relations a3 = b3 = 1. More precisely, a
presentation for π′ is given by π′ = 〈a, b|a3, b3, [ba−3b2, a−1b]〉. Clearly, the group π′ is isomorphic to
Z3 ? Z3: the last relation is a consequence of the first two. Moreover, π′ is the fundamental group of
a double Dehn surgery on the Whitehead link:

Proposition 4. The group π′ ' Z3 ?Z3 is isomorphic to the quotient of π defined by the two relations
m3

1l
−1
1 and m3

2l
−1
2 .

The proof of Proposition 4 is a direct verification from the definition of li and mi given in Remark
1: the two conditions m3

1l
−1
1 = m3

2l
−1
2 = 1 imply that a3 = b3 = 1. In terms of Dehn surgery, π′ is the

fundamental group of the double Dehn surgery of slopes (−3,−3) on the Whitehead link. This double
Dehn surgery is not hyperbolic: this may be verified using SnapPy (see Section 1 of the companion
Sage notebook to this paper [Gui]). More precisely, it can be seen to be the connected sum of two
lens spaces (see [MP06, Table 2]).

3.3 A lower bound for dim(X0)

We are now going to describe the SL(3,C)-character variety of π′. To this end, we use Lawton’s
theorem on the SL(3,C)-character variety of the rank two free group F2 [Law10].

Theorem 5 (Lawton [Law10]). The map ψ defined by

SL(3,C)× SL(3,C) → C8

(A,B) 7→ (trA, trB, trAB, trA−1B, trA−1, trB−1, trA−1B−1, trAB−1)

is onto C8 and descends to a (double) branched cover ψ : χ3(F2) −→ C8.

The theorem in Lawton’s work is more precise and gives an explicit polynomial in 9 variables
defining χ3(F2) as a hypersurface in C9 covering C8. Namely, the above double cover corresponds to
the fact that the traces of the nine words A, B, AB, A−1B, A−1, B−1, A−1B−1, AB−1 and [A,B]
sastify a relation of the form

(tr[A,B])2 − S · tr[A,B] + P = 0, (9)

where S and P are polynomials in the traces of the first eight above words. In other words, once the
traces of A, B, AB, A−1B, A−1, B−1, A−1B−1, AB−1 are fixed, the trace of [A,B] is determined
up to the choice of a root of (9). We provide the precise values of S and P in Section 7 of the Sage
notebook [Gui], they may also be found in Lawton’s [Law10], or in [Wil16].

We can now give an alternate definition of the set X0 considered in the introduction:

Definition 3. Let X0 ⊂ χ3(F2) be the inverse image by ψ of the subspace

V = {(0, 0, z1, z2, 0, 0, z3, z4), zi ∈ C}.

By Proposition 3, the sequence of quotients F2 � π � π′ gives rise to a sequence of inclusions:

χ3(π
′) ⊂ χ3(π) ⊂ χ3(F2).

With these inclusions in mind, we see that X0 is actually included in χ3(π
′). We can even be more

specific:

Proposition 6. The set X0 is an irreducible Zariski closed subset of χ3(π
′). Its dimension is at least

4.
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Proof. First, X0 is included in χ3(π
′). Indeed, the condition ψ(A,B) ∈ V rewrites

trA = trA−1 = trB = trB−1 = .0

This implies that both A and B have order three. Indeed, the characteristic polynomial of a matrix
M ∈SL(3,C) is equal to X3− trMX2 + trM−1X − 1 and thus if trM = trM−1 = 0 we have M3 = Id.

By construction, X0 is Zariski closed. Its irreducibility is not hard to verify using the explicit form
of the branched 2-cover of Theorem 5 given in [Law10]. For example, using the parametrisation given
in Section 5, it is easily seen that the double cover is indeed a branched one and not the union of two
distinct sheets: the discriminant of the quadratic equation defining the double cover is not a square.
For a direct and precise proof, see also [Aco16, Section 4.1]. Eventually the dimension follows from
the fact it is the pull-back of C4 by ψ.

