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EQUIDISTRIBUTION IN S-ARITHMETIC AND ADELIC SPACES

ANTONIN GUILLOUX

Abstract. We give an introduction to adelic mixing and its applications for
mathematicians knowing about the mixing of the geodesic flow on hyperbolic
surfaces. We focus on the example of the Hecke trees in the modular surface.

Cet article présente une introduction au mélange adélique et ses applica-
tions. La présentation faite est pensée pour les mathématiciens connaissant le
mélange du flot géodésique sur les surfaces hyperboliques. L’accent est princi-
palement mis sur l’exemple des arbres de Hecke dans la surface modulaire.

This paper is based on a mini-course given at the conference "Cross-views on
hyperbolic geometry and arithmetic" held in Toulouse in November 2012. The
purpose was to give an introduction to adelic mixing and its applications for math-
ematicians who knew about the mixing of the geodesic flow on hyperbolic surfaces;
but who may also be intimidated by the p-adic and adelic part of the topic. I tried
to overcome this by sticking to the simplest and fundamental example of the Hecke
trees in the modular surfaces and by spending some time on taming the concept of
adeles. I hope that the description of the solenoid associated to the adeles may help
those used to dynamics to get a first insight into the nature of adeles and their dy-
namical property. I chose to avoid almost entirely the language of algebraic groups,
which may be another intimidating topic to go into. Therefore I do not even state
the theorem of adelic mixing in its generality. I hope that this introduction will
convince geometers that adelic mixing is indeed a natural and interesting tool; and
that the description of an example may guide their delving into a more conceptual
and comprehensive treatment.

Introduction

We will introduce some tools to understand the repartition of certain orbits of an
action onto a homogeneous space. The reader should keep in mind throughout the
paper — especially when (s)he does not feel comfortable with the algebraic setting
— that everything begins with the action of a Fuchsian group on the hyperbolic
plane. Indeed, we will always deal with:

• A locally compact second countable group G. The canonical example to
keep in mind is SL(2,R). Note that G possesses a Haar measure.

• A lattice Γ of G, that is a discrete subgroup such that the Haar measure
of Γ\G is finite. We will say that Γ has finite covolume and denote this
volume by covol(Γ). The canonical examples are the Fuchsian groups. If
asked to pick one of them, say SL(2,Z).

• A homogeneous space under G: the canonical example is the hyperbolic
plane H ' SL(2,R)/SO(2). More generally, one choose a closed subgroup
H of G and consider the space G/H.

With these objects, we want to understand the dynamical properties of the action
of Γ on G/H. For example, how many points of an orbit are not to far away from
the initial point ? More precisely, in our canonical example, we pick p ∈ H and
wonder how many points of the orbit Γ.p lie in a ball B(p,R) of radius R in H. We
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2 ANTONIN GUILLOUX

will denote by NR this number:

NR = Card (Γ.p ∪B(p,R)) .

A crucial tool to describe this action is the "duality phenomenon". Indeed, it
turns out that the properties of the both the actions

Γ acting on G/H and H acting on Γ\G
are deeply linked. An easy yet instructive exercise is to note that the orbit of gH
under Γ is dense in G/H if and only if the one of Γg under H is dense in Γ\G.
This observation is the starting point of a huge amount of work. Let us sketch
two examples, so that the reader may understand more clearly what lies behind
this "duality phenomenon" (and incidentally how the mixing of the geodesic flow
appears).

Example 1: Counting and Mixing. This is the "canonical" example already
described:

• G = SL(2,R).
• Γ is any lattice of G.
• The homogeneous space under G is H. The subgroup H is then SO(2).

A famous and seminal work of Margulis in his thesis [Mar69] was to show a new way
of determining the numberNR. Indeed he translated, via the "duality phenomenon"
the problem in terms of "equidistribution of spheres", i.e. long orbits of H = SO(2),
in the space Γ\G. Recall that the latter is the unitary tangent bundle to the
hyperbolic surface Γ\H. These "spheres" are the orbits:

Γ\ΓgHat,
where the beginning point p of the orbit is the point gH of H = G/H and

at =

(
e

t
2 0

0 e−
t
2

)
is the geodesic flow. These orbits carry a natural probability measure: the image
of the Haar measure of H = SO(2) on gHat.

This is the point where mixing comes into play: using this property of the
geodesic flow (together with an important lemma called "wavefront lemma"), one
may prove the equidistribution of spheres. One exactly proves that, for any starting
point p = gH, the probability measure on the spheres Γ\ΓgHat converge to the
Haar measure on Γ\G. This, in turn, allows to get the estimation:

NR '
Vol(B(p,R))

covol(Γ)
.

As the mixing of the geodesic flow is exponential one may get an error term. A
great quality of this method is that it is very robust: for arithmetic lattices Γ (e.g.
SL(2,Z)), number theoretic methods may lead to a very precise estimation of NR.
But here, the method works the same for any lattice. Moreover Margulis was able
to work in the case of non-constant curvature. And one can adapt it to other G
and H. The famous paper of Eskin and McMullen [EM93] appears to be a very
good entry point in this world.

Example 2: Equidistribution and unipotent flows. Here we take:
• G = SL(2,R).
• Γ = SL(2,Z).
• The homogeneous space under G is R2 \{0}. The subgroup H is the group

of unipotent matrices of the form
(

1 u
0 1

)
.
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So we are looking at the orbits of SL(2,Z) on the euclidean plane, for the linear

action. For any γ =

(
a b
c d

)
∈ Γ, we denote by ‖γ‖ =

√
a2 + b2 + c2 + d2 its

euclidean norm and by ΓT = {γ ∈ Γ | ‖γ‖ ≤ T} the ball in Γ of radius T . For any
point p of R2, let Dirp be the Dirac mass in p. Let Leb

r be the measure on R2 \ {0}
which in polar coordinates is given by drdθ. Ledrappier [Led99] (see also Nogueira
[Nog02] for a different approach) showed the following equidistribution result, for
any v = (x, y) ∈ R2 with x

y 6∈ Q:

1

2T

∑
γ∈ΓT

Dirγv ⇀T→∞
Leb

r
.

