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Introduction

It follows from Mostow's rigidity theorem that the volume of a complete hyperbolic manifold is a topological invariant. In fact, it coincides with Gromov's purely topological definition of simplicial volume. If the complete hyperbolic manifold M has cusps, Thurston showed that one could obtain complete hyperbolic structures on manifolds obtained from M by Dehn surgery by gluing a solid torus with a sufficiently long geodesic. Thurston's framed his results for more general deformations N.B. is a member of the Institut Universitaire de France.

which are not complete hyperbolic manifolds, the volume of the deformation being the volume of its metric completion. Neumann and Zagier [START_REF] Walter | Volumes of hyperbolic three-manifolds[END_REF] and afterwards Neumann [START_REF] Walter | Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds[END_REF] provided a deeper analysis of these deformations and their volume. In particular, they showed that the variation of the volume depends only on the geometry of the boundary and they gave a precise formula for that variation in terms of the boundary holonomy.

It is natural to consider an invariant associated to a hyperbolic structure defined on the pre-Bloch group P(k) which is defined as the abelian group generated by all the points in k \ {0, 1} where k is a field quotiented by the 5-term relations (see section 3 for definitions and references). The volume function is well defined as a map Vol : P(k) → R using the dilogarithm. The Bloch group B(k) is a subgroup of the pre-Bloch group P(k). It is defined as the kernel of the map

δ : P(k) → k × ∧ Z k ×
given by δ([z]) = z ∧ (1 -z). The volume and the Chern-Simons invariant can then be seen through a function (the Bloch regulator)

B(k) → C/Q.
The imaginary part being related to the volume and the real part related to Chern-Simons CS mod Q invariant.

Several extensions of Neumann-Zagier results were obtained. Kabaya [START_REF] Kabaya | Pre-Bloch invariants of 3-manifolds with boundary[END_REF] defined an invariant in P(C) associated to a hyperbolic 3-manifold with boundary and obtained a description of the variation of the volume function which depends only on the boundary data. Using different coordinates and methods Bonahon [START_REF] Bonahon | A Schläfli-type formula for convex cores of hyperbolic 3manifolds[END_REF] showed a similar formula.

The volume function was extended in [START_REF] Falbel | A volume function for CR tetrahedra[END_REF][START_REF] Falbel | A combinatorial invariant for spherical CR structures[END_REF] in order to deal with Cauchy-Riemann (CR) structures. More precisely, consider S 3 ⊂ C 2 with the contact structure obtained as the intersection D = T S 3 ∩JT S 3 where J is the multiplication by i in C 2 . The operator J restricted to D defines the standard CR structure on S 3 . The group of CRautomorphisms of S 3 is PU(2, 1) and we say that a manifold M has a spherical CR structure if it has a (S 3 , PU(2, 1))-geometric structure. Associated to a CR triangulation it was defined in [START_REF] Falbel | A combinatorial invariant for spherical CR structures[END_REF] an invariant in P(C) which is in the Bloch group in case the structure has unipotent boundary holonomy. The definition of that invariant is valid for "cross-ratio structures" (which includes hyperbolic and CR structures) as defined in [START_REF] Falbel | A volume function for CR tetrahedra[END_REF]. It turns out to be a coordinate description of the decorated triangulations described bellow and the invariant in P(k) coincides with the one defined before up to a multiple of four.

We consider in this paper a geometric framework which includes both hyperbolic structures and CR structures on manifolds. We are in fact dealing with representations of the fundamental group of the manifold in PGL(3, C) that are parabolic : the peripheral holonomy should preserve a flag in C 3 . Recall that a flag in C 3 is a line in a plane of C 3 . The consideration of these representations links us to the work of Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF][START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF]. Indeed we make an intensive use of their combinatorics on the space of representations of surface groups in SL (3, R).

As in the original work of Thurston and Neumann-Zagier, we work with decorated triangulations. Namely, let T be a triangulation of a 3-manifold M . To each tetrahedron we associate a quadruple of flags (corresponding to the four vertices) in C 3 . In the case of ideal triangulations, where the manifold M is obtained from the triangulation by deleting the vertices, we impose that the holonomy around each vertex preserves the flag decorating this vertex. Such a decorated triangulation gives a set of flag coordinates, and more precisely two sets: affine flag coordinates a and projective flag coordinates z. Those are, in the Fock and Goncharov setting, the a-and z-coordinates on the boundary of each tetrahedron, namely a four-holed sphere.

The main result in this paper is the construction of an element β ∈ P(C) associated to a decorated triangulation and a description of a precise formula for δ(β) in terms of boundary data. This formula is given in theorem 5. [START_REF] Suslin | Homology of GL n , characteristic classes and Milnor K-theory[END_REF].

The core of the proof of theorem 5.14 goes along the same lines of the homological proof of Neumann [START_REF] Walter | Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds[END_REF]. We nevertheless believe that the use of the combinatorics of Fock and Goncharov sheds some light on Neumann's work. The two theories fit well together, allowing a new understanding, in particular, of the "Neumann-Zagier" symplectic form.

The organisation of the paper is as follows. In section 2 we describe flags and configurations of flags. Following [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF], we define a-and zcoordinates for configurations of flags. These data define a decorated tetrahedron. In section 3 we define an element in the pre-Bloch group associated to a decorated tetrahedron (cf. also [START_REF] Falbel | A combinatorial invariant for spherical CR structures[END_REF]). We then define the volume of a decorated tetrahedron and show how previous definitions in hyperbolic and CR geometry are included in this context. We moreover relate our work to Suslin's work on K 3 , showing that our volume map is essentially Suslin map from H 3 (SL(3)) to the Bloch group. This gives a geometric and intuitive construction of the latter. Here we are very close to the work of Zickert on the extended Bloch group [START_REF] Zickert | The extended Bloch group and algebraic K-theory[END_REF]. In the next section 4 we associate to a decorated tetrahedron T the element δ(β(T )) and compute it using both a-coodinates and z-coordinates.

This local work being done, we move on in section 5 to the framework of decorated simplicial complexes. The decoration consists of a-coordinates or z-coordinates associated to each tetrahedron and satisfying appropriate compatibility conditions along edges and faces. The main result is the computation of W = δ(β(M )) which turns out to depend only on boundary data (Theorem 5.14).

We first give a proof of Theorem 5.14 when the decoration is unipotent. We then deal with the proof of the general case. In doing so we have to develop a generalization of the Neumann-Zagier bilinear relations to the PGL(3, C) case. In doing so the Goldman-Weil-Petersson form for tori naturally arises. We hope that our proof sheds some light on the classical PGL(2, C) case.

In section 10 we describe all unipotent decorations on the complement of the figure eight knot. It was proven by P.-V. Koseleff that there are a finite number of unipotent structures and all of them are either hyperbolic or CR. The natural question of the rigidity of unitotent representation will be investigated in a forthcoming paper [START_REF] Bergeron | Local rigidity for SL(3, C) representations of 3-manifolds groups[END_REF] (see also [START_REF] Genzmer | Sur les triangulations des structures CR-sphériques[END_REF]).

Finally in section 11, we describe applications of theorem 5.14. First, we follow again Neumann-Zagier and obtain an explicit formula for the variation of the volume function which depends on boundary data. Then, relying on remarks of Fock and Goncharov, we describe a 2form on the space of representations of the boundary of our variety which coincides with Weil-Petersson form in some cases (namely for hyperbolic structures and unipotent decorations).

We thank J. Genzmer, P.-V. Koseleff and Q. Wang for fruitful discussions.

Configurations of flags and cross-ratios

We consider in this section the flag variety Fl and the affine flag variety AFl of SL(3) over a field k. We define coordinates on the configurations of 4 flags (or affine flags), very similar to the coordinates used by Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF].

2.1. Flags, affine flags and their spaces of configuration. We set up here notations for our objects of interest. Let k be a field and V = k 3 . A flag in V is usually seen as a line and a plane, the line belonging to the plane. We give, for commodity reasons, the following alternative description using the dual vector space V * and the projective spaces P(V ) and P(V * ):

We define the spaces of affine flags AFl(k) and flags Fl(k) by the following:

AFl(k) = {(x, f ) ∈ (V \ {0}) × (V * \ {0}) such that f (x) = 0} Fl(k) = {([x], [f ]) ∈ P(V ) × P(V * ) such that f (x) = 0}.
The space of flags Fl(k) is identified with the homogeneous space PGL(3, k)/B, where B is the Borel subgroup of upper-triangular matrices in PGL (3, k). Similarly, the space of affine flags AFl(k) is identified with the homogeneous space SL(3, k)/U , where U is the subgroup of unipotent upper-triangular matrices in SL(3, k).

2.2.

Given a G-space X, we classicaly define the configuration module of ordered points in X as follows. For n ≥ 0, let C n (X) be the free abelian group generated by the set

(p 0 , • • • , p n ) ∈ X n+1
of all ordered (n + 1) set of points in X. The group G acts on X and therefore also acts diagonally on C n (X) giving it a left G-module structure.

We define the differential

d n : C n (X) → C n-1 (X) by d n (p 0 , . . . , p n ) = n i=0 (-1) i (p 0 , . . . , pi , . . . , p n ),
then we can check that every d n is a G-module homomorphism and

d n • d n+1 = 0. Hence we have the G-complex C • (X) : • • • → C n (X) → C n-1 (X) → • • • → C 0 (X).
The augmentation map : C 0 (X) → Z is defined on generators by (p) = 1 for each p ∈ X. If X is infinite, the augmentation complex is exact.

For a left G-module M , we denote M G its group of co-invariants, that is,

M G = M/ gm -m, ∀g ∈ G, m ∈ M .
Taking the co-invariants of the complex C • (X), we get the induced complex:

C • (X) G : • • • → C n (X) G → C n-1 (X) G → • • • → C 0 (X) G , with differential dn : C n (X) G → C n-1 (X) G induced by d n .
We call H • (X) the homology of this complex.

2.3.

We let now G = PGL(3, k) and X = Fl. For every integer n ≥ 0, the Z-module of coinvariant configurations of n + 1 ordered flags is defined by:

C • (Fl) = C • (Fl) G .
The natural projection π :

SL(3) → PGL(3) → PGL(3)/B = Fl gives a map π * : H 3 (SL(3)) → H 3 (Fl).
We will study in this paper the homology groups H 3 (SL(3, k)) (which is the third group of discrete homology of SL(3, k)), H 3 (AFl) and H 3 (Fl).