Remark 2. In fact X0 is a component of χ3(π
′) and the only one of positive dimension. Moreover

it contains every irreducible representation of π′. The first part of this statement is a consequence of
Theorem 1. The character variety χ3(π

′), with a focus on real points, has been studied in details in
[Aco16].

3.4 An upper bound for dim(X0)

We give in this section an upper bound on the dimension of the component of χ3(π) containing X0

by looking at a specific point to determine the Zariski tangent space. To this end, we consider the
following elements of SL(3,C):

S =

 1
√
3−i
√
5

2 −1
−
√
3−i
√
5

2 −1 0
−1 0 0

 et T =

 1
√
3+i
√
5

2 −1√
3−i
√
5

2 −1 0
−1 0 0


The matrices S and T have order three and satisfy tr(S) = tr(S−1) = tr(T ) = tr(T−1) = 0. We define
a point [ρ0] in the character variety of π by setting:

ρ0(a) = S ρ0(b) = T. (10)

By construction, [ρ0] belongs to X0. The key step in the proof of Theorem 1 is the following

Proposition 7. The Zariski tangent space to χ3(π) at [ρ0] has dimension 4.

We postpone the proof of Proposition 7 to the next section and proceed with the proof of Theorem
1. Recall that we need to prove that X0 is an algebraic component of χ3(π) containing [ρ0].

Proof of Theorem 1. Let X be an algebraic component of χ3(π) containing X0. The class [ρ0] belongs
to X. By Proposition 7, the dimension of X is at most 4: it is bounded above by the dimension of
any Zariski tangent space. But, by Proposition 6, X0 ⊂ X is a Zariski closed subset of dimension 4.
Hence, X = X0 and the theorem is proved.

4 Decorated representations and the deformation variety

We are going to compute the dimension of the Zariski tangent space of χ3(π) at [ρ0], in order to prove
Proposition 7. To this end, we will use a variation of the character variety – called decorated character
variety – and a specific set of coordinates on it – the deformation variety. The deformation variety is
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well-adapted to explicit computation. The equations defining this variety may be reconstructed using
SnapPy’s command gluing equations pgl [CDW].

The tools hereafter presented are suitable for character varieties with target group the quotient
PGL(3,C) rather than SL(3,C). This will not be a problem, as we use these tools for computing local
dimension around a point which belongs to both character varieties. Indeed, if ρ is a representation
of π in SL(3,C), the local dimensions at [ρ] of the character varieties for SL(3,C) and PGL(3,C) are
the same.

4.1 Decorated representations

We first recall basic definitions. More details can be found in [BFG+13].

Definition 4. A flag of P(C3) is a pair ([x], [f ]) in P(C3)× P((C3)∨) such that f(x) = 0. We denote
by F l3 the set of flags of P(C3).

Geometrically a flag is a pair formed by a point in P(C3) and a projective line containing it.

Definition 5. Let Γ be the fundamental group of a finite volume, cusped hyperbolic manifold M , let
P ⊂ H3

R be the set of parabolic fixed point of Γ and let ρ be a representation ρ : Γ −→ PGL(3,C). A
decoration of ρ is a map φ : P −→ F l3 which is (Γ, ρ)-equivariant. A pair (ρ, φ) is called a decorated
representation.

Definition 6. The decorated representation variety is

DecHom(Γ) = {(ρ, φ), ρ ∈ Hom(Γ,PGL(3,C)), φ is a decoration of ρ}.

The decorated character variety is the GIT quotient

Decχ3 = DecHom(Γ)//PGL(3,C)

The precise links between the different versions of representation and character varieties are de-
scribed in details in the introduction of [FGK+16]. It should be noted that for a given generic
representation ρ : Γ → PGL(3,C), there exists only a finite number of possible decorations. Indeed,
if p ∈ P is the fixed point of a parabolic element γ ∈ Γ, it should be mapped by φ to a flag that is
invariant for ρ(γ). By equivariance, the map φ is completely determined by its values on a choice of
representatives of the orbits of Γ on P. As there is a finite number of cusps, and that each generic
element in SL(3,C) preserves a finite number of flags, the number of possible φ for a given ρ is finite.