For readers not used to these equidistribution statements, this mean that for any
continuous function ϕ on R2 \ {0} with compact support, we have:

1

2T

∑
γ∈ΓT

ϕ(γv)
T→∞−−−−→

∫ ∫
R2\{0}

ϕ(x, y)√
x2 + y2

dxdy.

In this work too, the key point is the study of the H-action on Γ\G. This
time, one may use an equidistribution result of Dani-Smillie [DS84]: the dynamic
of the unipotent groups in Γ\G is very rigid and has few invariant ergodic mea-
sures. This last result was deeply generalized by Ratner [Rat94], Margulis-Tomanov
[MT94] (in an S-arithmetic setting similar to the one I will introduce afterwards)
and eventually by Benoist-Quint [BQ11]. Those generalizations in turn lead to
generalization of Ledrappier’s result by varying Γ, G and H. We let the reader
look at Gorodnik-Weiss [GW07] for the real case in a general setting, Maucourant
[Mau07], Maucourant-Weiss [MW12] and Guilloux [Gui10a] for some more preci-
sions on Ledrappier’s result, and Guilloux [Gui10b] for an S-arithmetic treatment.

As we saw in both example, those techniques are very robust and may be adapted
to various groups and even p-adic or adelic groups. Those are very interesting
for arithmetic or number-theoretic study. I would like to explain here how it is
sometimes possible to translate or reinterpret problems of arithmetic flavor in such
a way that they look very similar to dynamical or equidistribution problems. I shall
concentrate on a problem related to the first example and use mixing.

As a very simple to state example, let us mention that a direct adaptation of the
strategy of Margulis for example 1 together with a result on adelic mixing gives an
answer to the following question [Gui08], which seems highly arithmetic (d ≥ 3 and
n is an integer):
Decide the existence and estimate the number of elements of SO(3,Q) of "denom-
inator" n, i.e. which may be written as 1

n times a matrix with integer entries:

SO(3,Q) ∩ M(3,Z)

n
as n→∞.

Here is the structure of the paper: in the following section, I will introduce some
beautiful objects of arithmetic origin which naturally interplay with hyperbolic
geometry. They are well-known at least in some areas of mathematics: Hecke trees.
At the end of this section, I will be able to state the theorem we will be interested
to: equidistribution of Hecke spheres.

In the second section, I will introduce the algebraic tools needed to reinterpret
the problem of equidistribution of Hecke spheres as a dynamical problem related to
some "geodesic" flow. I will introduce p-adic fields. I include a description of a nice
dynamical system, the "solenoid", which helps to build an intuition of these fields.
Then I will move on to the adeles, which are nearly a product of all the p-adic
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fields. For an algebraic group defined with equations with rational coefficients, we
consider the group of its point over the adeles. We explain briefly the link this
last group and the group of real points, thanks to Borel- Harish-Chandra theorem.
Then we focus on the group PGL(2) and describe briefly the tree attached to it
and its links with the Hecke tree defined in the previous section.

Eventually, the last section consists in the statement of adelic mixing for PGL(2)
and a sketch of proof of the equidistribution of Hecke spheres.

1. Hecke trees and Hecke correspondance

The Hecke trees are the main object of this paper. We will see it appear in
several ways. The first one is the more concrete one and we will gradually move to
the adelic version of it (in subsection 2.5).

1.1. Construction of the Hecke trees in the modular surface. We want
to consider X(1) = PSL(2,Z)\H as the space of similarity classes of lattices in
C ' R2. Let us quickly review how it is done. First of all the identification
C ' R2 is realized through the choice of the canonical basis (1, i) of C. A lattice
in C is a discrete subgroup of rank 2, i.e. of the form Ze1 + Ze2, where (e1, e2)
is a R-basis of C. A marked lattice in C is a lattice with a chosen basis (e1, e2).
The space of marked lattices may be identified to GL(2,R)1, as a marked lattice is
uniquely defined by the basis (e1, e2). In order to keep coherency in the notations,
the action of GL(2,R) on lattices is a right one, induced by the action on C:(

x y
z t

)
· (a+ ib) = ax+ by + i(az + bt).

Now the space of marked lattices up to homothety is identified to PGL(2,R); and
the space of marked lattices up to similarity is then naturally identified with

PGL(2,R)/O(2) ' H.

And if you want to forget the marking, you still have to mod out by the stabilizer
of the lattice Z+Zi, that is PGL(2,Z). Up to an easy reduction from PGL to PSL,
we are done. Indeed, the space of lattices up to similarity is:

PGL(2,Z)\PGL(2,R)/O(2) ' PSL(2,Z)\H = X(1).

Now choose a prime number p and pick a point [Λ] ∈ X(1) (of course [Λ] denotes
the class of the lattice Λ). Consider the set:

{lattice Λ′ |Λ′ < Λ has index p}.

We may describe this set:

Lemma 1. An element Λ′ of the above set is given by the choice of the line:

Λ′/pΛ in Λ/pΛ ' (Z/pZ)2.

Proof. Indeed, pΛ is included in Λ′ (because Λ′ has index p in Λ), so Λ′ projects to
Λ/pΛ. The projection is a subgroup and we compute its cardinal: the cardinal of
Λ′/pΛ is

1

p
× Card (Λ′/pΛ) = p.