It is usefull to consider a subcomplex of C • (Fl) of generic configurations which contains all the information about its homology. We leave to the reader the verification that indeed the definition below gives rise to subcomplexes of C 3 (Fl) and C 3 (Fl)

2.4. A generic configuration of flags ([x i ], [f i ]), 1 ≤ i ≤ n + 1 is given by n + 1 points [x i ] in general position and n + 1 lines Ker f i in P(V ) such that f j (x i ) = 0 if i = j. We will denote C r n (Fl) ⊂ C n (Fl) and C r n (Fl) ⊂ C n (Fl)
the corresponding module of configurations and its coinvariant module by the diagonal action by SL [START_REF] Bonahon | A Schläfli-type formula for convex cores of hyperbolic 3manifolds[END_REF].

A configuration of ordered points in P(V ) is said to be in general position when they are all distinct and no three points are contained in the same line. Observe that the genericity condition of flags does not imply that the lines are in a general position.

Since G acts transitively on

C r 1 Fl, we see that C r n (Fl) G = Z if n ≤ 1, and the differential d1 : C r 1 (Fl) G → C r 0 (Fl) G is zero. In order to describe C r 2 (Fl) consider a configuration of 3 generic flags ([x i ], [f i ]) 1≤i≤3 ∈ C r 2 (Fl).
One can then define a projective coordinate system of P(C 3 ): take the one where the point x 1 has coordinates [1 : 0 : 0] t , the point x 2 has coordinates [0 : 0 : 1] t , the point x 3 has coordinates [1 : -1 : 1] t and the intersection of Kerf 1 and Kerf 2 has coordinates [0 : 1 : 0] t . The line Kerf 3 then has coordinates [z : z+1 : 1] where

z = f 1 (x 2 )f 2 (x 3 )f 3 (x 1 ) f 1 (x 3 )f 2 (x 1 )f 3 (x 2 ) ∈ k × is the triple ratio. We have C r 2 (Fl) = Z[k × ]. Moreover the differential d2 : C r 2 (Fl) G → C r 1 (Fl) G is given on generators z ∈ k × by d2 (z) = 1 and therefore H 1 (Fl) = 0.
We denote by z 123 the triple ratio of a cyclically oriented triple of flags ([x i ], [f i ]) i=1,2,3 . Note that z 213 = 1/z 123 . Observe that when z 123 = -1 the three lines are not in general position.

2.6.

Coordinates for a tetrahedron of flags. We call a generic configuration of 4 flags a tetrahedron of flags. The coordinates we use for a tetrahedron of flags are the same as those used by Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] to describe a flip in a triangulation. We may see it as a blow-up of the flip into a tetrahedron. They also coincide with coordinates used in [START_REF] Falbel | A volume function for CR tetrahedra[END_REF] to describe a cross-ratio structure on a tetrahedron (see also section 3.8).

Let ([x i ], [f i ]) 1≤i≤4 be an element of C 3 (Fl). Let us dispose symbolically these flags on a tetrahedron 1234 (see figure 1). We define a set of 12 coordinates on the edges of the thetrahedron (1 for each oriented edge) and four coordinates associated to the faces.

To define the coordinate z ij associated to the edge ij, we first define k and l such that the permutation (1, 2, 3, 4) → (i, j, k, l) is even. The pencil of (projective) lines through the point x i is a projective line P 1 (k). We naturally have four points in this projective line: the line ker(f i ) and the three lines through x i and one of the x l for l = i. We 

z ij := [ker(f i ), (x i x j ), (x i x k ), (x i x l )].
We may rewrite this cross-ratio thanks to the following useful lemma.

2.7. Lemma. We have

z ij = f i (x k ) det(x i ,x j ,x l ) f i (x l ) det(x i ,x j ,x k ) .
Here the determinant is w.r.t. the canonical basis on V .

Proof. Consider the following figure:

Ker(f i ) x i y i x j x k x l y j Figure 2. Cross-ratio
By duality, z ij is the cross-ratio between the points y i , y j and x k , x l on the line (x k x l ). Now, f i is a linear form vanishing at y i and det(x i , x j , •) is a linear form vanishing at y j . Hence, on the line (x k x l ), the linear 1 Note that we follow the usual convention (different from the one used by Fock and Goncharov) that the cross-ratio of four points x 1 , x 2 , x 3 , x 4 on a line is the value at x 4 of a projective coordinate taking value ∞ at x 1 , 0 at x 2 , and 1 at x 3 . So we employ the formula

(x1-x3)(x2-x4) (x1-x4)(x2-x3)
for the cross-ratio.

form f i (x) is proportional to (• -y i ) and det(x i , x j , •) is proportional to (• -y j ). This proves the formula.

2.8. Each face (ijk) inherits a canonical orientation as the boundary of the tetrahedron (1234). Hence to the face (ijk), we associate the 3-ratio of the corresponding cyclically oriented triple of flags:

z ijk = f i (x j )f j (x k )f k (x i ) f i (x k )f j (x i )f k (x j ) .
Observe that if the same face (ikj) (with opposite orientation) is common to a second tetrahedron then

z ikj = 1 z ijk . Figure 3 displays the coordinates. i j k l z ij z il z ik z ijk z ilj z ikl Figure 3
. The z-coordinates for a tetrahedron 2.9. Of course there are relations between the whole set of coordinates. Fix an even permutation (i, j, k, l) of (1, 2, 3, 4). First, for each face (ijk), the 3-ratio is the opposite of the product of all cross-ratios "leaving" this face:

(2.9.1)

z ijk = -z il z jl z kl .
Second, the three cross-ratio leaving a vertex are algebraically related:

z ik = 1 1 -z ij z il = 1 - 1 z ij (2.9.2)
Relations 2.9.2 are directly deduced from the definition of the coordinates z ij , while relation 2.9.1 is a direct consequence of lemma 2.7.

At this point, we choose four coordinates, one for each vertex: z 12 , z 21 , z 34 , z 43 . The next proposition shows that a tetrahedron is uniquely determined by these four numbers, up to the action of PGL [START_REF] Bonahon | A Schläfli-type formula for convex cores of hyperbolic 3manifolds[END_REF]. It also shows that the space of cross-ratio structures on a tetrahedron defined in [START_REF] Falbel | A volume function for CR tetrahedra[END_REF] coincides with the space of generic tetrahedra as defined above.

2.10. Proposition. A tetrahedron of flags is parametrized by the 4tuple (z 12 , z 21 , z 34 , z 43 ) of elements in k \ {0, 1}.

Proof. Let e 1 , e 2 , e 3 be the canonical basis of V and (e *

1 , e * 2 , e * 3 ) its dual basis. Up to the action of SL(3), an element

([x i ], [f i ]) of C r
3 (Fl) is uniquely given, in these coordinates, by:

•

x 1 = (1, 0, 0), f 1 = (0, z 1 , -1), • x 2 = (0, 1, 0), f 2 = (z 2 , 0, -1), • x 3 = (0, 0, 1), f 3 = (z 3 , -1, 0) and • x 4 = (1, 1, 1), f 4 = z 4 (1, -1, 0) + (0, 1, -1) 
. Observe that z i = 0 and z i = 1 by the genericity condition. Now we compute, using lemma 2.7 for instance, that

z 12 = 1 1-z 1 , z 21 = 1 -z 2 , z 34 = z 3 , z 43 = 1 -z 4 , completing the proof.
We note that one can then compute d3 :

C r 3 (Fl) G → C r 2 (Fl) G on the generators of C r 3 (Fl) G to be d3 (z 12 , z 21 , z 34 , z 43 ) = [z 123 ] -[z 124 ] + [z 134 ] -[z 234 ].
2.11. Coordinates for affine flags. We will also need coordinates for a tetrahedron of affine flags (the A-coordinates in Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF]). Let (x i , f i ) 1≤i≤4 be an element of C 3 (AFl). We also define a set of 12 coordinates on the edges of the thetrahedron (one for each oriented edge) and four coordinates associated to the faces:

We associate to the edge ij the number a ij = f i (x j ) and to the face ijk (oriented as the boundary of the tetrahedron) the number a ijk = det(x i , x j , x k ).

We remark that for a tetrahedron of affine flags, the z-coordinates are well-defined, and are ratios of the affine coordinates:

(2.11.1) z ij = a ik a ijl a il a ijk and z ijk = a ij a jk a ki a ik a ji a kj .

Tetrahedra of flags and volume

In this section we define the volume of a tetrahedron of flags, generalizing and unifying the volume of hyperbolic tetrahedra (see section 3.7) and CR tetrahedra (see [START_REF] Falbel | A volume function for CR tetrahedra[END_REF] and section 3.8). Via proposition 2.10, it coincides with the volume function on cross-ratio structures on a tetrahedron as defined in [START_REF] Falbel | A volume function for CR tetrahedra[END_REF]. We then define the volume of a simplicial complex of flags tetrahedra. This volume is invariant under a change of triangulation of the simplicial complex (2-3 move) hence is naturally an element of the pre-Bloch group and the volume is defined on the third homology group of flag configurations (see also [START_REF] Falbel | A combinatorial invariant for spherical CR structures[END_REF]). Eventually we get a map, still called volume, from the third (discrete) homology group of SL(3) to the Bloch group, through the natural projection from H 3 (SL(3)) to H 3 (Fl). We conclude the section with the proof that this last map actually coincides with the Suslin map from H 3 (SL(3)) to the Bloch group.

3.1. The pre-Bloch and Bloch groups, the dilogarithm. We define a volume for a tetrahedron of flags by constructing an element of the pre-Bloch group and then taking the dilogarithm map.

The pre-Bloch group P(k) is the quotient of the free abelian group Z[k \ {0, 1}] by the subgroup generated by the 5-term relations

(3.1.1) [x] -[y] + [ y x ] -[ 1 -x -1 1 -y -1 ] + [ 1 -x 1 -y ], ∀ x, y ∈ k \ {0, 1}.
For a tetrahedron of flags T , let z ij = z ij (T ) and z ijk = z ijk (T ) be its coordinates.

To each tetrahedron define the element

β(T ) = [z 12 ] + [z 21 ] + [z 34 ] + [z 43 ] ∈ P(C)
and extend it -by linearity -to a function

β : C 3 (Fl(k)) → P(C).
We emphasize here that β(T ) depends on the ordering of the vertices of each tetrahedron2 T . The following proposition implies that β is well defined on H 3 (Fl).

Proposition. We have

: β(d 4 (C 4 (Fl))) = 0.
Proof. We have to show that Im(d 4 ) is contained in the subgroup generated by the 5-term relations. This is proven by computation and is exactly the content of [4, Theorem 5.2].

We use wedge ∧

Z for skew symmetric product on Abelian groups.