For our purposes, we chose the point [ρ0] in χ3(π) (ρ0 is described in Section 3.4).

Proposition 8. The representation ρ0 admits a unique decoration.

Proof. The (hyperbolic) Whitehead link complement has two cusps, which are represented by the sta-
bilisers of 0 and∞ (see Proposition 2). Therefore, the equivariance property implies that a decoration
φ of ρ0 is completely determined by the images φ(0) and φ(∞). The images by ρ0 of the stabilisers of
0 and∞ are respectively the cyclic groups 〈ST−1S〉 and 〈ST−1〉. Indeed, the images of the stabilisers
of 0 and∞ by ρ0 are respectively 〈ρ0(ab−1a), ρ0(s0)〉 and 〈ρ0(ab−1), ρ0(s∞)〉 (this follows directly from
Proposition 2). The images by ρ0 of s0 and s∞ are ST−1S and TS−1 : this is a direct verification
using S3 = T 3 = 1.

Now, the two maps ST−1 and ST−1S are regular unipotent, and thus each of them has only one
invariant flag. Therefore ρ0 can only be decorated in one way : φ must map 0 to the invariant flag of
ST−1S and ∞ to the one of ST−1.
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The invariant flags of ST−1 and ST−1S (as well as those of various elements in the group) are
made explicit in Table 2. A consequence of Proposition 8 is that around [ρ0], the decorated character
variety is a finite ramified cover of the character variety (see also [Gui15]). As a consequence, the
local dimension around [ρ0] can be equivalently computed at the level of χ3(π) or of the decorated
character variety.

4.2 Using a triangulation: the deformation variety

A configuration of ordered points in a projective space P(V ) is said to be in general position when
they are all distinct and no three points are contained in the same line. This notion applies to
configurations of projective lines by duality. A configuration of n flags (([x1], [f1], · · · , ([xn], [fn]))) is
in general position whenever the n points ([xi])

n
i=1 are in general position and the forms [fj ] satisfy

fj(xi) 6= 0 when i 6= j.

Definition 7. We call tetrahedon of flags in P(C3) any 4-tuple of flags in general position.

We briefly recall now the definitions of the main projective invariants we are going to use as well as
the relations among them. We refer the reader to [BFG14] for more details. Let T = (F1, F2, F3, F4)
be a tetrahedron of flags.

1. Triple ratio. Let
(
ijk
)

be a face of T (oriented accordingly to the orientation of the tetrahedron)
of flags in general position. Its triple ratio is the quantity

zijk =
fi(xj)fj(xk)fk(xi)

fi(xk)fj(xi)fk(xj)
. (11)

2. Cross-ratio. For each oriented edge (ij), we define k and l in such a way that the permutation
(1, 2, 3, 4) 7−→ (i, j, k, l) is even. Viewing the set of lines through [xi] as a projective line, we
associate to (ij) the cross-ratio

zij =
[
ker(fi), (xixj), (xixk), (xixl)

]
. (12)

These invariants can be thought of as decorating tetrahedra as shown in Figure 3 : to each face is
associated a triple ratio, and to each edge are associated a pair of cross-ratios. Namely, the two cross
ratios zij and zji are associated to the edge (ij).

The above projective invariants are tied by the following internal relations:

zijk =
1

zikj
, zijk = −zilzjlzkl

zik =
1

1− zij
, zijzikzil = −1. (IR)

In particular, the triple ratio can be expressed purely in terms of cross ratios. These invariants can
be used to parametrise the set of tetrahedra of flags :

Proposition 9 (Proposition 2.10 of [BFG14]). A tetrahedron of flags is uniquely determined up to
the action of PGL(3,C) by the 4-tuple (z12, z21, z34, z43) in (C \ {0, 1})4.
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i

j k

l

zij

zji zki

zil

zik

zijk

zilj zikl

Figure 3: The z-coordinates for a tetrahedron.

