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DEFORMATION OF HYPERBOLIC MANIFOLDS IN

PGL(n,C) AND DISCRETENESS OF THE PERIPHERAL

REPRESENTATIONS

ANTONIN GUILLOUX

Abstract. Let M be a cusped hyperbolic 3-manifold, e.g. a knot
complement. Thurston [Thu79] showed that the space of deforma-
tions of its fundamental group in PGL(2,C) (up to conjugation) is
of complex dimension the number ν of cusps near the hyperbolic
representation. It seems natural to ask whether some representa-
tions remain discrete after deformation. The answer is generically
not. A simple reason for it lies inside the cusps: the degeneracy of
the peripheral representation (i.e. representations of fundamental
groups of the ν peripheral tori). They indeed generically become
non discrete, except for a countable set. This last set corresponds
to hyperbolic Dehn surgeries on M , for which the peripheral rep-
resentation is no more faithful.

We work here in the framework of PGL(n,C). The hyperbolic
structure lifts, via the n-dimensional irreducible representation, to
a representation ρgeom. We know from the work of Menal-Ferrer
and Porti [MFP11] that the space of deformations of ρgeom has
complex dimension (n− 1)ν.

We prove here that, unlike the PGL(2)-case, the generic be-
haviour becomes the discreteness (and faithfulness) of the periph-
eral representation: in a neighbourhood of the geometric represen-
tation, the non-discrete peripheral representations are contained in
a real analytic subvariety of codimension ≥ 1.

1. Introduction

Let M be a complete orientable hyperbolic 3-manifold with ν ≥ 1
cusps, e.g. a knot complement. For a Lie group G, consider the space
χ(M,G) of representations of its fundamental group modulo conjugacy:

χ(M,G) = Hom(π1(M), G)/G.

Let T1, . . . , Tν be the peripheral tori of M (so that the cusps are of the
form Ti × [0,∞)). We choose once for all a longitude li and a meridian
mi for each of them.
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In the case G = PGL(2,C), a natural point to consider in the space
χ(M,PGL(2,C)) is the (class of the) monodromy [ρhyp] of the hyper-
bolic structure. Following Thurston [Thu79], Neumann-Zagier [NZ85]
showed it is a smooth point and the complex dimension of χ at this
point equals to the number ν of cusps (see also [Kap01]). Moreover the
(hyperbolic) length of the longitudes li – or directly related parameters
as the trace of their holonomies – are natural local parameters for this
space. In other words, in a neighbourhood of [ρhyp], the deformations
are described by their restriction on the tori. This restriction, called
peripheral representation, will be a central object in this paper:

Definition 1. For any ρ ∈ χ(M,G), its peripheral representation
ρperiph is the collection of the restrictions of ρ to π1(Ti).

The above mentioned phenomenon – that the peripheral representa-
tions prescribe the whole representation – is called local rigidity (around
[ρhyp]).

Still in the PGL(2,C)-case, we know which representations remain
discrete in a neighbourhood of the hyperbolic one [Thu79, NZ85]. In-
deed, after deformation of the hyperbolic representation, the new rep-
resentation becomes generically non discrete. And a simple reason for
it lies in the peripheral representations: they already are not discrete,
except for a countable set. This last set corresponds to hyperbolic Dehn
surgeries on M (or a finite covering) for which the whole representa-
tion is indeed discrete. Beware that in this situation the peripheral
representations are no more faithful.

We work in this paper in the framework of PGL(n,C). The hyper-
bolic structure lifts, via the n-dimensional irreducible representation