The projection is indeed a line in Λ/pΛ.

1The space of marked lattices is more precisely a principal homogeneous space under GL(2,R):
it is homogeneous and the stabilizer of any point is trivial. So we have to choose a base point to
fix the identification between the space of marked lattices and GL(2,R). Here we take the lattice
Z + Zi associated to the canonical basis (1, i).
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Figure 1. Hecke-neighbors for p = 3

Conversely, given a line L in Λ/pΛ, there is a unique subgroup Λ′ of Λ of index
p which projects to this line: as we have seen, we must have pΛ ⊂ Λ′. So Λ′ is
exactly the preimage of the line L in Λ under the projection Λ→ Λ/pΛ. �

Hence the number of lattices Λ′ in the above defined set is p+1, as the cardinal of
the projective line P((Z/pZ)2). Their classes [Λ′] are called the (p-Hecke)-neighbors
of [Λ] in X(1). A straightforward verification shows that the set of neighbors of
some [Λ] in X(1) does not depend on the choice of the representative Λ. Seeing
X(1) as PSL(2,Z)\H, we may write this relation explicitly: the neighbors of the
class of z ∈ H are the classes of pz and the k+z

p , 0 ≤ k ≤ p− 1, see figure 1.

Remark. The neighbors are not automatically distinct: if Λ = Z + Zi, the two
lattices

Λ′1 = Zp+ Zi and Λ′2 = Z + Zpi

are both of index p in Λ but are in the same similarity class. They project to the
same point in X(1). We will sometimes add multiplicities to deal with that.

Moreover the "neighbor" relation is a reflexive one. Indeed, if the class [Λ′] is a
neighbor of [Λ], then we may choose the representatives so that Λ′ is a sublattice of
index p in Λ. But, then, pΛ is a sublattice of index p in Λ′. And the class [pΛ] = [Λ]
is a neighbor of [Λ′]. At this point, the neighbor relation constructs a graph.

Eventually, one may prove that this relation has no cycle. The idea is that, if

Λ0 < Λ1 < . . . < Λk
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is a sequence of lattices such that each time Λi < Λi+1 has index p, then either
there exists i such that p2Λi = Λi+2 (we are backtracking in the graph) or there
are two vectors e1 and e2 in Λ0 such that:

For all i, Λi = Ze1 + Zp−ie2.

In the second case, Λ0 and Λk are not similar. This is not obvious but rather
elementary (see [Ser03]).

Consider τp the set of vertices of the complete tree of valence p+1, rooted at some
vertex t0p. The above construction defines a map h[Λ]

p from τp to X(1), sending t0p
to [Λ] and neighbors in the tree to neighbors2 in X(1) without backtracking. Note
eventually that the relation "to be a sublattice of index p" commutes to the action of
O(2). Hence we might as well work in the unit tangent bundle PSL(2,Z)\PSL(2,R)
of X(1). And we get a mapping of the tree τp in PSL(2,Z)\PSL(2,R).

Let us now briefly describe another point of view, which makes clearer how one

may vary the group G and the lattice Γ. The matrix gp =

(
p 0
0 1

)
belongs to the

commensurator of PSL(2,Z): the group gpPSL(2,Z)g−1
p ∩PSL(2,Z) is a subgroup

of finite index in both PSL(2,Z) and gpPSL(2,Z)g−1
p . More precisely, the elements

of gpPSL(2,Z) fall into p+ 1 different classes modulo PSL(2,Z). One easily check
that:

PSL(2,Z)gpPSL(2,Z) = PSL(2,Z){gp;
(

1 k
0 p

)
for 0 ≤ k ≤ p− 1}.

The p + 1 lattices gp.(Z + iZ) and
(

1 k
0 p

)
.(Z + iZ) are exactly the neighbors of

Z + iZ: check they are all distinct and of index p in Z + iZ. In other terms, the
neighbors of [Z + Zi] are exactly the elements of

PSL(2,Z)\PSL(2,Z)gpPSL(2,Z).

For another lattice Γ of PSL(2,R), or of another group G, a notion of neighbors may
still be defined for any element g of the commensurator of Γ: the commensurator
of Γ is the group of elements g such that gΓg−1 ∩ Γ has finite index in G and
γΓg−1. It is exactly the property needed for the above construction. And the whole
construction described above makes sense. It is especially interesting for groups Γ
with big commensurator, that is arithmetic lattices in G (such as PGL(2,Z)).

1.2. Product of trees and spheres. Fix a point [Λ] ∈ X(1). For each prime
number p, we have constructed a mapping:

h[Λ]
p : τp → X(1).

Recall that the tree τp is rooted at t0p. And we denote by d the distance in these
trees given by the number of edges between two points. We would like to consider
as a whole the set of prime numbers. Indeed, keep in mind that we are interested in
arithmetics. And we will use and abuse of the prime factorization of integers. Let
us make a seemingly silly remark: in the factorization of each integer into primes,
only a finite set of prime numbers appears; Of course not a bounded one, but still
finite. So, we will not exactly consider the set of prime numbers but work with its
finite subsets.

2This map is really only defined up to isometries of the tree fixing the root t0p. This subtlety
will not interfere and we will not be more precise at this point. This map will be formally defined
in section 2.5. Beware that it may be non-injective as in the example of Z[i].
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We consider the restricted product of the trees τp:

τ :=

(tp)p ∈
∏

p prime

τp |
∑
p

d(tp, t
0
p) <∞

 .