Remark that 0 and 1 are forbidden values (as is ∞) because we assume the flags to be in general
position: hence every cross-ratio is the cross-ratio of four different points.

Let now M be an ideally triangulated cusped hyperbolic 3-manifold. Denote by ν the number
of tetrahedra and by (∆µ)νµ=1 the family of tetrahedra triangulating M . We construct a decorated
representation of Γ = π1(M) by turning each tetrahedron into a tetrahedron of flags and compute
the (decorated) monodromy of their gluing. We only need to ensure that we may glue the tetrahedra
together in a consistent way :

1. whenever two tetrahedra ∆ and ∆′ are glued together along faces T ⊂ ∆ and T ′ ⊂ ∆′, T and
T ′ should have the same shape, that is the same triple ratio up to inversion,

2. around each edge of the triangulation, the monodromy should be the identity.

These gluing conditions are described in details in [BFG+13, Section 2.3]. They give an equation for
each face of the triangulation and two for each edge, which are respectively called the face equations
and the edge equations.

Definition 8. The deformation variety of M , denoted Defor3(M), is the subset of C12ν given by the
(zij(∆µ))06i 6=j63, 16µ6ν verifying the internal relation (IR) for each tetrahedron Tµ together with the
face and edge equations.

In the case of the Whitehead Link Complement, the gluing equations are the 16 monomial equations
displayed in Table 1. Hence, the deformation variety of the Whitehead Link Complement is the affine
algebraic subset of C48 defined by the 32 internal relations (IR) and 16 gluing equations of Table 1.
The holonomy map, as defined in [BFG14, GGZ15], is a well-defined map from the deformation variety
to the character variety χ3(π).

4.3 Finding [ρ0] in the deformation variety

The specific representation ρ0 we consider is defined by ρ0(a) = S and ρ0(b) = T where S and T are
the order three elements in SL(3,C) given in Section 3.4. We have seen in Proposition 8 that ρ0 admits
a unique decoration. In Table 2, we provide the flags associated by this decoration to the six vertices
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Face equations Edge equations

z41(∆0)z31(∆0)z21(∆0)z41(∆1)z31(∆1)z21(∆1) = 1 z43(∆0)z34(∆1)z34(∆2)z34(∆3) = 1

z42(∆0)z32(∆0)z12(∆0)z42(∆2)z32(∆2)z12(∆2) = 1 z34(∆0)z43(∆1)z43(∆2)z43(∆3) = 1

z41(∆2)z31(∆2)z21(∆2)z42(∆3)z32(∆3)z12(∆3) = 1 z21(∆0)z12(∆1)z21(∆2)z21(∆3) = 1

z34(∆2)z24(∆2)z14(∆2)z43(∆3)z23(∆3)z13(∆3) = 1 z12(∆0)z21(∆1)z12(∆2)z12(∆3) = 1

z43(∆0)z23(∆0)z13(∆0)z34(∆3)z24(∆3)z14(∆3) = 1 z24(∆0)z23(∆0)z13(∆0)z24(∆1)z23(∆1)z13(∆1)z14(∆2)z23(∆3) = 1

z34(∆0)z24(∆0)z14(∆0)z34(∆1)z24(∆1)z14(∆1) = 1 z42(∆0)z31(∆0)z32(∆0)z42(∆1)z31(∆1)z32(∆1)z41(∆2)z32(∆3) = 1

z42(∆1)z32(∆1)z12(∆1)z41(∆3)z31(∆3)z21(∆3) = 1 z41(∆0)z41(∆1)z42(∆2)z31(∆2)z32(∆2)z42(∆3)z41(∆3)z31(∆3) = 1

z43(∆1)z23(∆1)z13(∆1)z43(∆2)z23(∆2)z13(∆2) = 1 z14(∆0)z14(∆1)z24(∆2)z23(∆2)z13(∆2)z24(∆3)z13(∆3)z14(∆3) = 1