Consider k × ∧ Z k × ,
where k × is the multiplicative group of k. It is the abelian group generated by the set x ∧ Z y factored by the relations

xy ∧ Z z = x ∧ Z z + y ∧ Z z and x ∧ Z y = -y ∧ Z x. In particular, 1 ∧ Z x = 0 for any x ∈ k × , and x n ∧ Z y = n(x ∧ Z y) = x ∧ Z y n .
3.5. The Bloch group B(k) is the kernel of the homomorphism

δ : P(k) → k × ∧ Z k × , which is defined on generators of P(k) by δ([z]) = z ∧ (1 -z).
The Bloch-Wigner dilogarithm function is

D(x) = arg (1 -x) log |x| -Im( x 0 log (1 -t) dt t ), = arg (1 -x) log |x| + Im(ln 2 (x)).
Here ln 2 (x) =

x 0 log (1 -t) dt t is the dilogarithm function. The function D is well-defined and real analytic on C -{0, 1} and extends to a continuous function on CP 1 by defining D(0) = D(1) = D(∞) = 0. It satisfies the 5-term relation and therefore, for k a subfield of C, gives rise to a well-defined map:

D : P(k) → R,
given by linear extension as

D( k i=1 n i [x i ]) = k i=1 n i D(x i ).
3.6. We finally define the volume map on C 3 (Fl) via the dilogarithm (the constant will be explained in the next section):

Vol = 1 4 D • β : C 3 (Fl(k)) → C.
From Proposition 3.3, Vol is well defined on H 3 (Fl).

3.7. The hyperbolic case. We briefly explain here how the hyperbolic volume for ideal tetrahedra in the hyperbolic space H 3 fits into the framework described above. An ideal hyperbolic tetrahedron is given by 4 points on the boundary of H 3 , i.e. P 1 (C). Up to the action of SL(2, C), these points are in homogeneous coordinates [0, 1], [START_REF] Bergeron | Local rigidity for SL(3, C) representations of 3-manifolds groups[END_REF]0], [START_REF] Bergeron | Local rigidity for SL(3, C) representations of 3-manifolds groups[END_REF][START_REF] Bergeron | Local rigidity for SL(3, C) representations of 3-manifolds groups[END_REF] and [1, t] -the complex number t being the cross-ratio of these four points. So its volume is D(t) (see e.g. [START_REF] Zagier | The dilogarithm function[END_REF]).

Identifying C 3 with the Lie algebra sl(2, C), we have the adjoint action of SL(2, C) on C 3 preserving the quatratic form given by the determinant, given in canonical coordinates by xz -y 2 . The group SL(2, C) preserves the isotropic cone of this form. The projectivization of this cone is identified to P 1 (C) via the Veronese map (in canonical coordinates):

h 1 : P 1 (C) → P 2 (C) [x, y] → [x 2 , xy, y 2 ]
The first jet of that map gives a map h from P 1 (C) to the variety of flags Fl. A convenient description of that map is obtained thanks to the identification between C 3 and its dual given by the quadratic form. Denote , the bilinear form associated to the determinant. Then we have ]) and h( [1, t]). An easy computation gives its coordinates:

h : P 1 (C) → Fl(C) p → (h 1 (p), h 1 (p), • ) . Let T be the tetrahedron h([0, 1]), h([1, 0]), h([1, 1 
z 12 (T ) = t z 21 (T ) = t z 34 (T ) = t z 43 (T ) = t.
It implies that β(T ) = 4t and our function Vol coincide with the hyperbolic volume:

Vol(T ) = D(t).
Remark. Define an involution σ on the z-coordinates by:

σ(z ijk ) = 1 z ijk on the faces and σ(z ij ) = z ji (1 + z ilj ) z ilj (1 + z ijk ) and σ(z ji ) = z ij (1 + z ijk ) z ijk (1 + z ilj ) on edges.
The set of fixed points of σ correspond exactly with the hyperbolic tetrahedra.

3.8. The CR case. CR geometry is modeled on the sphere S 3 equipped with a natural PU(2, 1) action. More precisely, consider the group U(2, 1) preserving the Hermitian form z, w = w * Jz defined on C 3 by the matrix

J =   0 0 1 0 1 0 1 0 0   and the following cones in C 3 ; V 0 = z ∈ C 3 -{0} : z, z = 0 , V -= z ∈ C 3 : z, z < 0 . Let π : C 3 \ {0} → CP 2 be the canonical projection. Then H 2 C = π(V -)
is the complex hyperbolic space and its boundary is

∂H 2 C = S 3 = π(V 0 ) = {[x, y, z] ∈ CP 2 | xz + |y| 2 + z x = 0 }. The group of biholomorphic transformations of H 2 C is then PU(2, 1
), the projectivization of U(2, 1). It acts on S 3 by CR transformations.

An element x ∈ S 3 gives rise to an element ([x], [f ]) ∈ Fl(C) where [f ] corresponds to the unique complex line tangent to S 3 at x. As in the hyperbolic case we may consider the inclusion map

h 1 : S 3 → P 2 (C)
and the first complex jet of that map gives a map

h : S 3 → Fl(C) x → (h 1 (x), ., h 1 (x) )
A generic configuration of four points in S 3 is given, up to PU(2, 1), by the following four elements in homogeneous coordinates (we also give for each point x i , the corresponding dual f i to the complex line containing it and tangent to S 3 ):

• x 1 = (1, 0, 0), f 1 = (0, 0, 1), • x 2 = (0, 0, 1), f 2 = (1, 0, 0), • x 3 = ( -1+it 2 , 1, 1), f 3 = (1, 1, -1-it 2 ) and • x 4 = ( |z| 2 (-1+is) 2 , z, 1), f 4 = (1, z, -|z| 2 (1+is) 2 )
with z = 0, 1 and z s+i t+i = 1. Observe that PU(2, 1) acts doubly transitively on S 3 and for a generic triple of points x 1 , x 2 , x 3 the triple ratio of the corresponding flags is given by 1-it 1+it . One can easily compute the invariants of the tetrahedron:

z 12 = z, z 21 = z(s + i) t + i , z 34 = z[(t + i) -z(s + i)] (z -1)(t -i) , z 43 = z(z -1)(s -i) (t + i) -z(s + i) .
The following proposition describes the space of generic configurations of four points in S 3 .

3.9. Proposition. Configurations (up to translations by PU(2, 1)) of four generic points in S 3 are parametrised by elements in C r 3 (Fl) with coordinates z ij , 1 ≤ i = j ≤ 4 satisfying the three complex equations

z ij z ji = z kl z lk (3.9.1)
with the exclusion of solutions such that z ij z ji z ik z ki z il z li = -1 and

z ij z ji ∈ R.
As in [START_REF] Falbel | A volume function for CR tetrahedra[END_REF] (up to multiplication by 4) the volume of a CR tetrahedron

T CR is Vol(T CR ) = 1 4 D • β(T CR ). 3.10.
Relations with the work of Suslin. We show here how our map β allows a new and more geometric way to interpret Suslin map S : H 3 (SL(3)) → P (see [START_REF] Suslin | Homology of GL n , characteristic classes and Milnor K-theory[END_REF]). First of all, recall that the natural projection π :

SL(3) → Fl = PGL(3)/B gives a map π * : H 3 (SL(3)) → H 3 (Fl). 3.11. Theorem. We have β • π * = 4S.
Proof. Let T be the subgroup of diagonal matrices (in the canonical basis) of SL [START_REF] Bonahon | A Schläfli-type formula for convex cores of hyperbolic 3manifolds[END_REF]. Recall that SL(2) is seen as a subgroup of SL(3) via the adjoint representation (as in section 3.7). We find in the work of Suslin the three following results:

(1) So we just have to understand the map β • π * on T and SL(2). As T is a subgroup of B, the map β • π * vanishes on T . And we have seen in the section 3.7 that, on a hyperbolic tetrahedron, β coincide with 4 times the cross-ratio.

H 3 (SL(3)) = H 3 (SL(2)) + H 3 (T ) [
This proves the theorem.

Remark. After writing this section we became aware of Zickert's paper [START_REF] Zickert | The extended Bloch group and algebraic K-theory[END_REF]. In it (see §7.1) Zickert defines a generalization -denoted λof Suslin's map. When specialized to our case his definition coincides with 1 4 β • π * . We believe that the construction above sheds some light on the "naturality" of this map.

Decoration of a tetrahedron and the pre-Bloch group

In this section we let T be an ordered tetrahedron of flags and compute in two different ways δ(β(T )). The first -and most natural -way uses a-coordinates associated to some lifting of T as a tetrahedron of affine flags. In that respect we mainly follow Fock and Goncharov. The second way directly deals with z-coordinates and follows the approach of Neumann and Zagier. Finally we explain how the two ways are related; we will see in the remaining of the paper how fruitful it is to mix them.

4.1. Affine decorations and the pre-Bloch group. We first let (x i , f i ) 1≤i≤4 be an element of C 3 (AFl) lifting T . This allows us to associate a-coordinates to T .

Let J 2 T = Z I be the 16-dimensional abstract free Z-module where (see figure 4) I = {vertices of the (red) arrows in the 2-triangulation of the faces of T }.

We denote the canonical basis {e α } α∈I of J 2 T . It contains oriented edges e ij (edges oriented from j to i) and faces e ijk . Given α and β in I we set: 

ε αβ = #{oriented (red)
⊗ Z J 2 T ∼ = Hom((J 2 T ) * , k × )
where k is any field which contains all the a-coordinates.

Let V be a Z-module equipped with a bilinear product

B : V × V → Z.
We consider on the k × -module

V k = k × ⊗ Z V the bilinear product ∧ B : V k × V k → k × ∧ Z k ×
defined on generators by

(z 1 ⊗ v 1 ) ∧ (z 2 ⊗ v 2 ) = B(v 1 , v 2 )(z 1 ∧ z 2 ).
In particular letting Ω 2 be the bilinear skew-symmetric form on J 2 T given by3 Ω 2 (e α , e β ) = ε αβ , we get:

a ∧ Ω 2 a = α,β∈I ε αβ a α ∧ Z a β .
4.3. Lemma. We have:

(4.3.1) δ(β(T )) = 1 2 a ∧ Ω 2 a.
Proof. To each ordered face (ijk) of T we associate the element

(4.3.2) W ijk = a ijk ∧ a ki a jk a ij a ik a kj a ji +a ij ∧a ik +a ki ∧a kj +a jk ∧a ji ∈ k × ∧ Z k × .
The proof in the CR case of [6, Lemma 4.9] obviously leads to 4 :

δ(β(T )) = W 143 + W 234 + W 132 + W 124 .
Finally one easily sees that

W 143 + W 234 + W 132 + W 124 = 1 2 α,β∈I ε αβ a α ∧ Z a β .
We let

W (T ) = W 143 + W 234 + W 132 + W 124 .
Remark. 1. The element W (T ) coincides with the W invariant associated by Fock and Goncharov to the triangulation by a tetrahedron of a sphere with 4 punctures. (The orientation of the faces being induced by the orientation of the sphere.)