rn : PGL(2,C) → PGL(n,C),

to an irreducible representation ρgeom = rn ◦ ρhyp called the geomet-
ric representation. Let us mention that, when n = 3, the irreducible
representation r3 is more widely known as the adjoint representation
Ad. The problem of local rigidity around ρgeom has already been stud-
ied by Menal-Ferrer and Porti in [MFP11] and shown to hold also for
G = PGL(n,C), see theorem 1. We hence know that the space of
deformations near ρgeom has complex dimension (n− 1)ν and that the
symmetric functions of the eigenvalues of ρ(li) are local parameters
for χ(M,PGL(n,C)) – see fact 1 for a precise statement. Let us also
mention that the paper [BFG12a] recovers this theorem for n = 3. Its
approach to the problem, following [BFG12b], leads to actual compu-
tations in χ(M,PGL(3,C)). In the last section, we will present the
example of the 8-knot complement.
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We prove here that the peripheral representations are generally dis-
crete: in a neighbourhood of the geometric representation, the non-
discrete peripheral representations are contained in a real analytic sub-
variety, see theorem 2. The motto for the proof is that, PGL(n,C)
being of rank n − 1, there is enough room to construct discrete and
faithful representations of the commutative groups π1(Ti) as soon as
n ≥ 3. It is worth insisting here on the fact that this motto should be
carefully implemented. The examples show that peripheral discreteness
does not hold generically around any unipotent representation. This is
why we concentrate our work on the geometric representation even if
the techniques may be used to deal with other unipotent representa-
tions.

It raises an interesting question: in the PGL(2,C)-case, in the neigh-
bourhood of the hyperbolic structure, the peripheral representations
are discrete if and only if the whole representation corresponds to a
hyperbolic Dehn filling (or a ramified covering) and is therefore dis-
crete. So there is a local equivalence between the peripheral discrete-
ness and the discreteness of the whole representation1. Does the same
hold in PGL(n,C) ? It would have the surprising consequence that
generically, in a neighbourhood of the geometric representation, the
deformed representation remains discrete.

2. Peripheral representations

First of all, via the n-dimensional irreducible representation rn :
PGL(2,C) →֒ PGL(n,C), we always consider χ(M,PGL(2,C)) as a
subset of χ(M,PGL(n,C)). From now on, we denote this last space
by χ, as n ≥ 3 remains fixed.

We will always assume that our manifold M has only one cusp and
therefore drop the index i: the peripheral torus is denoted T and l
and m are its chosen longitude and meridian. This simplifies notations
without hiding any difficulty. We will occasionally explain what should
be adapted for the case of ν cusps.

2.1. Local rigidity in χ. Let ρ be the representative of an element
[ρ] in χ(M,PGL(n,C)). Menal-Ferrer and Porti [MFP11] proved the
local rigidity around [ρgeom] in χ(π1(M), SL(n,C)):

Theorem 1 (Menal-Ferrer and Porti). Around [ρgeom], the variety
χ(π1(M), SL(n,C)) is a complex manifold of dimension (n − 1) for

1I do not know a direct proof of it – that is without using Mostow rigidity. I
think it would be very interesting to investigate if we might avoid it.
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which the symmetric functions of the eigenvalues of the ρ(l) are local
parameters.

In particular any [ρ] close enough of [ρgeom] is completely determined
by its peripheral representations.

Remark 1. This result is proven when there are ν cusps. In this case,
the dimension of the manifold becomes (n− 1)ν. For parameters, you
have to choose a longitude in each peripheral torus and consider the
symmetric functions of their eigenvalues.

In this paper, we prefer to work with the group PGL(n,C) and the
space denoted by χ. Let us remark that the previous theorem translate
directly into a theorem about χ in the neighbourhood of the geometric
representation by the following trick: choose a finite generating set
S for π1(M). The geometric representation lifts to SL(n,C). Hence
for any representation ρ ∈ Hom(π1(M),PGL(n,C)) close enough to
ρgeom, there is a unique lift ρ′(g) ∈ SL(n,C) of every ρ(g), g ∈ S,
such that ρ′(g) is close to ρgeom(g). This defines the representation
ρ′ ∈ Hom(π1(M), SL(n,C)) which is a lift of ρ and verifies that the
eigenvalues of ρ′(l) and ρ′(m) are close to 1.

Hereafter, we abuse the notations and still speak about the symmet-
ric functions of the eigenvalues of ρ whereas we should more precisely
speak about those of ρ′.

2.2. A ramified covering of χ. Let T be the boundary torus and
l, m be the fixed longitude and meridian. It will be convenient for
our purpose to fix the upper-triangular form of ρ(l) and ρ(m), which
amounts to choosing an order on their eigenvalues. This will be done
classically by passing to a finite ramified covering of χ describing the
space of representations decorated by flags fixed by the peripheral rep-
resentations.