Table 1: Gluing equations for the Whitehead Link Complement

of the octahedron described in Section 2.1 (see also the companion notebook [Gui, Section 4]). Note
that ρ0 maps every stabiliser of a vertex of the octahedron to a cyclic group. The flag associated to
this vertex is in fact invariant under the image by ρ0 of the stabiliser.

As a result, each tetrahedron (∆ν)16ν64 is decorated by four flags. For instance, the tetrahedron
∆0 = (i, 0, −1+i2 ,∞) is decorated by (Fi, F0, F−1+i

2
, F∞) and the other three tetrahedra are decorated

in a similar way (the tetrahedra are listed in Section 2.2). It is a simple calculation to compute the
cross-ratios associated to these flags as explained in Section 4.2. Table 3 displays, for each tetrahedron,
the values of coordinates z12, z21, z34, z43 (see also the companion notebook [Gui, Section 5]). The
values of the other coordinates can be deduced from them using the internal relations (IR).

Remark 3. Note the high degree of symmetry of the considered decorated representation: the tetra-
hedra are all the same up to the action of SL(3,C) and a renumbering of the vertices.

4.4 Computation of the Zariski tangent space: proof of Proposition 7.

The deformation variety is the (algebraic) set of all tuples of 48 complex numbers satisfying both the
internal relations and the gluing equations (compare to [BFG+13, Section 3]). In other words it is the
intersection of the inverse images

IR−1(1, . . . , 1) ∩GR−1(1, . . . , 1),

where the two maps IR and GR are defined by

• IR : (C \ {0, 1})48 → (C∗)32 is the map representing the internal relations (IR): it sends a
collection (zij(∆ν)) (for every half-edge ij and 1 6 ν 6 4) to the collection of 32 complex
numbers given by:

(−zij(∆ν)zik(∆ν)zil(∆ν), zik(∆ν)(1− zij(∆ν))).

• GE : (C \ {0, 1})48 → (C∗)16 is the collection of left-hand sides in the gluing equations of table
1.

We denote by (IR,GE) the map (C \ {0, 1})48 → (C∗)48 given by the previous two maps. The Zariski
tangent space to the deformation variety is the kernel of the tangent map to (IR,GE). As those maps
are mostly monomial, we choose to write their tangent maps in the following basis of tangent spaces

12



Vertex Generator of its stabilizer in the image of ρ0 Invariant flag

∞ ST−1 F∞ :
[
1
0
0

]
, [0, 0, 1]

0 ST−1S F0 :

[
1

− 3
√
3+i
√
5

4
−1

]
, [1, 3

√
3−i
√
5

4 ,−1]

i S−1T−1 Fi :

[
1

−
√
3+i
√
5

4
−1+i

√
15

4

]
, [1+i

√
15

4 ,
√
3−i
√
5

4 ,−1]

−1 + i T−1ST−1 F−1+i :

[
1

3
√
3−i
√
5

4
−1

]
, [1,−3

√
3+i
√
5

4 ,−1]

−i T−1S−1 F−i :

[
1√

3−i
√
5

4

− 1+i
√
15

4

]
, [1−i

√
15

4 ,−
√
3+i
√
5

4 ,−1]

−1+i
2 TS F−1+i

2
:
[
0
0
1

]
, [1, 0, 0]

Table 2: The unique decoration of ρ0

at the source and target. We take, for each coordinate z, the vector field z ∂
∂z . In these basis, the

tangent map to a function φ : (C∗)48 → C∗ has entries of the form

z

φ

∂φ

∂z
.