2. Whereas T -being a tetrahedron of flags -only depends on the flag coordinates, each W associated to the faces depends on the affine flag coordinates.

In the next paragraph we make remark 2 more explicit by computing δ(β(T )) using the z-coordinates.

4.4. The Neumann-Zagier symplectic space. In this section we analyse an extension of Neumann-Zagier symplectic space introduced by J. Genzmer [START_REF] Genzmer | Sur les triangulations des structures CR-sphériques[END_REF] in the space of z-coordinates associated to the edges of a tetrahedron. We reinterpret her definitions in our context of flag tetrahedra. Recall that we have associated z-coordinates to a tetrahedron of flags T . These consists of 12 edge coordinates {z ij } and 4 face coordinates {z ijk } subject to the relations (2.9.1) and (2.9.2). Recall that relation (2.9.1) is z ijk = -z il z jl z kl and note that (2.9.2) implies in particular that:

(4.4.1) z ij z ik z il = -1.
We linearize (2.9.1) and (4.4.1) in the following way: We let J T be the Z-module obtained as the quotient of J 2 T = Z I by the kernel of Ω 2 . The latter is the subspace generated by elements of the form α∈I b α e α for all {b α } ∈ Z I such that α∈I b α ε αβ = 0 for every β ∈ I. Equivalently it is the subspace generated by e ij + e ik + e il and e ijk -(e il + e jl + e kl ). We will rather use as generators the elements v i = e ij + e ik + e il and w i = e ji + e ki + e li + e ijk + e ilj + e ikl , see Figure 5.

i j k l
The vector

v i i j k l
The vector w i We let J * T ⊂ (J 2 T ) * be the dual subspace which consists of the linear maps in (J 2 T ) * which vanish on the kernel of Ω 2 . Note that J T (as well as J * T ) is 8-dimensional.

4.5. The z-coordinates {z α } α∈I of our tetrahedron of flags T now define an element

z = α∈I z α e * α ∈ Hom(J 2 T , k × ) ∼ = k × ⊗ Z (J 2 T ) *
where k is any field which contains the z-coordinates. Because of (2.9.1) and (4.4.1) the image of the kernel of Ω 2 by z is the (torsion) subgroup

{±1} ⊂ k × (that is easily checked on v i and w i ). Denoting V 1 2 the tensor product V ⊗ Z Z 1 2 of a Z-module V , we conclude that the element z ∈ k × ⊗ (J 2 T ) * 1 2 in fact belongs to k × ⊗ J * T 1 2 . 4.6. The space J *
T is 8-dimensional and we may associate to 8 oriented edges (two pointing at each vertex) of T a basis {f ij }. Using this basis, the element

z ∈ k × ⊗ Z J * T 1 2 is written z = z ij f ij .
We then note that (up to eventually adding a root of -1 to k):

δ(β(T )) = z ij ∧ Z (1 -z ij ) + z ji ∧ Z (1 -z ji ) + z kl ∧ Z (1 -z kl ) + z lk ∧ Z (1 -z lk ) = 1 2 z ∧ Z Hz, (4.6.1) 
where H is the linear map J * T → J * T which on generators of

J * T is given by H(f ij ) = f ik and H(f ik ) = -f ij . It yields a linear map H : k × ⊗ Z J * T → k × ⊗ Z J * T .
We note that in coordinates:

(Hz) f ij = 1 z ik and (Hz) f ik = z ij .

4.7.

The choice of the basis {f ij } of J * T and the choice of the map H are not canonical but they define a natural symplectic form (4.7.1)

Ω * (•, •) = H•, • on J *
T where , is the scalar product associated to the basis {f ij }. Such a symplectic space was first considered by Neumann and Zagier (see [START_REF] Walter | Volumes of hyperbolic three-manifolds[END_REF][START_REF] Walter | Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds[END_REF]) in the SL(2, C) context.

The following lemma now follows from (4.6.1) and (4.7.1).

4.8. Lemma. We have:

(4.8.1) δ(β(T )) = 1 2 z ∧ Ω * z.
4.9. Relation between a and z-coordinates. Let p : J 2 T → (J 2 T ) * be the homomorphism v → Ω 2 (v, •). On the basis (e α ) and its dual (e * α ), we can write p(e α ) =

β ε αβ e * β .
We define accordingly the dual map

p * : Hom((J 2 T ) * , k × ) → Hom(J 2 T , k × ). Observe that if a ∈ k × ⊗ Z J 2 T and z ∈ k × ⊗ Z (J 2 
T ) * are the elements associated to the a and z-coordinates of T then:

p * (a) = z in k × ⊗ J * T 1 2 .
Indeed,

p * (a)(e α ) = a(p(e α )) = a( β αβ e * β ) = β a ε αβ β .
In particular, we recuperate the formula

z ij = a ik a ijl a il a ijk .
Note however that in our conventions the coordinate a ijl should be written a ilj . There is therefore a sign missing here and p * (a) = z only holds modulo 2-torsion.

The image p(J 2 T ) ⊂ (J 2 T ) * coincides with J * T and one easily checks that p * (Ω * ) = Ω 2 . It then follows from the following lemma that 

φ : V k → W k satisfies φ * (∧ b ) = ∧ B
Proof. This is a simple consequence of the definitions.

4.11.

Note that the form Ω 2 induces a -now non-degenerate -symplectic form Ω on J T . This yields a canonical identification between J T and J * T ; the form Ω * is the corresponding symplectic form. We may therefore as well work with (J T , Ω) as with (J * T , Ω * ). The bilinear form Ω on J T is characterized as the non-singular skew-symmetric form given by Ω(e α , e β ) = ε αβ .

Decoration of a tetrahedra complex and its holonomy

In the previous sections we defined coordinates for a tetrahedron of flags and affine flags and defined its volume in P(C). We study here how one may decorate a complex of tetrahedra with these coordinates, compute the holonomy of its fondamental group. We also investigate the invariant β (in the pre-Bloch group) of the decorated complex. We eventually state the main theorem of the paper, theorem 5.14, which computes δ(β) in terms of the holonomy.

5.1. Quasi-simplicial complex and its decorations. Let us begin with the definition of a quasi-simplicial complex (see e.g. [START_REF] Walter | Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds[END_REF]): A quasi-simplicial complex K is a cell complex whose cells are simplices with injective simplicial attaching maps, but no requirement that closed simplices embed in |K| -the underlying topological space. A tetrahedra complex is a quasi-simplicial complex of dimension 3.

5.2.

From now on we let K be a tetrahedra complex. The (open) star of a vertex v ∈ K (0) is the union of all the open simplices that have v as a vertex. It is an open neighborhood of v and is the open cone on a simplicial complex L v called the link of v.

A quasi-simplicial 3-manifold is a compact tetrahedra complex K such that |K| -|K (0) | is a 3-manifold (with boundary). By an orientation of K we mean an orientation of this manifold. A 3-cycle is a closed quasi-simplicial 3-manifold.

5.3.

A quasi-simplicial 3-manifold is topologically a manifold except perhaps for the finitely many singular points v ∈ |K (0) | where the local structure is that of a cone on |L v | -a compact connected surface (with boundary). We will soon require that for each vertex v ∈ K (0) , |L v | is homeomorphic to either a sphere, a torus or an annulus. Let K (0) s , K (0) t and K (0) a the corresponding subsets of vertices. We note that |K| -|K

(0) t ∪ K (0)
a | is an (open) 3-manifold with boundary that retracts onto a compact 3-manifold with boundary M . Note that ∂M is the disjoint union T 1 ∪ . . . ∪ T τ ∪ S 1 ∪ . . . ∪ S σ where each T i is a torus and each S i a surface of genus g i ≥ 2. Moreover: each T i corresponds to a vertex in K (0) t and each S i contains at least one simple closed essential curve each corresponding to a vertex in K (0) a , see figure 6. Given such a compact oriented 3-manifold with boundary M . We call a quasi-simplicial 3-manifold as above a triangulation of M .

A decoration of a tetrahedra complex is an incarnation of this complex in our spaces of flags or affine flags: 5.4. A parabolic decoration of the tetrahedra complex is the data of a flag for each vertex (equivalently a map from the 0-skeleton of the complex to Fl) such that, for each tetrahedron of the complex, the Let us make two comments on these definitions. First, any parabolic decoration -together with an ordering of the vertices of each 3-simplex -equip each tetrahedron with a set of coordinates as defined in section 2.6. Second, an unipotent decoration induces a parabolic decoration via the canonical projection AFl → Fl, so we get these coordinates, as well as a set of affine coordinates (see section 2.11).

Neumann [12, §4

] has proven that any element of H 3 (PGL 3 (C)) can be represented by an oriented 3-cycle K together with an ordering of the vertices of each 3-simplex of K so that these orderings agree on common faces, and a decoration of K.

In otherwords: Any class α ∈ H 3 (PGL 3 (C)) can be represented as

f * [K] where K is a quasi-simplicial complex such that |K| -|K (0) | is an oriented 3-manifold, [K] ∈ H 3 (|K|) is its fundamental class and f : |K| → BPGL 3 (C) is some map.
This motivates the study of decorated 3-cycles. From now on we fix K a decorated oriented quasi-simplicial 3-manifold together with an ordering of the vertices of each 3-simplex of K. Let N be the number of tetrahedra of K and denote by T ν , ν = 1, . . . , N , these tetrahedra. We let z ij (T ν ) be the corresponding z-coordinates. We now describe the consistency relation on this coordinate in order to be able to glue back together the decorated tetrahedron 5.6. Consistency relations. (cf. [START_REF] Falbel | A volume function for CR tetrahedra[END_REF]) Let F be an internal face (2dim cell) of K and T , T be the tetrahedra attached to F . In order to fix notations, suppose that the vertex of T are 1, 2, 3, 4 and that the face F is 123. Let 4 be the remaining vertex of T . The face F inherits two 3-ratio from the decoration: first z 123 (T ) as a face of T and second z 132 (T ) as a face of T . But considering F to be attached to T or T only changes its orientation, not the flags at its vertex. So these two 3-ratios are inverse. Hence we get the: (Face relation) Let T and T be two tetrahedra of K with a common face (ijk) (oriented as a boundary of T ), then z ijk (T ) = 1 z ikj (T ) .