A point in τ has all its entries equal to t0p but a finite set. Then we construct a
mapping

h[Λ] : τ → X(1)

in the following way. Consider a point(tp)p in τ . Let x0 = [Λ], x2 = hx0
2 (t2). And,

recursively, for a prime number p, with q the greatest prime number less than p,
xp = h

xq
p (tp). This sequence indexed by the prime numbers becomes eventually

stationary: as (tp) belongs to the restricted product, for q large enough, tq always
equals t0q and the point xq does not move anymore: with the above notation, the
next point in this sequence is xp = h

xq
p (t0p) = xq. We define h[Λ] to be this limit xp.

One may prove that the order in which we construct the sequence does not change
the limit point.

It is maybe clearer to look at the spheres in the product of trees τ . Let N
be an integer and N =

∏
p p

νp its factorization into prime factors. Remark that∑
p νp <∞. So the set

SN :=

{
(tp)p ∈

∏
p

τp | ∀p, d(tp, t
0
p) = νp

}
is a subset of τ . We call it the "sphere of radius N". Remark that we may give
a more concrete interpretation: h[Λ](SN ) is the set of classes [Λ′], where Λ′ is a
sublattice of index3 N in Λ: indeed, pick a point (tp) in SN . Let us follow the
sequence defining h[Λ]((tp)):

• x0 = [Λ]
• if q, p are two successive prime numbers, xp = hxq (tp) is a sublattice of

index4 pνp in xq: recall that tp is at distance νp from the root, so in order
to construct xp = hxq (tp) you take νp times a neighbor, i.e. νp times a
sublattice of index p without backtracking.

At the end, h[Λ]((tp)) is a sublattice of index5 ∏
p p

ν
p = N in [Λ]. And by letting

(tp) vary in the sphere of radius N , you get every such sublattice.
The Hecke correspondence TN on X(1) is the operation which associates to [Λ]

the set h[Λ](SN )6.

1.3. Dynamical problems.

1.3.1. Distribution of spheres. The question is: if N →∞, how do the sets TN ([Λ])
look like ?

This question has been answered in many ways and is known to be directly
related to "Ramanujan conjecture" [Sar91]. In the case explained above, it should
be attributed to Linnik-Skubenko [Lin68, Sku62].

3And I mean really of index N : that is Λ′ is a sublattice of index N in Λ and no lattice 1
k

Λ′,
k ∈ N, is a sublattice of Λ.

4Same remark as above.
5Same remark as above.
6This last set is weighted whenever h[Λ] is not injective. Later on, any sum on the elements of

TN ([Λ]) is to be understood as weighted.
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Theorem 2. These sets equidistribute toward the hyperbolic area µ on X(1):
1

Card(SN )

∑
t∈SN

Dirach[Λ](t) ⇀ µ.

In other terms, for any continuous and compactly supported function ϕ on X(1),
we have:

1

Card(SN )

∑
t∈SN

ϕ(h[Λ](t))→
∫
X(1)

ϕdµ.

This theorem has many generalizations (varying G, Γ and H) and also many
proofs. The main proofs follow:

• harmonic analysis (cf. Sarnak [Sar91]),
• use of adelic mixing (cf. Clozel-Oh-Ullmo [COU01]...)
• use of Ratner theorem for unipotent flows (Eskin-Oh [EO06], Duke-Rudnick-

Sarnak [DRS93], Eskin-Mozes-Shah [EMS96]...)
We will try to explain here the second approach.

1.3.2. Distribution of closed geodesics. Less fundamental in a number-theoretic
point of view but still natural for geometers is the second question. This one
takes place at the level of the unit tangent bundle PSL(2,Z)\PSL(2,R) of X(1).

Suppose x ∈ PSL(2,Z)\PSL(2,R) induces a closed geodesic. We will see later
on that any y in the image hx(τ) of the restricted product of trees τ still induces a
closed geodesic. So one may wonder:
What can said be about these geodesics when y drift apart x in hx(τ).

We will not go into this question, but with the present introduction the reader
may study the paper of Aka-Shapira [AS12].

At this point, it is not clear how these objects and questions are related to the
examples of the introduction: we see that PSL(2,Z) and PSL(2,R) keep appearing
but who is H ? Which dynamical system is mixing ? Understanding this requires
the introduction of p-adic fields and adeles. We do this in the next section, trying
to keep the most dynamical point of view on these notions. Once we are acquainted
with those algebraic objects, both questions may naturally be reinterpreted as evo-
lution of sets under some kind of geodesic flow. We will state a mixing property
for it; it will lead us to the answer to the first question.

2. p-adic and adelic groups

2.1. p-adic fields. I will not develop here the theory of p-adic fields (see [Ser73]
for an introduction). We begin, of course, by fixing a prime number p.

Let us define the p-adic field Qp:

Definition 2.1. Qp is the completion of Q for the p-adic absolute value | · |p.
In this form, it may be abstract but it shows a fundamental feature of p-adic

fields: they are counterparts of the real numbers R. As R, they are completion of
Q for some absolute value. And Ostrowski’s theorem states that the usual one and
the | · |p for p prime are the only absolute values on R. So, in order to reflect in a
proper way properties of Q – that is arithmetic – in complete fields, you have to
consider at once R and all the Qp. That is why the adeles were introduced. But
before going on, let us present p-adic fields in a more concrete way, in order to get
a bit of intuition.

First of all, the p-adic absolute value on Q is so defined: for a rational number
r ∈ Q, write it in the form r = pk ab , with a and b coprime with p. Then:

|r|p = |pk a
b
|p = p−k.
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Note that if r is an integer, then |r|p ≤ 1: Z becomes bounded with this absolute
value. Its completion Zp will then be compact. Let us define it before Qp: let

Zp = {(xn)n≥0 | xn ∈ Z/pnZ and xn+1 = xn (mod pn)}.