This follows from the following elementary lemma:

Lemma 10. Let f : C∗ → C∗ be a differentiable function. In the basis z ∂
∂z , the tangent map Tf at

a ∈ C∗ has coordinate a
f(a)

∂f
∂z .

Proof. In usual coordinates, by definition of partial derivative, the tangent map Taf at a point a maps

v ∈ TaC∗ to w =
∂f

∂z
v ∈ Tf(a)C∗.

The basis change from ∂
∂z to z ∂

∂z in both tangent spaces transforms v into u = v
a and w into w

f(a) .
Hence, in new basis, u is sent to

w

f(a)
=

1

f(a)

∂f

∂z
v =

a

f(a)

∂f

∂z
u.
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Tetrahedron z12 z21 z34 z43

∆0
7+i
√
15

4
−1−i

√
15

8
7−i
√
15

4
−1+i

√
15

8

∆1
−1+i

√
15

8
7−i
√
15

4
−1−i

√
15

8
7+i
√
15

4

∆2
7−i
√
15

4
−1+i

√
15

8
−1−i

√
15

8
7+i
√
15

4

∆3
−1−i

√
15

8
7+i
√
15

4
−1+i

√
15

8
7−i
√
15

4

Table 3: Coordinates for [ρ0] in the deformation variety

We will apply this lemma to each coordinate of the map (IR,GE) to obtain a matrix for the
tangent map to (IR,GE) at the point [ρ0]. This matrix, denoted J , has size 48 × 48 and is depicted
in Table 4 (see Remark 4 below). To construct J , we have to deal with two kinds of functions,
depending on the equations that form the the maps IR and GE : monomial maps or maps of the form
zik(∆ν)(1− zij(∆ν)).

• If f is a monomial map, its tangent map has integer entries equal to the exponent of the relative
variable. As an example, this formula applied to the map −z12(∆0)z13(∆0)z14(∆0) gives all
entries equal to 0 except for those associated to the variables z12(∆0), z13(∆0) and z14(∆0)
which give three entries equal to 1. The same phenomenon appears for each of the first sixteen
rows of the matrix J . The gluing equations are also monomials (see Table 1), but involve more
variables. These correspond to lines 33 to 48 of the matrix J , that have all their coefficients
equal to 0 except for 4, 6 or 8 ones that are equal to 1.

• if f has the form1 zik(1− zij), its tangent map has every entry 0 except the ones corresponding
to zij and zik. Those two are respectively − zij

1−zij and 1. Note that, at a point verifying the

internal relations, we have the additional relation − zij
1−zij = zil (see also the computation in

[BFG+13, Section 5], especially Lemma 5.3). Hence the entries for such a map are 0, 1 or zil.
Those appear in rows 17 to 32 of the matrix J displayed in Table 4.

We see thus that J has entries either integer or of the form zil(∆ν). Note moreover that the last 16 rows,
corresponding to the gluing equations, can be accessed directly by SnapPy [CDW] under SageMath
[Dev16]: it is the Neumann-Zagier datum. This part of J is directly given by the commands:

import snappy;

Triangulation("5^2_1").gluing_equations_pgl(3,equation_type=’non_peripheral’).matrix

The next step is to compute the kernel of J . As all entries are in the number field Q[i,
√

3,
√

5], a
computer algebra system such as Sage computes it exactly. As a result, the dimension of this kernel
is 4 (see Section 6 of the Sage notebook [Gui]). We deduce that the dimension of the Zariski tangent
space at the decoration of [ρ0] to the deformation variety is 4.

1We drop here the indication of the tetrahedron ∆ν for 0 6 ν 6 3 in order to simplify the notations.
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Remark 4. To write the matrix J , we choose the same order on the variables zij(∆ν) as SnapPy
does. As the recise order it is not very enlightning, we omit this discussion here. A change of order
on the variables amounts to a permutation of the columns of J , which does not affect its kernel.