Figure 7. tetrahedra sharing a common edge

We should add another compatibility condition to ensure that the edges are not singularities: we are going to compute the holonomy of a path in a decorated complex and we want it to be invariant by crossing the edges. One way to state the condition is the following one: let T 1 , . . . , T ν be a sequence of tetrahedra sharing a common edge ij and such that ij is an inner edge of the subcomplex composed by the T µ 's (they are making looping around the edge, see figure 7). Then we ask:

(Edge condition) z ij (T 1 ) • • • z ij (T ν ) = z ji (T 1 ) • • • z ji (T ν ) = 1 5.7.
Holonomy of a decoration. Recall from §2.5 that, once we have a configuration of 3 generic flags

([x i ], [f i ]) 1≤i≤3 ∈ C r
2 (Fl) with triple ratio X, one defined a projective coordinate system of P(C 3 ) as the one where the point x 1 has coordinates [1 : 0 : 0] t , the point x 2 has coordinates [0 : 0 : 1] t , the point x 3 has coordinates [1 : -1 : 1] t and the intersection of Kerf 1 and Kerf 2 has coordinates [0 : 1 : 0] t . The line Kerf 3 then has coordinates [X : X + 1 : 1].

Given an oriented face we therefore get 3 projective basis associated to the triples (123), ( 231) and (312). The cyclic permutation of the flags induces the coordinate change given by the matrix

T (X) =   X X + 1 1 -X -X 0 X 0 0   .
Namely: if a point p has coordinates [u : v : w] t in the basis associated to the triple (123) it has coordinates T (X)[u : v : w] t in the basis associated to (231).

5.8. Lemma. If we have a tetrahedron of flags (ijkl) with its z-coordinates, then the coordinate system related to the triple (ijk) is obtained from the coordinate system related to the triple (ijl) by the coordinate change given by the matrix

E(z ij , z ji ) =   z -1 ji 0 0 0 1 0 0 0 z ij   .
Beware that the orientation of (ijl) is not the one given by the tetrahedron.

Proof. The matrix we are looking for fixes the flags

([x 1 ], [f 1 ]) and ([x 2 ], [f 2 ]
) corresponding to the vertex i and j. In particular it should be diagonal. Finally it should send [x 4 ] to [x 3 ]. But in the coordinate system associated to the triple (ijk) the point x 4 in the flag ([x 4 ], [f 4 ]) corresponding to the vertex l has coordinates:

x 4 = [z ji : -1 : z -1 ij ] t .
This proves the lemma. 5.9. From this we can explicitly compute the holonomy of a path in the complex. For that let us put three points in each face near the vertices denoting by (ijk) the point in the face ijk near i. As we have said before, each of these points corresponds to a projective basis of C 3 . Each path can be deformed so that it decomposes in two types of steps (see figure 8):

(1) a path inside an oriented face ijk from (ijk) to (jki), (2) a path through a tetrahedron ijkl from (ijk) to (ijl) (i.e. turning left around the edge ij oriented from j to i).

Now the holonomy of the path is the coordinate change matrix so that: in case 1, you have to left multiply by the matrix T (z ijk ) and in case 2 by the matrix E(z ij , z ji ).

5.10.

In particular the holonomy of the path turning left around an edge, i.e. the path (ijk) → (ijl), is given by (5.10.1)

L ij = E(z ij , z ji ) =   z -1 ji 0 0 0 1 0 0 0 z ij   .
As an example which we will use latter on, one may also compute the holonomy of the path turning right around an edge, i.e. the path The first two operations are cyclic permutations both given by the matrix T (z ilj ). It follows from lemma 5.8 that the third is given by the matrix E(z ji , z ij ). Finally the last operation is again a cyclic permutation given by the matrix T (z ikj ). The coordinate change from the basis (ilj) to (ikj) is therefore given by

T (z ikj )E(z ji , z ij )T (z ilj ) 2 =   z ji z ilj z ikj z ikj z ij   Using z ikj = 1
z ijk , we get that the holonomy matrix, in PGL(3, C), of the path turning right around an edge ij is (5.10.2)

R ij =   z ji z ilj z ijk 1 1 z ij   .
Remark. Beware that L ij R ij is not the identity in PGL(3, C). This is due to the choices of orientations of the faces which prevents L ij R ij to be a matrix of coordinate change. When computing the holonomy of a path we therefore have to avoid backtracking. Coordinates for the boundary of the complex. The boundary Σ of the complex K is a triangulated punctured surface. As in section 4 and in [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] we associate to Σ the set I Σ of the vertices of the (red) arrows of the triangulation of Σ obtained using figure 4. As in the preceeding section we set J 2 Σ = Z I Σ and consider the skew-symmetric form Ω 2 Σ on J 2 Σ introduced by Fock and Goncharov in [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF]. Here again we let J * Σ ⊂ (J 2 Σ ) * be the image of J 2 Σ by the linear map v → Ω 2 Σ (v, •).

5.12. The decoration of K yields a decoration of the punctures of Σ by flags, as in [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] and hence a point in J * Σ . Here is a more descriptive point of view, using the holonomy of the decoration of K: it provides Σ with coordinates associated to each α ∈ I Σ . To each face we associate the face z-coordinate of the corresponding tetrahedra of K. To each oriented edge ij of the triangulation of Σ we associate the last eigenvalue of the holonomy of the path joining the two adjacent faces by turning left around ij in K. It is equal to the product z ij (T 1 ) • • • z ij (T ν ) where T 1 , . . . , T ν is the sequence of tetrahedra sharing ij as a common edge.

We denote by z Σ the above defined element of k × ⊗ Z J * Σ 1 2 . Note that when K has a unipotent decoration, then the punctures are decorated by affine flags. We immediately get an element a

Σ ∈ k × ⊗ Z J 2 Σ which projects onto z Σ in k × ⊗ Z J * Σ 1 2 .
Here again we have:

a Σ ∧ Ω 2 Σ a Σ = z Σ ∧ Ω * Σ z Σ .
The first expression is the W -element W (Σ) associated to the decorated Σ by Fock and Goncharov.

5.13. Decoration and the pre-Bloch group. Let k be a field containing all the z-coordinates of the tetrahedra T ν , ν = 1, . . . , N . To any of these (ordered) tetrahedra we have associated an element β(T ν ) ∈ P(k). Set:

β(K) = ν β(T ν ) ∈ P(k).
From now on we assume that for each vertex v ∈ K (0) , |L v | is homeomorphic to either a torus or an annulus. We fix symplectic bases (a s , b s ) for each of the tori components and we fix c r (resp. d r ) a generator of each homology group H 1 (L r ) (resp. H 1 (L r , ∂L r )) where the L r 's are the annuli boundary components. We furthermore assume that the algebraic intersection number ι(c r , d r ) = 1.

Each one of these homology elements may be represented as a path as in section 5.7 which remains close to the associated vertex. So we may compute its holonomy using only matrices L ij and R ij : we will get an upper triangular matrix. More conceptually, the path is looping around a vertex decorated by a flag, so must preserve the flag. So it may be conjugated to an upper traingular matrix. Recall also that the diagonal part of a triangular matrix is invariant under conjugation by an upper-triangular matrix.

The following theorem computes δ(β(K)) in terms of the holonomy elements A s , B s , C r , D r and A * s , B * s , C * r , D * r such that the holonomy matrices associated to a s , b s , c r , d r have the following form in a basis adapted to the flag decorating the link (see also §7.4 for a more explicit description):

  1 A * s * * 0 1 * 0 0 A s   .

Theorem. The invariant δ(β(K)) only depends on the boundary coordinates z

Σ , A s , B s , C r , D r and A * s , B * s , C * r , D * r . Moreover: (1) If the decoration of K is unipotent then 2δ(β(K)) = z Σ ∧ Ω * Σ z Σ . (2) If K is closed, i.e. Σ = ∅,
and each link is a torus, we have the following formula for 3δ(β(K)):

s (2A s ∧ Z B s + 2A * s ∧ Z B * s + A * s ∧ Z B s + A s ∧ Z B * s ) .
Theorem 5.14 generalizes several results known in the SL(2, C)-case, see Neumann [START_REF] Walter | Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds[END_REF] -when K is closed -and Kabaya [START_REF] Kabaya | Pre-Bloch invariants of 3-manifolds with boundary[END_REF] -when all the connected components of Σ are spheres with 3 vertices. A related formula -still in the SL(2, C)-case -is obtained by Bonahon [START_REF] Bonahon | Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form[END_REF][START_REF] Bonahon | A Schläfli-type formula for convex cores of hyperbolic 3manifolds[END_REF]. One may extract from our proof a formula for the general case. Though it should be related to the Weil-Petersson form on ∂M we are not able yet to explicit this relation.

Remark. Thanks to theorem 5.14, the fact that β lies inside the Bloch group is a boundary condition (the only non-vanishing part is 3 2 z Σ ∧ Ω * Σ z Σ ). As a consequence, if the boundary is empty, it will automatically belong to the Bloch group. Using the work of Suslin, it allows to construct geometrically any class in K ind 3 (k), empowering a remark of Fock and Goncharov, see [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF]Proposition 6.16].

Some linear algebra and the unipotent case

The goal of this section is to prove theorem 5.14 when K has a unipotent decoration. Along the way, we lay down the first basis for the homological proof in the general case.

6.1. First let (J i , Ω i ) (i = ∅, 2) denote the orthogonal sum of the spaces (J i Tν , Ω i ). We denote by e µ α the e α -element in J i Tµ . A decoration provides us with an element

z ∈ Hom(J, k × ) 1 2 k × ⊗ Z J * 1 2 = k × ⊗ Z Im(p * ) 1 2
which satisfies the face and edge conditions. 5 We first translate these two consistency relations into linear algebra. Let C or 1 be the free Z-module generated by the oriented internal6 1-simplices of K and C 2 the free Z-module generated by the internal 2-faces of K. Introduce the map

F : C or 1 + C 2 → J 2 defined by, for ēij an internal oriented edge of K, F (ē ij ) = e 1 ij + . . . + e ν ij
where T 1 , . . . , T ν is the sequence of tetrahedra sharing the edge ēij such that ēij is an inner edge of the subcomplex composed by the T µ 's and each e µ ij gets identified with the oriented edge ēij in K (recall figure 7). And for a 2-face ēijk ,

F (ē ijk ) = e µ
ijk + e ν ikj , where µ and ν index the two 3-simplices having the common face ēijk . An element z ∈ Hom(J 2 , k × ) satisfies the face and edge conditions if and only if it vanishes on Im(F ).

Let (J 2 int ) * be the subspace of (J 2 ) * generated by internal edges and faces of K.