We may define the absolute value | · |p in Zp:

|(xn)n|p = p−k,

where k is the greatest integer such that xj = 0 for all j ≤ k. For this absolute value,
it is not hard to check that Zp is a complete and compact set. We have a natural

injection
{
Z → Zp
k 7→ (k (mod pn))

and one checks that this is an isometry and the

image is dense. This prove that Zp is indeed the completion of Z. Topologically,
Zp is a Cantor set.

As follows from the definition, Zp is a ring. Its fraction will be a complete field in
which Q embeds isometrically for the absolute value | · |p with dense image. Hence
this fraction field is the completion Qp. One can also write:

Qp =
⋃
n≥0

p−nZp.

With this last presentation, one sees that Zp ∩ Z[ 1
p ] = Z. Let us insist on the fact

that, from the p-adic point of view, p−n is bigger and bigger as n grows.

Remark. For simplicity of notation, we will sometimes denotes R by Q∞ and its
usual absolute value by | · |∞.

We will denote by V the set of "places" of Q, i.e. of different completions. We
will write

V = {∞} ∪ {prime numbers p}.
Given the convention in the above remark and Ostrowski’s theorem, the Qν ’s for
ν ∈ V are the only completions of Q. There is a very elegant and simple formula
that relates these different completions, called the product formula:

For any x ∈ Q \ {0} we have
∏
ν∈V
|x|ν = 1.

2.2. S-arithmetic rings and solenoids. Let us take a finite subset S containing
∞. We define:

QS :=
∏
ν∈S

Qν and ZS = Z

[
{1

p
, p ∈ S \ {∞}}

]
.

We have the diagonal injection of Q in these QS . As ZS ⊂ Q, it naturally embeds
in QS (and even any QS′ for any other S′ regardless to the relation between S and
S′). Those objects, called S-arithmetic, allow to keep track of properties of rational
numbers regarding the powers of the prime numbers p ∈ S appearing. For example
QS , S = {∞, 2, 3} is the right place to study the rational solutions to an equation
with denominator highly divisible by 2 or 3. The following theorem holds:

Theorem 3. • QS is a locally compact ring,
• ZS ⊂ QS is a discrete cocompact subgroup. A fundamental domain is

[0; 1[×
∏
p∈S\{∞} Zp.

• If S is a proper subset of a finite subset S′ ∈ V, ZS′ is dense in ZS.

Let us take some time to describe a dynamical system attached to this object,
which will be a solenoid in the dynamical sense: a fibration over a circle by a Cantor
set, whose monodromy has dense orbits in any fiber. For this description we take



10 ANTONIN GUILLOUX

S = {∞, p}, but it works the same with different choices. Recall that with the
above definition, Z

[
1
p

]
is embedded in R×Qp diagonally. Consider the space

Y = Z

[
1

p

]
\ (R×Qp).

We want to define a projection Π : Y → Z\R from Y to the circle. The following
lemma is the key point:

Lemma 4. Consider a point (x∞, xp) ∈ R×Qp. Then there exists z ∈ Z
[

1
p

]
such

that {
z′ ∈ Z

[
1

p

]
| z′ + xp ∈ Zp

}
= z + Z.

Proof. The last point in previous theorem implies that Z
[

1
p

]
is dense in Qp. So

there is some z such that z + xp lies in the open subset Zp. Moreover, if some z′
also verifies z′ + xp ∈ Zp, then we have (Zp is a ring):

z − z′ = (z + xp)− (z′ + xp) ∈ Z

[
1

p

]
∩ Zp = Z.

�

We may define the image under Π of Z
[

1
p

]
+(x∞, xp): it is the class Z+(x∞+z)

for any z given by the lemma. We may check that Π is a fibration over the cercle,
with fibers isomorphic to Zp.

There is a natural flow on Y : lift to Y the flow x → x+ t on the circle. Let us
describe it precisely. Choose a point p = Z

[
1
p

]
+ (x∞, xp) in Y , and for sake of

simplicity, suppose we have chosen (with the lemma above) xp ∈ Zp. So Π(p) =
Z + x∞. Then for all t ∈ R define

pt := Z

[
1

p

]
+ (x∞ + t, xp).

Remark the projection Π(pt) is Z + (x∞ + t). Moreover, using the action of Z, we
may write ({t} and btc are the fractional and integral parts of t):

pt = Z

[
1

p

]
+ (x∞ + {t}, xp − btc).

So we return in the fiber of p at each integer time, but we move in this fiber. This
motion is the monodromy of the fibration and is given by:

pn = Z

[
1

p

]
+ (x∞, xp − n).

As Z is dense in Zp, the orbit pn is dense in the fiber of p.
All this may be summarized in a double quotient:

Z

[
1

p

]
\R×Qp/Zp = Z\R.

By varying the compact Zp, one may vary the circle. For example, if we had taken
pZp instead, we would have got pZ\R.
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Z\R

Y p0

p1

p2

Figure 2. A solenoid

2.3. Adeles. Until now, we were only able to consider a finite number of prime
numbers. This is not natural or very interesting from an arithmetical point of
view. One would like to consider all primes at once. But considering the mere
product of all the Qν ’s is not a good solution: as ZS was a discrete cocompact
subgroup of QS , we would like Q to be a discrete cocompact subgroup of the ring
constructed. However the product would give a non locally compact ring.