Note that ρ(l) and ρ(m) commute. So they are simultaneously trig-
onalizable over C. At ρ = ρgeom, these matrices are unipotent and
they have a regular upper-triangular form: there is a unique complete
flag FT in C

n they fix. Stated in a more concrete way, they are con-
jugated to upper triangular matrices, with diagonal entries equal to 1
and non-zero entries above the diagonal (it is a unique Jordan bloc of
size n). After a small deformation, these matrices generically become
simultaneously diagonalizable with distinct eigenvalues. Hence they
fix n! different flags in C

n. Each of these flags is near FT , or in other
terms you have a choice of n! distinct upper-triangular representatives
for (ρ(l), ρ(m)).
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Let F be the space of complete flags in C
n. Define now the space χ′

by:

{(ρ, F ) ∈ Hom(π1(M),PGL(n,C))× F such that
ρ(π1(T )).F = F} /PGL(n,C).

There is a natural projection χ′ → χ given by forgetting about the
flag. Moreover, as at [ρgeom] the peripheral representation fixes only
one flag (it is regular unipotent) FT , the fiber of [ρgeom] is exactly the
point [ρgeom, FT ]. For the sake of simplicity we will sometimes abuse
notation and still denote [ρgeom] this point of χ′.

In some sense, χ′ is exactly the space where one may speak of the
eigenvalues of ρ(l) and not only their symmetric functions: indeed,
consider [ρ, F ] ∈ χ′. Then there are complex numbers Lk and Mk for
1 ≤ k ≤ n − 1, such that for any basis adapted to the flag F , the
matrices ρ(l) and ρ(m) are simultaneously upper-triangular with:

(1) ρ(l) =













1 ∗ ∗ ∗ ∗
L1 ∗ ∗ ∗

L1L2 ∗ ∗
. . . ∗

L1 . . . Ln−1













and2

ρ(m) =













1 ∗ ∗ ∗ ∗
M1 ∗ ∗ ∗

M1M2 ∗ ∗
. . . ∗

M1 . . .Mn−1













.

This defines an application Holperiph on the space χ′3:

Holperiph : χ′ → (C(n−1))2

[ρ, F ] 7→ ((Lk[ρ, F ])k, (Mk[ρ, F ])k)

We claim that χ′ is a ramified covering of the space χ, with covering
group the Weyl group of PGL(n,C). The latter is also the permutation
group of n− 1 points. This ramified covering is often called the space
of decorated representations ([BFG12a], for example). This claim is
proven in the following fact and is a consequence of Menal-Ferrer and
Porti theorem:

2The Lk’s are given by the usual choice of simple positive roots for the diagonal
torus associated to the upper triangular group.

3When there are different peripheral tori (Ti)i=1..ν , we define in the obvious way
the functions Li

k
, M i

k
and Holperiph.
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Fact 1. The space χ′ is a ramified covering of χ around [ρgeom].
Moreover the map Holperiph is a local holomorphic embedding into

C
2(n−1). Its image is locally a complex manifold of dimension (n− 1).

The collection (Lk[ρ])k is a local parameter for this submanifold in the
neighbourhood of Holperiph[ρgeom].

Remark 2. As for theorem 1, the generalisation to ν cusps is valid,
with the image of Holperiph being locally a manifold of dimension (n−1)ν
in C

2(n−1)ν

As in the PGL(2,C)-case [Cho04], we really need M to be hyper-
bolic and to work in a neighbourhood of the geometric representation
for this statement to hold. Note that we give in [BFG12a] an actual
description (for n = 3) of a neighbourhood of [ρgeom] for which it holds
(and counterexamples without the assumptions).

Proof. For 1 ≤ k ≤ n− 1, denote by σk : Cn → C the k-th symmetric
function of n complex numbers and, with a slight abuse of notations,
still denote by σk the map which sends a matrix to the k-th symmetric
function of its eigenvalues. Then we have two lines of applications:

χ′ Holperiph
−−−−−→ (Cn−1)2 → C

n−1

[ρ, F ] 7→ ((Lk[ρ, F ])k, (Mk[ρ, F ])k) 7→ (Lk[ρ, F ])k,

and
χ → (Cn−1)2 → C

n−1

[ρ] 7→ ((σk(ρ(l)))k, (σk(ρ(m)))k) 7→ (σk(ρ(l)))k.