The dual map F * : (J 2 ) * → C or 1 + C 2 (here we identify C or 1 + C 2 with its dual by using the canonical basis) is the "projection map":

(e µ α ) * → ēα when (e µ α ) * ∈ (J 2 int ) * and maps (e µ α ) * to 0 if (e µ α ) * / ∈ (J 2 int ) * . From the definitions we get the following:

6.2. Lemma. An element z ∈ k × ⊗ Z (J 2
) * satisfies the face and edge conditions if and only if

z ∈ k × ⊗ Z Ker(F * ).
A decorated tetrahedra complex thus provides us with and element z ∈ k × ⊗ (J * ∩ Ker(F * )) 1 2 and δ(β(K)) = 1 2 z ∧ Ω * z. 6.3. In this section we assume that K is equipped with a unipotent decoration. The boundary surface Σ is then a union of ideally triangulated closed oriented7 surfaces with punctures decorated by affine flags in the sense of Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF]: the triangles are decorated by affine flags coordinates in such a way that the edge coordinates on the common edge of two triangles coincide. Each triangle being oriented we may define the W -invariant:

W (Σ) = ∆ W ∆
where W ∆ is defined by (4.3.2). 8Recall from §5.12 that the unipotent decoration of Σ provides us with an element a

Σ ∈ k × ⊗ Z J 2 Σ which projects onto z Σ ∈ k × ⊗ Z J * Σ 1 2 . We have: 9 W (Σ) = 1 2 a Σ ∧ Ω 2 Σ a Σ = 1 2 z Σ ∧ Ω * Σ z Σ .
We have already done the computations leading to the proof of the theorem 5.14 in the unipotent case: 6.4. Proposition. In the unipotent case we have:

δ(β(K)) = W (Σ).
Proof. The proof is the same as that of [6, Theorem 4.13]: we compute β(T ν ) for the tetrahedra complex using the a-coordinates as in §4.1. This gives a sum of W -invariants associated to the faces of the T ν 's. The terms corresponding to a common face between two tetrahedra appear with opposite sign. The sum of the remaining terms is precisely W (Σ).

6.5.

A unipotent decoration corresponds to a point z ∈ k × ⊗ (Im(p • F )) 1 2 . In §5.12 we therefore have defined a map

k × ⊗ (Im(p • F )) 1 2 → k × ⊗ J * Σ 1 2 .
The following proposition states that this map respects the 2-forms Ω * and Ω * Σ . 6.6. Proposition. In the unipotent case, Ω * is the pullback of Ω * Σ . Proof. We have seen that on each tetrahedron p * (Ω * (T )) = Ω 2 (T ).

Since Im(p • F ) is the image by p of the subspace Im(F ) of J 2 , each face f of T is an oriented triangle with a-coordinates, so we define a 2-form Ω 2 (f, T ) by the usual formula. If the face f is internal between T and T , we have Ω 2 (f, T ) = -Ω 2 (f, T ) as the only difference is the orientation of the face (and hence of its red triangulation, see figure 4).

Moreover p * (Ω * ) is the sum of the Ω 2 (T ). Hence it reduces to the sum on external faces of Ω 2 (f, T ), that is exactly Ω 2 Σ = p * (Ω * ). Our goal is now to extend this result beyond the unipotent case; to this end we develop a theory analogous to the one of Neumann-Zagier but in the PGL(3, C)-case. We first treat in details the case where K is closed.

Neumann-Zagier bilinear relations for PGL(3, C)

A decorated tetrahedra complex provides us with and element z ∈ k × ⊗ (J * ∩ Ker(F * )) 1 2 and δ(β(K)) = 1 2 z ∧ Ω * z. Our final goal is to compute this last expression. But here we first describe the right set up to state the generalization of proposition 6.6 to general -non-unipotent -decorations. This leads to a more precise version of theorem 5.14, see corollary 7.11. We first deal with the case where K is a (closed) 3-cycle. We will later explain how to modify the definitions and proofs to deal with the general case.

7.1. Coordinates on the boundary. Let K be a quasi-simplicial triangulation of M . Assume that K is closed so that Σ = ∅ and each |L v | is a torus. We first define coordinates for ∂M and a symplectic structure on these coordinates.

Each torus boundary surface S in the link of a vertex is triangulated by the traces of the tetrahedra; from this we build the CW-complex D whose edges consist of the inner edges of the first barycentric subdivision, see figure 10. We denote by D the dual cell division Let C 1 (D) = C 1 (D, Z) and C 1 (D ) = C 1 (D , Z) be the corresponding chain groups. Given two chains c ∈ C 1 (D) and c ∈ C 1 (D ) we denote by ι(c, c ) the (integer) intersection number of c and c . This defines a bilinear form ι : C 1 (D) × C 1 (D ) → Z which induces the usual intersection form on H 1 (S). In that way C 1 (D ) is canonically isomorphic to the dual of C 1 (D).

D:

D :

Figure 10. The two cell decompositions of the link 7.2. Goldman-Weil-Petersson form for tori. Here we equip

C 1 (D, R 2 ) = C 1 (D) ⊗ R 2
with the bilinear form ω defined by coupling the intersection form ι with the scalar product on R 2 seen as the space of roots of sl(3) with its Killing form. We describe more precisely an integral version of this.

From now on we identify R 2 with the subspace

V = {(x 1 , x 2 , x 3 ) t ∈ R 3 : x 1 + x 2 + x 3 = 0} via 1 0 →   -1 0 1   and 0 1 →   0 -1 1   .
We let L ⊂ V be the standard lattice in V where all three coordinates are in Z. We identify it with Z 2 using the above basis of V . The restriction of the usual euclidean product of R 3 gives a product, denoted [, ], on V (the "Killing form") 10 . In other words, we have:

1 0 , 1 0 = 0 1 , 0 1 = 2 and 0 1 , 1 0 = 1.
Identifying V with V * using the scalar product [, ], the dual lattice

L * ⊂ V * becomes a lattice L in V ; an element y ∈ V belongs to L if and only if [x, y] ∈ Z for every x ∈ L. We let C 1 (D, L) and define ω = ι ⊗ [•, •] : C 1 (D, L) × C 1 (D , L ) → Z by the formula ω (c ⊗ l, c ⊗ l ) = ι(c, c ) [l, l ] .
This induces a (symplectic) bilinear form on H 1 (S, R 2 ) which we still denote by ω. Note that ω identifies C 1 (D , L ) with the dual of C 1 (D, L).

Remark. The canonical coupling

C 1 (D, L) × C 1 (D, L * ) → Z identifies C 1 (D, L) * with C 1 (D, L * )
. This last space is naturally equipped with the "Goldman-Weil-Petersson" form wp, dual to ω. Let , be the natural scalar product on V * dual to [, ]:

letting d : V → V * be the map defined by d(v) = [v, •] we have d(v), d(v ) = [v, v ]. In coordinates d : R 2 → R 2 is given by d x y = 2x + y 2y + x .
Idenfying V * with R 2 using the dual basis we have:

1 0 , 1 0 = 0 1 , 0 1 = 2 3 and 0 1 , 1 0 = - 1 3 . 
On H 1 (S, R 2 ) the bilinear form wp induces a symplectic form -the usual Goldman-Weil-Petersson symplectic form -formally defined as the coupling of the cup-product and the scalar product , .

7.3. To any decoration z ∈ k × ⊗ (J * ∩ Ker(F * )) 1 2 we now explain how to associate an element

R(z) ∈ Hom(H 1 (S, L), k × ) 1 2 .
We may represent any class in H 1 (S, L) by an element c ⊗ n m in C 1 (D, L) where c is a closed path in S seen as the link of the corresponding vertex in the complex K. Using the decoration z we may compute the holonomy of the loop c, as explained in §5.7. This vertex being equipped with a flag stabilized by this holonomy, we may write it as an upper triangular matrix. Let

( 1 C * , 1, C) be the diagonal part. The application which maps c ⊗ n m to C n+m (C * ) n is the announced element R(z) of k × ⊗ H 1 (S, L * ) 1 2 .
7.4. Linearization for a torus. In the preceeding paragraph we have constructed a map

R : k × ⊗ J * ∩ Ker(F * ) 1 2 → Hom(H 1 (S, L), k × ) 1 2 .
As we have done before for consistency relations we now linearize this map.

Let In the following we let J ∂M = C 1 (∂M, L) and C 1 (∂M , L ) be the orthogonal sum of the C 1 (D, L)'s and C 1 (D , L )'s for each torus link S. We abusively denote by h : J ∂M → J 2 and g : J 2 → C 1 (∂M , L ) the maps defined above on each T . 7.6. Homology of the complexes. First consider the composition of maps:

C or 1 + C 2 F → J 2 p → (J 2 ) * F * → C or 1 + C 2 . By inspection one may check that F * • p • F = 0.
Here is a geometric way to figure this after tensorization by k × ⊗ Z 1 2 : first note that if z = p * (a) then a can be thought as a set of affine coordinates lifting of z. Now a belongs to the image of F exactly when these a-coordinates agree on elements of J 2 corresponding to common oriented edges (resp. common faces) of K. In such a case the decoration of K has a unipotent decoration lifting z. Finally the map F * computes the last eigenvalue of the holonomy matrix of paths going through and back a face (face relations) and of paths going around edges (edges relations). In case of a unipotent decoration these eigenvalues are trivial. This shows that

F * • p • F = 0.
In particular, letting G : J → C or 1 + C 2 be the map induced by F * • p and F : C or 1 + C 2 → J be the map F followed by the canonical projection from J 2 to J, we get a complex: (7.6.1)

C or 1 + C 2 F → J G → C or 1 + C 2 .
Similarly, letting G * = p • F and (F ) * be the restriction of F * to Im(p) = J * we get the dual complex: (7.6.2)

C or 1 + C 2 G * → J * (F ) * → C or 1 + C 2 .
We define the homology groups of these two complexes:

H(J) = Ker(G)/Im(F ) = Ker(F * • p)/(Im(F ) + Ker(p))
and

H(J * ) = Ker((F ) * )/Im(G * ) = (Ker(F * ) ∩ Im(p))/Im(p • F ).
We note that:

Ker(F ) = Im(G) ⊥ Ω and Ker(G * ) = Im((F ) * ) ⊥ Ω * .
The symplectic forms Ω and Ω * thus induce skew-symmetric bilinear forms on H(J) and H(J * ). These spaces are obviously dual spaces and the bilinear forms match through duality.

A decoration of K provides us with an element z ∈ k × ⊗Ker((F ) * ) 1 2 . We already have dealt with the subspace k × ⊗ Im(p • F ) 1 2 which corresponds to the unipotent decorations: in that case δ(β(K)) = 0. We thus conclude that δ(β(K)) only depends on the image of z in k × ⊗ Z H(J * ) 1 2 . We will describe this last space in terms of the homology of ∂M .