So, as for the trees, we will do a restricted product: considering the diagonal
embedding of Q in

∏
ν Qν , we may remark that the image of any rational number

is always in Zp for p large enough (any p not appearing in the prime factorization
of the denominator of the rational number). So we will restrict the product to such
elements: their components should eventually be in Zp. This is how the adeles A
are defined:

A :=

{
(xν) ∈

∏
ν∈V

Qν | all but finitely many xν belong to Zν

}
.

The topology on A is generated by open sets of the form:∏
ν∈S

Oν ×
∏
ν 6∈S

Zν ,

where S ⊂ V is finite, and each Oν is an open subset of Qν .
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With this definition, we may extend the theorem given in the S-arithmetic case:

Theorem 5. • A is a locally compact ring,
• Q ⊂ A is a discrete cocompact subgroup. A fundamental domain is

[0; 1[×
∏

p∈V\{∞}

Zp.

• For every prime number p, Q is dense in A(p) = Qp\A.

A crucial consequence of the first point is that A has a Haar measure. It is
defined (up to normalizations) as the product of Lebesgue measure and the Haar
measures of the Qp.

It will be helpful to understand what does "going to ∞" mean for a sequence in
A. Formally, it means that we are leaving any compact set. But let us have a look
at two sequences which go to ∞ in a very different way:

• Going to ∞ "vertically": for example the sequence uk = 2−k. Here we see
that a projection on Q2 is going to ∞.

• Going to ∞ "horizontally": for example the sequence (vk)k≥0 where vk
is the k-th prime number. Then, for all prime p, as soon as vk > p, the
projection of vk to Qp is inside Zp. But this sequence is going to∞ because
the greatest prime number q for which it does not project inside Zq goes
to ∞ with k.

Now the simple sequence vk = 1
k presents a mixed behavior: it sure goes to ∞, but

sometimes (at big powers of a fixed prime number p) in the vertical direction: 1
pn

is big in Qp, but in Zq for q 6= p; and sometimes (when k = q is a prime number) in
the horizontal direction : 1

q is not so big in Qq, but as q = k goes to ∞, it becomes
big in A. From now on, we will use the notation x→∞ to denote the property "x
leaves any compact set".

It is also worth noting that these construction extends without difficulty to the
case of number fields instead of Q.

2.4. Groups. Having constructed several ring, we may consider the groups of
points of an algebraic groups over them. I do not want to go into any formal
definition of algebraic groups here. See [PR94] for a reference on algebraic groups
and their S-arithmetic or adelic points. For us it will be a subgroup of GL(n)
defined by actual equations with coefficients in Z; and also PGL(2), even if it does
not belong to the previous class. Other examples are the classical groups SL(2),
SO(2)...

Given such a group G, we will denote by GZ, GQ ... (more generally GR for a
ring R) the set of elements of GL(n,Z), GL(n,Q), GL(n,R) verifying the equations.
All our rings are topological and locally compact; that imply in turn that GR is
topological and locally compact. We will be interested in the relationship between
GZ and GR, GZS

and GQS
(S finite) and GQ and GA. We have the following

theorem, due to Borel and Harish-Chandra. Recall first that a lattice in a locally
compact is a discrete subgroup such that the quotient has finite volume for the
Haar measure. It is cocompact if the quotient is compact.

Theorem 6 (Borel and Harish-Chandra). Fix any finite subset S ⊂ V containing
∞. We have equivalence between the statements:

(1) GZ is a lattice GR (resp. cocompact),
(2) GZS

is a lattice GQS
(resp. cocompact),

(3) GQ is a lattice GA (resp. cocompact).

Let us mention that the theorem gives a criterion for both case, and that if G is
a semisimple group, then GQ is a lattice in GA. Our main interest will be in the
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group PGL(2) which is indeed semisimple. So the three statements are true (but
the lattices are not cocompact, as seen for PGL(2,Z) ⊂ PGL(2,R)).

Moreover, when GZ is a lattice in GR, one may understand the double quotients:

GZ\GR ' GZ[ 1
p ]\GR ×GQp

/GZp
' GQ\GA/

∏
p

GZp
.

In this form, we may describe GQ\GA as a solenoid over the base GZ\GR (i.e. a
fibration over GZ\GR with fiber Cantor sets and a dense monodromy of GZ).

2.5. Adelic interpretation of Hecke trees. Here we link the previous section
with the technology we have just briefly presented: we interpret moving in the
Hecke trees as a generalization of the geodesic flow, i.e. as the action of a diagonal
matrix of PGL(2,A). The first step is to see that, in some sense, the tree τp is an
analogue to the hyperbolic disc: it identifies with the quotient of PGL(2,Qp) by
the maximal compact subgroup PGL(2,Zp).

Proposition 7. The quotient PGL(2,Qp)/PGL(2,Zp) has a natural structure of
a (p+ 1)-complete tree.

We refer to Serre [Ser03] for a comprehensive presentation of these trees. We
will just give a very sketchy idea of the proof. The main idea is that it is very much
similar to the construction of the Hecke tree.

First of all, PGL(2,Zp) is open and closed in PGL(2,Qp). So the quotient is a
discrete set. Moreover, PGL(2,Zp) is the stabilizer of (the homothety class of) the
"maximal order" Z2

p of Q2
p (a maximal order is a free Zp-module of rank 2). If [Λ]

and [Λ′] are two such orders, we say that they are "neighbors" if (up to the choice
of suitable representatives), we have:

pΛ ⊂ Λ′ ⊂ Λ,

with each inclusion being of index p.
As for the Hecke tree, once fixed Λ, such a Λ′ is determined by the choice of a

line in
pΛ\Λ ' (pZ\Z)2.

So [Λ] has p + 1 neighbors. The relation is symmetric and has no cycle, giving to
the quotient the structure of a tree.