Note that at [ρ0], the two subgroups generated by the pairs (ρ0(li), ρ0(mi)) for i = 1, 2 are regular
unipotent: there is only one invariant flag for each one. As noted before, it implies that, locally the
holonomy map between the deformation variety and the actual character variety is a finite ramified
covering. This concludes the proof of Proposition 7: the Zariski tangent space to the character variety
at [ρ0] also has dimension 4.

Row 1: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Row 16: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Row 17: 1 0 x̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 ȳ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 x̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ȳ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 x̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ȳ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 y 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 x 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ȳ 0 0 0

Row 32: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 x̄
Row 33: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Row 48: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0

Table 4: The matrix J , where x = 9+i
√
15

8 and y = −3+i
√
15

4 .

5 A parametrisation of X0

We describe in this section a parametrisation of a Zariski open subset of X0 by actual matrices. More
precisely, given four generic complex numbers z1, z2, z3 and z4 we are going to provide two pairs
(A,B) of regular order three elements in SL(3,C) such that

• A and B have no common eigenvector in C3,

• A and B satisfy

tr(AB) = z1, tr(A−1B) = z2, tr(A−1B−1) = z3, tr(AB−1) = z4. (13)
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Recall that the traces of A, B and their inverses are zero as they are regular order three element. The
genericity condition will be made explicit in Proposition 11.

We know from Lawton’s theorem that X0 is a double cover over C4. Parameters on C4 are given
by the four trace parameter z1, z2, z3, z4. To describe this double cover, define the quantity

∆ = z21z
2
3 − 2z1z2z3z4 + z22z

2
4 − 4z31 − 4z32 − 4z33 − 4z34 + 18z1z3 + 18z2z4 − 27,

which is the discriminant of the trace equation (9) in Theorem 5, in the case where the traces of A,
B and their inverses vanish. We denote by δ a square root of ∆. Let j be a non trivial cube root of 1
and k = Q[j](z1, z2, z3, z4).

Proposition 11. Let (a, b, c, d) be the following elements in k[δ]:

4a =
z1z3 − z2z4 + 6jz1 + 6j2z3 + 9 + δ

jz1 + z2 + j2z3 + z4 + 3

4d =
z1z3 − z2z4 + 6j2z1 + 6jz3 + 9− δ

j2z1 + z2 + jz3 + z4 + 3

b =
z1 − z2 − j2z3 + j2z4 + 3(j2 − 1)

z1 + z2 + j2z3 + j2z4 + 3j
a+ (j − 1)

z1 + jz2 + jz3 + z4 + 3j2

z1 + z2 + j2z3 + j2z4 + 3j

c =
z1 + jz2 − jz3 − z4 + 3(j − 1)

z1 + jz2 + jz3 + z4 + 3j2
d+ (j2 − 1)

z1 + z2 + j2z3 + j2z4 + 3j

z1 + jz2 + jz3 + z4 + 3j2
.

Then for any 4-tuple of complex numbers (z1, z2, z3, z4) such that a, b c and d are well-defined, any
pair (A,B) of order three regular elements of SL(3,C), satisfying (13) and such that the j2-eigenline
for A is different from the j-eigenline for B, is conjugate in SL(3,C) to one of the two pairs defined
by

A =

 j 0 0
j2 1 0
b+ a 2ja j2

 and B =

j 2j2d c+ d
0 1 j
0 0 j2

 . (14)

Proof. A direct computation of the traces of AB, A−1B, A−1B−1 and AB−1 with the given values
leads to a verification of our parametrization [Gui, Section 7]. We now indicate how to obtain these
values.

Recall first that regular order three elements in SL(3,C) have eigenvalue spectrum {1, j, j2}. First,
one may conjugate the pair (A,B) so that A and B are respectively lower and upper triangle, with
eigenvalues organised as in (14). This amounts to choosing a basis of C3 of the form (vB, v, vA) where
vA (resp. vB) is a j2-eigenvector for A (resp. a j-eigenvector for B), and v is a non zero vector in the
intersection VA ∩ VB, where VA (resp. VB) is spanned by vA and a 1-eigenvector of A (resp. vB and a
1 eigenvector for B). Conjugating by a diagonal matrix allows to bring off-diagonal coefficients equal
to j2 in A and to j in B as shown in (14).