Let Z 1 (D, L) and B 1 (D, L) be the subspaces of cycles and boundaries in C 1 (D, L). The following lemma is easily checked by inspection. In particular h induces a map h : H 1 (D, L) → H(J) in homology. By duality, the map g induces a map ḡ : H(J) → H 1 (∂M, D , L ) as follows from: 7.8. Lemma. We have: Proof. First of all, Z 1 (D , L ) is the orthogonal of B 1 (D, L) for the coupling ω. Moreover, by definition of g, if e ∈ Ker(F * • p), we have:

g(Ker(F * • p)) ⊂ Z 1 (D , L ),
g(e) ∈ Z 1 (D , L ) ⇔ ω(B 1 (D, L), g(e)) = 0 ⇔ Ω 2 (h(B 1 (D, L)), e) = 0.
The last condition is given by the previous lemma. The second point is similar.

Note that H 1 (D, L) and H 1 (D , L ) are canonically isomorphic so that we identified them (to H 1 (∂M, L)) in the following. 7.9. Theorem.

(1) The map ḡ • h : H 1 (∂M, L) → H 1 (∂M, L) is multiplication by 4.

(2) Given e ∈ H(J) and c ∈ H 1 (∂M, L), we have ω(c, ḡ(e)) = Ω(e, h(c)).

As a corollary, one understands the homology of the various complexes.

7.10. Corollary. The map h induces an isomorphism from H 1 (∂M, L) 1 2 to H(J) 1 2 . Moreover we have h * Ω = -4ω. 7.11. Corollary. The form Ω * on k × ⊗J * ∩Ker(F * ) 1 2 is the pullback of wp on H 1 (∂M, L * ) by the map R.

Theorem 5.14 will follow from corollary 7.11 and lemma 4.10 (see section 8.3 for an explicit computation). Corollary 7.11 is indeed the analog of proposition 6.6 in the closed case. We postpone the proof of theorem 7.9 until the next section and, in the remaining part of this section, deduce corollaries 7.10 and 7.11 from it. 7.12. Proof of corollary 7.11. We first compute the dimension of the spaces H(J) and H(J * ). Recall that l is the number of vertices in K. The map F is injective and therefore F * is surjective. We conclude

that dim Im(F ) = dim Im(F * ) = dim C or 1 + dim C 2 . But dim J 2 = 16N , dim Ker(p) = 8N , dim C 2 = 2N
and, since the Euler caracteristic of M is 0, dim C or 1 = 2N . We are therefore reduced to prove that dim(Ker(p) ∩ Im(F )) = 2l. Restricted to a single tetrahedron T µ , the kernel of p is generated by the elements v µ i = e µ ij + e µ ik + e µ il and w µ i = e µ ji + e µ ki + e µ li + e µ ijk + e µ ilj + e µ ikl in J 2 (T µ ) for i a vertex of T µ (see section 4.4).

In Im(F ), all the coordinates of e µ ij that projects on the same edge ēij must be equal, as does the two coordinates of e µ ijk and e µ ikj projecting on the same face. Hence, Im(F ) ∩ Ker(p) is generated by the vectors F (v i ) and F (w i ) where One verifies easily that these vectors are free, proving the lemma.

Since it follows from theorem 7.9 (1) that h has an inverse after tensorization by Z 1 2 we conclude from lemma 7.13 that H(J) and H 1 (∂M, L) 1 2 are isomorphic. Now 7.9 (2) implies that h and ḡ are adjoint maps w.r.t. the forms ω on H 1 (∂M, L) 1 2 and Ω on H(J) 1 2 . The corollary follows. The second corollary is merely a dual statement: recall from 7.4 that the map R 2 is induced by the map h * : J * → C 1 (D, L * ) dual to h. Now the map c → ω(•, c ) induces a symplectic isomorphism between (H 1 (∂M, L ), ω) and (H 1 (∂M, L * ), wp). It therefore follows from corollary 7.10 that the symplectic form Ω * on H(J * ) is four times the pullback of wp by the map H(J * ) → H 1 (∂M, L * ) induced by h * . Remembering that h * induces the square of R the statement of corollary 7.11 follows.

Homologies and symplectic forms

In this section we first prove theorem 7.9 (in the closed case). We then explain how to deduce theorem 5.14 from it and its corollary 7.11.

8.1. Proof of theorem 7.9. We first compute g • h : C 1 (D, L) → C 1 (D , L ) using (7.5.4). We work in a fix tetraedron and therefore forget about the µ's. We denote by c ij the edge of D corresponding to a (left) turn around the edge e ij and we denote by c ij its dual edge in D , see figure 10. The following computations are straightforward:

Ω h c ij ⊗ n m , h c ik ⊗ n m = 2 n m , n m , Ω h c ij ⊗ n m , h c jk ⊗ n m = -2 n -2m/3 m/3 , n m , Ω h c ij ⊗ n m , h c ji ⊗ n m = 0, Ω h c ij ⊗ n m , h c ki ⊗ n m = 2 n -2m/3 m/3 , n m ,
and so on... Since it follows from (7.5.4) that

ω c ⊗ n m , g • h c ij ⊗ n m = Ω h c ij ⊗ n m , h c ⊗ n m we conclude that the element g • h c ij ⊗ n m in C 1 (D , L) is: g • h c ij ⊗ n m = 2(c ik -c il )⊗ n m +2(c ki -c kj +c jl -c jk +c lj -c li )⊗ n -2m/3 m/3 .
Consider now a cycle c = c µ ij . We compute:

g • h c ⊗ n m = 2 c ik -c il ⊗ n m + 2 c ki -c kj + c jl -c jk + c lj -c li ⊗ n -2m/3 m/3
Interestingly, we are now reduced to a problem in the homology of ∂M and the lattice L does not play any role here. Indeed, the first assertion in theorem 7.9 follows from the following lemma. The second assertion of theorem 7.9 then follows from (7.5.4).

8.2. Lemma.

• The path c ik -c il is homologous to 2c in H 1 (∂M ), • The path c ki -c kj + c jl -c jk + c lj -c li vanishes in H 1 (∂M ).
This lemma is already proven by Neumann [START_REF] Walter | Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds[END_REF]Lemma 4.3]. The proof is a careful inspection using figures 12 and 13. The first point is quite easy: the path c ik -c il is the boundary of a regular neighborhood of c. The second part is the "far from the cusp" contribution in Neumann's paper. We draw on figure 13 8.3. Proof of theorem 5.14 in the closed case. The theorem 5.14 is now a corollary. Indeed, we have from lemma 4.10 and corollary 7.11, if z ∈ H(J * ): 

3δ(β(z)) = 3 2 z ∧ Ω * z = 3 2 R(z) ∧ wp R(z).
R(z) = [a s ] ⊗ A s A * s A s + [b s ] ⊗ B s B * s B s .
Figure 13. What happens far from the cusp Recall from §7.2 that the form wp is the coupling of the cup product and the scalar product ; on Z 2 . Hence we conclude by:

3δ(β(z)) = s 3 A s A * s , A s , B s B * s , B s = s 2(A s A * s ) ∧ (B s B * s ) + 2A s ∧ B s -(A s A * s ) ∧ B s -A s ∧ (B s B * s ) = s 2A s ∧ B s + 2A * s ∧ B * s + A * s ∧ B s + A s ∧ B * s .

Extension to the general case

We consider now the case of a complex K with boundary and explain how the preceeding proof of theorem 5.14 shall be adapted to deal with it. Recall that the boundary of K -K (0) decomposes as the union of a triangulated surface Σ and the links. The latter are further decomposed as tori links S s and annuli links L r . We proceed as in the closed case and indicate the modifications to be done. For simplicity we suppose that k = C. 9.1. We denote by C or 1 + C 2 the Z-module generated by internal (oriented) edges and faces. A parabolic decoration of K gives a parabolic decoration of Σ, i.e. an element z Σ ∈ k × ⊗ Z (J 2 Σ ) * 1 2 , whose interpretation is that one may glue the decorated surface Σ to the decorated complex fulfilling the consistency relations. More precisely, if e α is a basis vector of J 2 Σ , one defines the e * α component of z Σ by:

z Σ α ν z ν α = 1,
where the product is over all the e ν α identified with e α . As usual we will rather consider the corresponding linear map:

h Σ : J 2 Σ → J 2 ; e α → - ν e ν α
as well as the dual map h * Σ : (J 2 ) * → (J 2 Σ ) * . Note that if e ν α in J 2 corresponds to an internal edge or face then h * ((e ν α ) * ) = 0 whereas if it correspond to a boundary element e α ∈ J 2 Σ we have: h * ((e ν α ) * ) = -e * α . In particular one easily check that the following diagram is commutative: (9.1.1)

J 2 p ---→ (J 2 ) * h     h * J 2 Σ p Σ ---→ (J 2 Σ ) * Recall that J Σ = J 2 Σ /Ker(p Σ ).
The cell decomposition D is now defined for every cusp, each of which being either a torus or an annulus. In the latter case we may consider cycles relative to the boundary. We denote by Z rel 1 (D, L), resp. Z rel 1 (D , L ), the subspace of relative cycles in C 1 (D, L), resp. C 1 (D , L ). It is the orthogonal of B 1 (D , L ), resp. B 1 (D, L), w.r.t. to the form ω defined as above, see §7.2. 9.2. We now set

J 2 ∂M = J 2 Σ ⊕ C 1 (D, L), (J 2 ∂M ) = J 2 Σ ⊕ C 1 (D , L ) and let Ω 2 ∂M : J 2 ∂M × (J 2 
∂M ) → Z be the bilinear coupling obtained as the orthogonal sum of Ω 2 Σ and ω. As above it corresponds to these data the map p ∂M : J 2 ∂M → ((J 2 ∂M ) ) * , p ∂M (c) = Ω 2 ∂M (c, •), as well as the spaces J ∂M = J 2 ∂M /Ker(p ∂M ) = J Σ ⊕ C 1 (D, L) and (J ∂M ) * = Im(p ∂M ) = J * Σ ⊕ C 1 (D , L ). The bilinear coupling induces a canonical perfect coupling Ω ∂M : J ∂M × J ∂M → Z which identifies J * ∂M with J ∂M . 9.3. As in the closed case (see §7.4) the linearization of the holonomy yields an extension of h Σ to a map h : J 2 ∂M → J 2 . We then have the following diagram:

C or 1 + C 2 F ---→ J 2 p ---→ (J 2 ) * F * ---→ C or 1 + C 2 h   h *   J 2 ∂M (J 2 
∂M ) * Now it follows from (9.1.1) that the image of h * • p is contained in J * ∂M . Identifying it with J ∂M using Ω ∂M we get a map g : J 2 → J ∂M . As in the closed case, for any c ∈ J 2

∂M and e ∈ J 2 , we have:11 (9.3.1)

Ω ∂M (c, g(e)) = Ω 2 (e, h(c)).