One may say that PGL(2,Qp) is the unitary tangent bundle to this tree in
the sense that each element of PGL(2,Qp) corresponds bijectively to an oriented
marked geodesic: let g = (v1 v2) be an element of GL(2,Qp) (v1 and v2 are two non-
colinear elements of Q2

p). Then to g is naturally associated the order Zpv1 + Zpv2,
that is a point of the tree. Moreover, one attach to g the following geodesic:

{[Zppnv1 + Zpv2], n ∈ Z} .
This geodesic is marked at [Zpv1 + Zpv2] and oriented "toward v2": as n→∞ the
first component becomes more and more negligible and asymptotically vanishes.

The geodesic flow is given by going one-step forward in this geodesic. From the
previous description of the geodesic, it appears that this flow is given by the right
action of the diagonal matrix

hp :=

(
p 0
0 1

)
.

And the sphere of radius n around some point gPGL(2,Zp) is the subset7:

gPGL(2,Zp)h
n
pPGL(2,Zp) of PGL(2,Qp)/PGL(2,Zp).

7Compare with the alternative point of view on the Hecke correspondence at the end of sub-
section 1.1.
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The similarity between the two constructions of the tree is not fortuitous. Indeed,
the Hecke tree really is the projection of the tree of PGL(2,Qp) through the double
quotient of previous section. Let us describe this projection. From now on we fix
an identification of τp with PGL(2,Qp)/PGL(2,Zp) sending the root of τp to the
class of Id.

Choose a point x = PGL(2,Z)g in the unit tangent bundle PGL(2,Z)\PGL(2,R)
to X(1). Then we may identify τp with {g} × PGL(2,Qp)/PGL(2,Zp); and thus
consider it as a subset of PGL(2,R) × PGL(2,Qp)/PGL(2,Zp). The map hxp :
τp → PGL(2,Z)\PGL(2,R) is given by the following diagram:

τp ↪→ PGL(2,R)× PGL(2,Qp)/PGL(2,Zp)
↓

PGL(2,Z
[

1
p

]
)\PGL(2,R)× PGL(2,Qp)/PGL(2,Zp)

The last space is, as stated in the previous subsection, identified with the unit
tangent bundle PGL(2,Z)\PGL(2,R).

Remark. The image of τp under hxp does not depend on the choice of the represen-
tative g. But two different choices leads to two different maps hxp differing by an
automorphism of τp at the source.

Until now, we have looked at only one prime number p. One can perform the
same analysis as above in the adelic group PGL(2,A), in order to get a description
of the image of the spheres in X(1). Let x = PGL(2,Z)gSO(2) be a point in X(1),
let N be an integer and define the element hN ∈ PGL(2,A) whose component in

PGL(2,R) is Id and
(
N 0
0 1

)
in each PGL(2,Qp). Then we have

Lemma 8. The sphere hx(SN ) of radius an integer N with center a point x =
PGL(2,Z)gSO(2) in X(1) is the image of the set:(

gSO(2)×
∏
p

PGL(2,Zp)

)
hN
∏
p

PGL(2,Zp)

in X(1) via the identification

X(1) = PGL(2,Z)\PGL(2,R)/SO(2)

= PGL(2,Q)\PGL(2,A)/

(
SO(2)×

∏
p

PGL(2,Zp)

)
.

3. Adelic mixing and Equidistribution of Hecke spheres

The previous section explained a technology to reinterpret the dynamical prob-
lems related to Hecke trees. In this section, we explain the strategy to deduce
the answer to the first question: equidistribution of Hecke spheres, see subsection
1.3.1. This strategy builds over a very deep result, namely adelic mixing, that I
will present. I will try to convince the reader that, once accepted this result, the
equidistribution of Hecke spheres is rather "easy". Of course, almost everything is
hidden in the adelic mixing property. But I hope that the reader more or less used
to the usual mixing of the geodesic flow will admit this mixing property without
too much difficulties. And this presentation might convince this reader that ideas
coming out from dynamical considerations, once properly reinterpreted, leads to
nice and natural arithmetic considerations.
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3.1. Adelic mixing. Let us recall the setting of subsection 1.3.1. We take a
point x = [Λ] in X(1) and write it as PGL(2,Z)gSO(2). Stated in another way,
PGL(2,Z)g is a point in the unitary tangent bundle projecting to x. We can lift x
one more step upward, that is inside PGL(2,Q)\PGL(2,A): x is then the projec-
tion of the set (

gSO(2)×
∏
p

PGL(2,Zp)

)
in the double quotient

X(1) = PGL(2,Q)\PGL(2,A)/

(
SO(2)×

∏
p

PGL(2,Zp)

)
.

Moreover, thanks to lemma 8, the Hecke spheres hx(SN ) are the projection in
this double quotient of (

gSO(2)×
∏
p

PGL(2,Zp)

)
· hN .

In order to prove equidistribution, we will prove that, already at the level of
PGL(2,Q)\PGL(2,A), this sets equidistribute toward the Haar probability mea-
sure on PGL(2,Q)\PGL(2,A). Recall that, up to normalization, a Haar measure on
PGL(2,A) exists and is unique. Moreover, as PGL(2,Q) is a lattice in PGL(2,A),
it induces a unique probability measure on PGL(2,Q)\PGL(2,A); we will call it
the volume and denote it by Vol. Now what exactly does this equidistribution mean
?

Consider the Haar probability measure ν on the compact subgroup

SO(2)×
∏
p

PGL(2,Zp)

of PGL(2,A). It projects to a probability measure ν̄ in PGL(2,Q)\PGL(2,A).
So we are looking at the evolution of ν̄ under the transformation PGL(2,Q)g 7→
PGL(2,Q)ghN in PGL(2,Q)\PGL(2,A) and would like to prove it converges to
Vol.