In a neighbourhood of 1 ∈ C, we denote by z
1
n the branch of n-th root

sending 1 to 1. We may then define, in a neighbourhood of (1, . . . , 1)
in C

n−1 the map:

e :

{

C
n−1 → C

n

(a1, . . . , an−1) 7→ 1

(an−1
1 an−2

2 ...an−1)
1
n

(1, a1, a1a2, . . . , a1a2 . . . an−1)

This map seems complicated mostly because of the choices in the def-
inition of the Lk’s and Mk’s. We stick with this notation as they will
be adapted for the remainder of the paper. In simple terms, this map
describes the eigenvalues of 1

det(A)
1
n

A, where A is the matrix:

A =













1 ∗ ∗ ∗ ∗
a1 ∗ ∗ ∗

a1a2 ∗ ∗
. . . ∗

a1 . . . an−1













.
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By construction the two above lines fit into the commutative diagram:

χ′ Holperiph
−−−−−→ (Cn−1)2 → C

n−1

↓ ↓ ↓
χ → (Cn−1)2 → C

n−1

,

where the last two vertical arrows are constructed with the map

C
n−1 → C

n−1

(a1, . . . , an−1) 7→ (σk(e(a1, . . . , an−1)))1≤k≤n−1.

Now, what should we prove? The theorem 1 of Menal-Ferrer and
Porti tells us the structure of the second line around [ρgeom]: the first
arrow biholomorphically sends an open set of χ onto a submanifold of
(Cn−1)2 of dimension C

n−1 and for which the second arrow gives local
parameters. The last vertical arrow is the classical ramified covering
with covering group the permutation group of n− 1 points. So we just
need to prove that the composition of the two arrows of the first line
is injective: indeed, if this holds, the projection χ′ → χ is isomorphic
to the classical ramified covering.

So consider [ρ] ∈ χ, and (σk(ρ(l)))k the vector of symmetric functions
of the eigenvalues of ρ(l). Let (L1, . . . , Ln−1) be a preimage of this
vector by the third vertical arrow. Then we want to prove that there
exists a unique flag F , such that [ρ, F ] is sent to (L1, . . . , Ln−1). In
terms of the vector (L1, . . . , Ln−1), the eigenvalues of ρ(l) are 1, L1, . . .,
L1 · · ·Ln−1 (see eq. 1). If those are distinct, there is no problem: F has
to be the flag whose k-dimensional space is the sum of the eigenlines
associated to the k first eigenvalues 1, L1, . . ., L1 · · ·Lk. This is the
generic case.

But problems may occur when some eigenvalues coincide: for exam-
ple if the eigenspace associated to 1 has dimension ≥ 2, we would have
different possible choices for the first line of F . We claim this does
not happen in a neighbourhood of [ρgeom]: even if an eigenvalue has
multiplicity4 greater than 2, its eigenspace will still be a line:

Lemma 1. For ρ close enough to ρgeom, for an eigenvalue λ of multi-
plicity r of ρ(l), and an integer 1 ≤ k ≤ r, there is a unique k-plane
invariant by ρ(l) inside the characteristic space associated to λ.

Proof. This amounts to say that the Jordan decomposition of ρ(l) is
given by a unique block for each eigenvalue. This is equivalent to the

4Let us precise the notations: the multiplicity of an eigenvalue is intended as
its multiplicity as a root of the characteristic polynomial. We will say that an
eigenvalue is simple if the dimension of its eigenspace is 1. Beware that an eigenvalue
can at the same time be simple and have a multiplicity ≥ 2.
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fact that every eigenvalue is simple, i.e. its eigenspace is a line. This
is true at [ρgeom], as ρgeom(l) is regular unipotent, and it is an open
condition given by the property: "the characteristic polynomial and its
derivative are coprime polynomials". So it holds in a neighbourhood
of [ρgeom]. �

With this lemma, one concludes the proof: the k-dimensional space
of F has to be constructed in the following way: consider the k first
eigenvalues 1, L1, . . . , L1 · · ·Lk. For each eigenvalue λ appearing, de-
note by rλ the number of times it appears. And define the k-plane as
the sum of the unique rλ-planes invariant by ρ(l) inside the character-
istic space associated to λ. �

2.3. The lift of hyperbolic representations. We keep track here of
the image rn(χ(π1(M),PGL(2,C))) in χ. As said in the introduction of
this section, we will simply denote by χ(π1(M),PGL(2,C)) this image.