We need now to determine a, b, c, and d from (13). These four conditions correspond to the
following system of equations.

(
Σ
)


(a+ b)(d+ c) + 2aj2 + 2jd = z1

(a− b)(d+ c)− 2a− 2d+ 3 = z2

(a− b)(d− c) + 2ja+ 2j2d = z3

(a+ b)(d− c)− 2a− 2d+ 3 = z4

(15)

(16)

(17)

(18)
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This system is relatively easy to solve using a computer and, for instance, Gröbner bases. However,
it is also solvable by hand, and we indicate now how to do it. Before going any further, let us observe
that conjugating the pair (A,B) by the matrix0 0 1

0 1 0
1 0 0


amounts to do following exchanges in Σ:

a←→ d, b←→ c, j ←→ j2. (19)

More precisely, the left-hand sides of (15) and (17) are preserved by these changes, whereas the
left-hand sides of (16) and (18) are exchanged.

Next, we compute linear combinations of the above equations, and obtain the following equivalent
system:

(
Σ′
)


(15) + (16) + (17) + (18) : 4ad− 6a− 6d− z1 − z2 − z3 − z4 + 6 = 0

(15)− (16) + (17)− (18) : 4bc+ 2a+ 2d− z1 + z2 − z3 + z4 − 6 = 0

(15)− (17) : 2ac+ 2bd− 4aj + 4dj − 2a+ 2d− z1 + z3 = 0

(16)− (18) : 2ac− 2bd− z2 + z4 = 0

(20)

(21)

(22)

(23)

To obtain the value of a annonced in the statement, we proceed ad follows.

• The two equations (22) and (23) are linear in b and c. We solve them to obtain expressions of b
and c in terms of a and d.

• Plugging these expressions of b and c in (21) and taking numerator, we obtain an equation that
relates a and d and involves the monomials a2d, ad2, a2, d2, ad, a and d. This equation can by
simplified by observing that the product ad can be expressed as an affine function of a and d
using (20). Doing so, most of the monomials simplify and we obtain a linear relation between a
and d. This yields an expression of d as a function of a, which can be inserted back in (20). We
obtain this way a quadratic equation in a, which is:

0 =4(jz1 + z2 + j2z3 + z4 + 3)a2 − 2(6jz1 + 6j2z3 + z1z3 − z2z4 + 9)a

+ 9 + 6jz1 − 3z2 + 6j2z3 − 3z4 + j2z21 + z22 + jz23 + z24

− jz1z2 + 2z1z3 − jz1z4 − j2z2z3 − z2z4 − j2z3z4

(24)

The discriminant of this quadratic equation is ∆, and we obtain in turn two possible values for a,
corresponding to the two square roots of ∆. We obtain in turn the value of d given in the statement.
Note that d is obtained from a by the exchanges j ←→ j2 and z2 ←→ z4. This correspond to the
symmetry of the system (Σ) given in (19).

As observed above, knowing the values of a and d gives us the values of b and c. However,
the expressions obtained by solving (22) and (23) are not exactly those given in the statement, and
simplifying them is quite intricate. The following strategy gives a way to determine b and c more
directly. First of all, we know from Lawton’s theorem and our determination of a and d that b belongs
to k[δ] (recall that k = Q[j](z1, z2, z3, z4)). Hence, we may look for it under the form b = aP + Q
where P and Q belong to k. We use this form in the equation (22)−(23), and also plug the values of
a and d. This leads to an equation, linear in P and Q, between two elements of k[δ]. Isolating the
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coefficient of δ and the remaining part, we find 2 linear equations in P and Q. Solving those equations
leads to the given value for b. The value for c can be obtained using the symmetries of Σ given in
(19).
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