At this point, it appears clearly that a mixing property for the action of hN on
PGL(2,Q)\PGL(2,A) with respect to Vol would help: this property implies that,
for any measure µ absolutely continuous with respect to Vol, the measures (hN )∗µ
converge to Vol. The good news is that this mixing property holds.

Let us define some notations: the space PGL(2,Q)\PGL(2,A) has a probability
measure Vol, so it makes sense to look at the space L2 (PGL(2,Q)\PGL(2,A)) of
square integrable functions on it. We denote by 〈·, ·〉 the hermitian scalar prod-
uct. Moreover, we denote by L2

0 (PGL(2,Q)\PGL(2,A)) the subspace of functions
ϕ such that

∫
ϕdVol = 0. The action of the group PGL(2,A) on the quotient

PGL(2,Q)\PGL(2,A) leaves the measure Vol invariant: the latter is the projec-
tion of the Haar measure. So this action yields an action on the space of square-
integrable functions. This action is defined, with obvious notations, by:

g · ϕ : x 7→ ϕ(x.g).

We may then state:

Theorem 9. Let ϕ and ψ be two functions of L2
0 (PGL(2,Q)\PGL(2,A)). We

suppose that ϕ and ψ are invariant under the action of
∏
p PGL(2,Zp).

Then, as g →∞ in PGL(2,A), we have:

〈ϕ, g · ψ〉 → 0.
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This theorem deserves a lot of comments.
First of all, it is indeed a mixing property: if A and B are two open sets of

PGL(2,Q)\PGL(2,A), denoting by ϕ = χA − Vol(A) and ψ = χB − Vol(B) their
normalized characteristic functions , we get the usual mixing property:

Vol(A ∩Bg−1)
g→∞−−−→ Vol(A)Vol(B).

Second, it is valid in a very wide generality. It is more or less true for any semisim-
ple algebraic group. We refer the reader to Gorodnik-Maucourant-Oh [GMO08] for
a general result.

It is proven by the study of certain unitary representations of PGL(2,A). In
this setting, it states that the trivial representation is isolated among automorphic
ones. This is called "property τ" (in reference to the stronger property T ). The
final step of this was done by Clozel [Clo03], after many works. I will not go into
these topics, far too involved for my purpose.

One last comment: the speed of convergence (so-called "decay of coefficients")
is known. In the case of PGL(2) it is deeply and directly related to bounds towards
the "Ramanujan conjecture".

The reader will find more explanations in Gorodnik-Maucourant-Oh [GMO08],
Clozel-Oh-Ullmo [COU01], Sarnak [Sar91] and Goldstein-Mayer [GM03].

3.2. How to prove equidistribution of Hecke spheres ? As previously ana-
lyzed, we want to prove the convergence of the measure h∗Nν. First of all, note that
the sequence hN of elements of PGL(2,A) goes to∞ as N →∞. So they fit in the
setting of theorem 9. However, the measure ν̄ is too singular: it is supported on a
set of volume 0. It is a classical trick to first approximate ν̄ by a measure which
has a density with respect to Vol. And then hope the approximation will not be
too difficult to track when letting the dynamics evolve.

Here we are in a very good situation. Recall that the support of ν̄ is the set:

PGL(2,Q)g

(
SO(2)×

∏
p

PGL(2,Zp)

)
.

Now, the real component of hN is Id. So one can "fatten up" SO(2), by taking a
small neighborhood Ω of Id in PGL(2,R); and replace ν by the volume restricted
to g

(
SO(2)Ω×

∏
p PGL(2,Zp)

)
, normalized to be a probability measure. Denote

by νΩ this probability measure. As Ω shrinks to SO(2), νΩ converges to ν. But,
note that the action of Ω commutes to the action of hN :

PGL(2,Q)g

(
SO(2)Ω×

∏
p

PGL(2,Zp)

)
hN

= PGL(2,Q)g

(
SO(2)×

∏
p

PGL(2,Zp)

)
hNΩ.

So the fattening is inert under the dynamic: h∗N ν̄Ω converges uniformly to h∗N ν̄.
So we only need to prove the convergence of h∗N ν̄Ω towards Vol, for any Ω. This

is a direct consequence of theorem 9, as ν̄Ω has a (bounded) density with respect
to Vol: let ψ be this density. For any function ϕ continuous with compact support
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on PGL(2,Q)\PGL(2,A), let ϕ′ = ϕ−
∫
ϕdVol and ψ′ = ψ − 1. Then we have:∫

ϕd(h∗N ν̄Ω) =

∫
ϕ′d(h∗N ν̄Ω) +

∫
ϕdVol

=

∫
ϕ′(hN · ψ)dVol +

∫
ϕdVol

= 〈ϕ′, hN · ψ〉+

∫
ϕdVol

= 〈ϕ′, hN · ψ′〉+

∫
ϕdVol

N→∞−−−−→
∫
ϕdVol

From the third line to the fourth, you just use that 〈ϕ′, 1〉 =
∫
ϕ′dVol = 0. And

the convergence is given by the mixing property, i.e. theorem 9.
This proves theorem 2 on the equidistribution of Hecke spheres.

This text only touch on the topic of adelic mixing and adelic dynamical systems.
For instance, I completely ignored any property linked to entropy of these dynamic;
the reader may refer to the beautiful papers by Einsiedler-Lindenstrauss-Michel-
Venkatesh [ELMV11] (where Hecke trees and their adelic interpretation are a central
object), Lindenstrauss [Lin06], Einsiedler-Katok-Lindenstrauss [EKL06].
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