Fact 2. A point [ρ] ∈ χ close enough to [ρgeom] belongs to χ(M,PGL(2,C))
if and only if there is a lift in the ramified covering χ′ such that, for
all i, we have L1[ρ] = L2[ρ] = . . . = Ln−1[ρ]. In this case, we also have
M1(ρ) = M2[ρ] = . . . = Mn−1[ρ].

Proof. An easy computation of

rn

(

t ∗
0 t−1

)

shows that it is an upper triangular matrix with diagonal entries

tn−1, tn−3, . . . , t−(n−3), t−(n−1).

That is, with the notation of eq. 1, L1 = . . . = Ln−1 = t−2. As locally
the eigenvalues of ρ(l) determine a point in χ′, the fact holds. �

2.4. Peripheral discreteness. This paper aims to understand the so-
called peripheral discreteness: are the peripheral representations dis-
crete or not? Looking for any global result is hopeless: as mentioned in
the introduction, the PGL(2,C)-case is already understood and shows
both non-discreteness (the generic feature in this dimension) and dis-
creteness (for Dehn surgeries). So we try to understand the generic
behaviour. Precisely, we prove in the PGL(n,C)-case that peripheral
discreteness becomes the generic behaviour. Let U be a neighbourhood
of [ρgeom] in χ′ on which Holperiph is injective and the projection χ′ → χ
is a ramified covering. Then we have:

Theorem 2. Let M be a complete hyperbolic manifold of dimension 3
with 1 cusp. There is a real-analytic subvariety D of C

(n−1) of codi-
mension ≥ 1 verifying that for any [ρ, F ] in U, with Holperiph[ρ, F ] =
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(Lk,Mk)k, we have:
if (Lk)k lies outside of D, then the peripheral representation of ρ is
discrete and faithful.

Remark 3. The generalisation to ν cusps is natural: D becomes a
subvariety of C(n−1)ν of codimension ≥ 1.

It may seems surprising at first glance. But there is an heuristic
evidence for this result. Indeed, the peripheral representations are rep-
resentations of Z2. When in the PGL(2,C)-case, outside of the geo-
metric representation, both the elements ρ(l) and ρ(m) are loxodromic
and preserve the same geodesic. Hence, this Z2 naturally embeds in the
stabilizer of this geodesic. The latter is a diagonal subgroup isomorphic
to C

∗. At the end, you get some Z
2 included in C

∗. It is seldom dis-
crete. Now, when the ambient group becomes PGL(n,C) with n ≥ 3,
then the group Z

2 is (generically) mapped inside a diagonal subgroup
which is isomorphic to (C∗)n−1. The higher rank indicates that the
generic behaviour should be the discreteness and faithfulness5.

Our proof of the theorem will follow this heuristics. We will prove
that, under the hypothesis of the theorem, no hidden algebraic relation-
ship between ρ(l) and ρ(m) prevent the discreteness or the faithfulness.
This proof is completed in section 3.2. Beware however that it is not
some general triviality. Indeed, if we do not work in a neighbourhood
of the geometric representation, one may exhibit examples of a strong
and simple relationship. A counterexample is given by the 8-knot com-
plement: when looking at the neighbourhood of another representation
ρ whose peripheral representations are unipotent – actually lying inside
PU(2, 1) – such a simple relation holds and prevents faithfulness, see
section 4.

We conclude this subsection by the criterion for discreteness and
faithfulness we will use. It is an elementary fact, when you use the
homeomorphism C

∗ ≃ R
∗ × S

1:

Fact 3. Let [ρ, F ] belongs to U and note Holperiph[ρ, F ] = (Lk,Mk)k.
Then a sufficient condition for the restriction of ρ to π1(T ) to be dis-
crete and faithful is:

There exist 1 ≤ k < h ≤ n− 1 such that

∆k,h := det

(

log |Lk| log |Lh|
log |Mk| log |Mh|

)

6= 0.

5Recall that when n = 2, outside of [ρgeom] but in a neighbourhood, the periph-
eral representation is never discrete and faithful.
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Proof. For any representation [ρ, F ] in U, with Holperiph[ρ, F ] = (Lk,Mk)k,
the following are equivalent conditions all implying the discreteness and
faithfulness of the restriction of ρ to π1(T ):

• The vectors

(L1, L1L2, . . . , L1 · · ·Ln−1)

and
(M1,M1M2, . . . ,M1 · · ·Mn−1)

generate a discrete subgroup of (C∗)n−1 isomorphic to Z
2.

• The vectors

(|L1|, |L1L2|, . . . , |L1 · · ·Ln−1|)

and

(|M1|, |M1M2|, . . . , |M1 · · ·Mn−1|)

generate a subgroup of (R∗)n−1 isomorphic to Z
2.

• The vectors

(log |L1|, log |L1L2|, . . . , log |L1 · · ·Ln−1|)

and

(log |M1|, log |M1M2|, . . . , log |M1 · · ·Mn−1|)

are free in R
n−1.

The last point is translated in terms of non vanishing of at least one
minor, that is one of the functions ∆k,h. �

Theorem 2 follows easily from this fact, at least if we may find one
single representation ρ for which this determinant does not vanish. The
subvariety D is then defined by the vanishing of these determinants. A
nice feature of the proof is that we will exploit what we know about the
PGL(2,C)-case – even if in this case the determinants always vanish !

2.5. Some facts about the PGL(2,C)-case. The main result about
the PGL(2,C)-case goes back to Thurston [Thu79] and is explained
thoroughly in Neumann-Zagier’s paper [NZ85]. We state it using our
notations. Recall from facts 1 and 2 that the PGL(2,C)-case – seen as a
subset of the ramified covering χ′ – is characterised by L1 = . . . = Ln−1,
which implies in turn M1 = . . . = Mn−1 for all i. Moreover, given a
complex number L close enough to 1, there is a unique representation
class [ρL] ∈ χ(M,PGL(2,C)) ⊂ χ(M,PGL(n,C)) such that L1[ρL] =
. . . = Ln−1[ρL] = L. For this representation, we denote by M(L) the
common value of the Mk[ρL]. This defines a holomorphic map

L 7→ M(L).
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If L is close enough to 1, then [ρv] is close to [ρgeom] and M(L) is close
to 1. We choose the branch of log which sends 1 to 0. The following
theorem states that log(M(L)) is almost an affine function of log(L) in
the neighbourhood of 1 and its slope is the modulus of the euclidean
structure of the torus T in the hyperbolic structure:

Theorem 3 (Thurston). There exists an analytic map τ defined on a
neighbourhood of 1 in C such that we have :

log(M(L)) = τ(L) log(L).

Moreover, τ(1) belongs to the upper half-plane H and is the modulus µ
of the euclidean structure on T given by the hyperbolic structure on the
manifold M (associated to l, m).

Note that the modulus µ is not a real number. This will prove useful
at the end of the proof.

In light of fact 3, we are rather interested in the dependency of
log |M | in terms of log |L|. However, for a countable set of complex
numbers L, there exist two relatively prime integers p and q such that
|L|p|M |q = 1. Indeed, for any neighbourhood of 1, for all but a finite
number of relatively prime integers p, q, one may find an L such that
this relation holds (see [NZ85, p. 322]). The dependency of these real
parts is really a wild one and it is implied by the tameness of the
complex dependency.

We will take advantage of that: we will show that the tamed be-
haviour of log(M) with respect to log(L) generalises to the PGL(n,C)-
case. And this implies as a counterpart that the real parts dependencies
are wild. The non-vanishing of the determinant of fact 3 will follow as
a corollary.

3. Complex analyticity and its real counterpart

3.1. Ratios of complex logarithms. Let V be the projection on the
space (Lk)k of Holperiph(U): those are the possible vectors of eigenvalues
of the longitude for a deformation of ρgeom. From fact 1, we know that
V is a neighbourhood of (1, . . . , 1) and that to any v ∈ V, there exists
a unique point [ρv, F ] of U projecting to v.

We define, as in the PGL(2,C)-case, a map from V to C
(n−1) by

v = (Lk)k 7→ (Mk(v) := Mk[ρv, F ])k.

We first generalise the map τ of the PGL(2,C)-case. The following
proposition, which reduces to simple linear algebra, is the key point for
theorem 2:
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Proposition 1. There exist (n− 1) applications τk, holomorphic in a
neighbourhood of (1, . . . , 1) in V, such that we have, for all v = (Lk)k ∈
V:

log(Mk(v)) = τk(v) log(Lk).

Moreover, for any k, τk(1, . . . , 1) is the modulus µ of the euclidean
structure on T induced by the hyperbolic structure on the manifold M .

Let us note that the first part will only use the fact that we have
local rigidity around [ρgeom] and that ρgeom(l) is regular unipotent (it
is a unique Jordan bloc of size n). Hence it generalises to more general
settings: for example, when n = 3, I already mentioned that it is possi-
ble to make actual computations in order to find some representations
of fundamental groups of hyperbolic 3-manifolds whose peripheral rep-
resentations are unipotent. In [BFG12a] we gave a simple criterion of
local rigidity and it is an easy task to check that the image of l is a
unique Jordan block.

Proof. The proof of the existence of the τk is similar to the PGL(2,C)-
case [NZ85, Lemma 4.1]: we already know from fact 1 that the functions
v 7→ log(Mk(v)) are holomorphic and vanish at v = (1, . . . , 1). In order
to get the existence of the τk’s, we have to show that for any k, the mere
condition Lk = 1 on the k-th entry of v implies that Mk = 1 for the
same entry. Indeed, this will prove that the ratio log(Mk(v))/ log(Lk)
is defined when Lk = 1. This ratio is the function τk.

Choose some v ∈ V such that, for some k, Lk = 1; let [ρv, F ] be the
representation class associated to v. We choose a basis (e1, . . . en) of
C

n adapted to the flag F . In this basis, the matrices ρv(l) and ρv(m)
present the upper-triangular form we gave in eq. 1. We furthermore
choose the basis so that ρv(l) is in Jordan form. For 0 ≤ k ≤ n, let Ek

be the k-dimensional subspace of Cn generated by the first k vectors
e1, . . . , ek (with E0 = {0}). Define A, resp B, to be the endomorphism
of the plane Ek+1/Ek−1 given by the action of ρ(l), resp ρ(m). Then
we have, in the basis of Ek+1/Ek−1 given by the projections of ek and
ek+1, the following matrices representing A and B (recall that Lk = 1):

A = L1 · · ·Lk−1

(

1 x
0 1

)

and B = M1 · · ·Mk−1

(

1 y
0 Mk

)

.

Recall from lemma 1 that, for [ρv] close enough to [ρgeom], the eigenvalue
L1 · · ·Lk−1 is simple. This implies that x 6= 0. But we also know that
ρv(l) and ρv(m) commute. So do A and B. This implies Mk = 1.

The second point is given by the PGL(2,C)-case: as seen in sections
2.3 and 2.5, a point in the subvariety L1 = . . . = Ln−1 – common
value hereafter denoted by L – corresponds to the representation ρL in
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χ(M,PGL(2,C)). Hence we have M1 = . . . = Mn−1 = M . Hence, for
any k, the ratio τk(v) = log(Mk)/ log(Lk) equals the function τ(L) =
log(M)/ log(L) defined in the hyperbolic case. And for this τ , theorem
3 gives τ(1) = µ. �

3.2. Proof of the generic discreteness. We are now ready to com-
plete the proof of theorem 2. The idea is simple: you cannot have
both a nearly linear relation with non real coefficients between the
vectors (log(Lk))k and (log(Mk))k and a colinearity (over R) between
(log |Lk|)k and (log |Mk|)k. As before let v be the vector (Lk)k and
define the notation log(v) = maxk |log(Lk)|. We have:

log(Mk) = µ log(Lk) + o(log(v))

It yields the following approximation for

∆k,h = det

(

log |Lk| log |Lh|
log |Mk| log |Mh|

)

:

∆k,h = Im(µ) (arg(Lk) log |Lh| − arg(Lh) log |Lk|) + o(log(v)2).

We may look at a deformation defined, for t > 0, by Lk(t) = (1+t)eit

and Lh(t) = Lk (all the other being fixed to 1). As Im(µ) 6= 0, we get
the non vanishing of the determinant. This proves theorem 2.

3.3. [ρgeom] is not a smooth point of the real analytic subvari-

ety. From the previous computation, it is clear that for any k, h, the
differential at v = (1, . . . , 1) of

∆k,h = det

(

log |Lk| log |Lh|
log |Mk| log |Mh|

)

vanishes. Thus the local geometry of the subvariety D of theorem 2,
i.e. the vanishing locus of all determinants, is not clear. And it is
a simple task to prove that (1, . . . , 1) is indeed a singular point on
this subvariety, as the intersection of different branches: consider the
deformation defined by all entries Lh fixed to 1, except one of them
(say Lk). Then all the Mh are constant equal to 1 except Mk. And all
the determinants vanish.

So, in terms of tangent vectors, any vector with only one non-zero
entry is tangent to the subvariety D at (1, . . . , 1). As D is not of
maximal dimension, it surely shows that (1, . . . , 1) is not a smooth
point of this subvariety.
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4. Example : the 8-knot complement

Building upon the work [BFG12b], a team works on a generalisa-
tion the famous computer program Snappea in order to understand
representations in PGL(3,C) of knot complements. Some results have
already been mentioned in [BFG12a]. A forthcoming paper by Fal-
bel, Koseleff and Rouillier will explain thoroughly how some parts of
χ(M,PGL(3,C)) may be computed, at least for some M , the most
worked-out example being the 8-knot complement.

Recall the well-known presentation of its fundamental group:

〈g1, g3|[g3, g
−1
1 ]g3 = g1[g3, g

−1
1 ]〉.

For this manifold, one get a complete list of representation whose
peripheral holonomy is unipotent (see [Fal08] and more recently [DE13],
which shows that ρ2 and ρ3 are intimately related). Up to some Galois
conjugations there are only 4 of them:

• The holonomy [ρgeom] of the hyperbolic structure on M .
• [ρ1] defined on the generators by :

ρ1(g1) =





1 1 −1
2
− i

√
3

2
0 1 −1
0 0 1



 and ρ1(g3) =





1 0 0
1 1 0

−1
2
− i

√
3

2
−1 1





• [ρ2] defined on the generators by :

ρ2(g1) =





1 1 −1
2
− i

√
7

2
0 1 −1
0 0 1



 and ρ2(g3) =





1 0 0
−1 1 0

−1
2
+ i

√
7

2
1 1





• [ρ3] defined on the generators by :

ρ3(g1) =





1 1 −1
2

0 1 −1
0 0 1



 and ρ3(g3) =





1 0 0
5
4
− i

√
7

4
1 0

−1 −5
4
− i

√
7

4
1





All those representations may be checked to be locally rigid and
their peripheral representations to be regular unipotent. Moreover, one
may parametrize a neighbourhood of each of these representations in
χ(M,PGL(3,C)) ; beware that the actual computation is not an easy
task and will be thoroughly described elsewhere. It is nevertheless
possible to estimate the determinant ∆1,2 – the only one to compute,
as n = 3 – on a neighbourhood of these representations.

This shows the following behaviour:

• In the neighbourhood of [ρgeom] the result of this article holds!
One may get a bit of additional information: the subvariety D
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is locally diffeomorphic to the isotropic cone of a quadratic form
on C

2. It was already suggested by the approximation for ∆1,2

used in the proof of the generic discreteness (section 3.2).
• In the neighbourhood of [ρ1], the discriminants are not identi-

cally 0, so the peripheral discreteness is still the generic case.
• In the neighbourhood of [ρ2] and [ρ3], the determinants always

vanish.

Note that, for ρ2 and ρ3 the peripheral representation is not faithful:
for example for ρ2 the following relation holds between suitable chosen
longitude l and meridian m:

ρ2(l) = ρ2(m)5.

The computation shows that, in this case, not only the determinants
vanish in a neighbourhood of [ρ2], but for each [ρ] close enough, we do
still have:

ρ(l) = ρ(m)5.

In other terms, the relation preventing the faithfulness of the peripheral
representation at ρ2 is rigid.

It is tempting to think that, for a general manifold M and a discrete,
locally rigid, representation ρ whose peripheral holonomy is regular
unipotent, we should have:

the generic behaviour around [ρ] is the peripheral discreteness if and
only if the peripheral representation is faithful. Moreover, in case it is
not, the relation preventing the faithfulness is rigid.
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