We moreover have the following inclusions:

• h(J Proof. Denote by ∂M \ Σ the union of the links (tori and annuli). The quotient J Σ of J 2 Σ naturally identifies with the quotient of Im(F )+h(J 2 Σ ) by Im(F ) + Ker(p). Note that the former identifies with the image of the Z-module generated by all (oriented) edges and faces of K into J 2 . We then have two short exact sequences

0 → J Σ → H ∂M → H rel 1 (∂M \ Σ, L) → 0 and 0 → H 1 (∂M \ Σ, L ) → H ∂M → J Σ → 0.
These are in duality w.r.t. Ω ∂M . Moreover this duality yields Ω Σ on the product J Σ × J Σ and the intersection form, coupled with [, ], on H rel 1 (∂M \ Σ, L) × H 1 (∂M \ Σ, L). Since both are non-degenerate this proves the lemma.

It now follows from (9.3.1) that Ω ∂M (•, g •h(•)) = Ω 2 (h(•), h(•)). And computations similar to §8.1 show that the right-hand side has a trivial kernel on H ∂M . The coupling Ω∂M being non-degenerate we conclude that h is injective. As in the closed case, we may furthermore compute the dimension of H(J). Let ν t be the number of tori and ν a be the number of annuli. Then, computing the Euler characteristic of the double of K along Σ, the proof of lemma 7.13 yields the following: 9.5. Lemma. The dimension of H(J) is 4ν t + 2ν a + dim(J Σ ). This is easily seen to be the same as both the dimensions of H ∂M and H ∂M , see the proof of lemma 9.4. Over C the maps h and ḡ are therefore invertible and we conclude that the form Ω on J induces a form Ω on H(J) such that Ω∂M (c, ḡ(e)) = Ω(e, h(c)).

In particular Ω is determined by Ω ∂M and the invariant δ(β(K)) only depends on the boundary coordinates. This concludes the proof of theorem 5.14.

Examples

In this section we describe the complement of the figure eight knot obtained by gluing two tetrahedra. Let z ij and w ij be the coordinates associated to the edge ij of each of them. is a solution the equations as obtained in [START_REF] Thurston | The geometry and topology of 3-manifolds[END_REF].

The spherical CR structures with unipotent boundary holonomy were obtained in [START_REF] Falbel | A spherical CR structure on the complement of the figure eight knot with discrete holonomy[END_REF] as the following solutions (up to conjugation): The first solution above corresponds to a discrete representation of the fundamental group of the complement of the figure eight knot in PU(2, 1) with faithful boundary holonomy. Moreover, its action on complex hyperbolic space has limit set the full boundary sphere. The other solutions have cyclic boundary holonomy.

We will call these solutions standard structures on the complement of the figure eight knot. Recently, P.-V. Koseleff proved that they are the only solutions to the equations: 11. Applications 11.1. Volumes of decorated tetrahedra complex. A decorated closed tetrahedra complex K provides us with an element z ∈ C × ⊗ Z J * 1 2 which satisfies the face and edge conditions as well as the nonlinear equations

z ik (T ν ) = 1 1 -z ij (T ν )
.

Let X = C × ⊗ Z J * 1 2 ; this is a complex variety.
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 4 9.1) a ∧ Ω 2 a = z ∧ Ω * z which explains the coincidence of lemma 4.3 and lemma 4.8. 4.10. Lemma. If φ : V → W is a homomorphism of Z-modules equipped with bilinear forms B and b such that φ * (b) = B then the induced map
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 6 Figure 6. The retraction of a quasi-simplicial 3manifold onto a compact 3-manifold with boundary
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 8 Figure 8. Two elementary steps for computing holonomy
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  h : C 1 (D, L) → J 2 be the linear map defined on the elements e ⊗ n m of C 1 (D, L) by h e ⊗ n m = 2(m + n)e µ ij + 2ne µ ji + n(e µ ijk + e µ ilj ).

7. 7 .

 7 Lemma. We have:h(Z 1 (D, L)) ⊂ Ker(F * • p) and h(B 1 (D, L)) ⊂ Ker(p) + Im(F ).

  and g(Ker(p) + Im(F )) ⊂ B 1 (D , L ).
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 13 Lemma. The dimension of H(J) and H(J * ) is 4lProof. By the rank formula we havedim J 2 = dim Ker(F * • p) + dim Im(F * • p)and by definition we havedim Ker(F * • p) = dim(Ker(p) + Im(F )) + dim H(J).We obviously have:dim(Ker(p)+Im(F )) = dim Ker(p)+dim Im(F )-dim(Ker(p)∩Im(F )), dim Im(F * • p) = dim Im(p) -dim(Im(p) ∩ Ker(F * )), and dim(Im(p) ∩ Ker(F * )) = dim(J 2 ) * -dim(Im(F ) + Ker(p)).

  v i = ēij oriented edge from i ēij and w i = ēji oriented edge toward i ēji + ēijk a face containing si ēijk .
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  four tetrahedra sharing an edge (the edges are displayed in dotted lines). The blue path is the path c in the upper link. The collection of green paths are the relative c ki -c kj + c jl -c jk + c lj -c li in the other links. It consists in a collection of boundaries.

Figure 12 .

 12 Figure 12. What happens inside the cusp: c in blue and g • h(c) in green.

  It remains to compute the last quantity. Recall from the previous section the definition of R(z): if a loop c represents a class in homology, let ( 1 C * , 1, C) be the diagonal part of its holonomy. Then R(z) applied to c ⊗ n m equals C n+m (C * ) n . In other terms, denoting [a s ] and [b s ] the classes dual to a s and b s , we have (see §7.2):
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 144213441 Figure 14. The link at the boundary for the figure eight knot

√ 3 2 then z 12 =

 212 z 21 = z 34 = z 43 = w 12 = w 21 = w 34 = w 43 = ω

z 12 =

 12 z21 = z 34 = z43 = w 12 = w21 = w 34 = w43 = ω, z 12 = 5
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 1 Proposition. The only unipotent flag SL(3, C)-structures on the complement of the figure eight knot are the standard structures.

  2 Σ ⊕ Z rel 1 (D, L)) ⊂ Ker(F * • p), • h(J 2 Σ ⊕ B 1 (D, L)) ⊂ Im(F ) + Ker(p). Denoting H ∂M = (J 2

Σ ⊕ Z rel 1 (D, L))/h -1 (Im(F ) + Ker(p)) and H ∂M = (J Σ ⊕ Z rel 1 (D , L ))/

g(Im(F ) + Ker(p)), we conclude that the maps h and g induce maps h : H ∂M → H(J) and ḡ : H(J) → H ∂M . It furthermore follows from (9.3.1) that Ω ∂M induces a bilinear coupling Ω∂M : H ∂M × H ∂M → Z. 9.4. Lemma. The bilinear coupling Ω∂M is non-degenerate.

This assumption may be removed by averaging β over all orderings of the vertices. In any case if c is a chain in

C 3 (Fl(k)) representing a cycle in C 3 (Fl(k)) we can represent c by a closed 3-cycle K together with a numbering of the vertices of each tetrahedron of K (see section 5.5).

Observe in particular that Ω 2 (e ji , e ijk ) = 1 and so on, the logic being that the vector e ijk is the outgoing vector on the face ijk and the vector e ji (oriented from i to j) turns around it in the positive sense.

Alternatively we may think of T as a geometric realization of a mutation between two triangulations of the quadrilateral (1324) and apply[START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] Corollary 6.15].

Note that z moreover satisfies the non-linear equationsz ik (T ν ) = 1 1 -z ij (T ν ).

Recall that our complex may have boundary.

The orientation being induced by that of K.

Note that in the case of K = T the boundary of T is a sphere with 4 punctures and the definition of W (T ) in section 4 matches this one.

Note in particular that W (Σ) only depends on the flag z-coordinates, see also[START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF] Lem. 6.6]. Moreover, in case K = T , we recover lemma 4.3.

In terms of roots of sl(3), the choosen basis is, in usual notations, e 3 -e 1 , e 3 -e 2 .

Here we abusively use the same notation for c and its image in J ∂M .

Here we see the edge e as turning left around the edge (ij) in the tetrahedron T µ = (ijkl), see figure 11. . Seeing z as an element of Hom(J 2 , k × ) 1 2 , we have:

Proof. Let c be an element in H 1 (S). Recall that the torus is triangulated by the trace of the tetrahedra. To each triangle corresponds a tetrahedron T µ and a vertex i of this tetrahedron. Now each vertex of the triangle corresponds to an edge ij of the tetrahedron T µ oriented from the vertex j to i. Hence each edge of D may be canonically denoted by c µ ij : it is the edge in the link of i which turns left around the edge ij of the tetrahedron T µ . We represent c as a cycle c = ±c µ ij . The cycle c turns left around some edges, denoted by e µ ij , and right around other edges, denoted by e µ ij . In other terms, we have c = µ c µ ijµ c µ ij . Then, using the matrices L µ ij (5.10.1) and R µ ij (5.10.2), we see that the diagonal part of the holonomy of c is given by: (7.5.1)

Let us simplify a bit the formula for C * . Recall the face relation: if T and T share the same face ijk, we have z ijk (T )z ikj (T ) = 1. Hence if our path c was turning right before a face F and continues after crossing F , the corresponding face coordinate simplifies in the product z µ ijk z µ ilj . Let F be the set of faces (with multiplicity) at which α changes direction. For F in F, let T be the tetrahedron containing F in which α turns right. We consider F oriented as a face of T and denote z F its 3-ratio. We then have (7.5.2)

, as turning right is the opposite to turning left. It proves (with equation 7.5.1) that

We have to do a bit more rewriting to check it for c ⊗ 1 0 . Indeed, we have:

so that:

For the same reason as before the "internal faces" simplify in the product z µ ijk z µ ilj . Moreover, for F ∈ F, it appears with the opposite orientation: indeed the orientation given to F is the one given by the tetrahedron in which α turns left. Hence the coordinate that shows up is 1 z F . So the last formula rewrites:

which proves the lemma.

Let h * : (J 2 ) * → C 1 (D, L) * be the map dual to h. Note that for any e ∈ J 2 and c ∈ J T we have and it follows from (7.5.3) that for any e ∈ J 2 and c ∈ J T we have (7.5.4) ω(c, g(e)) = Ω 2 (e, h(c)).

Following §3.6 we define the volume of K as:

(11.1.1)

This defines a real analytic function on X:

Let F(X) × be the group of invertible real analytic functions on X and Ω 1 (X) the space of real analytic 1-form on X. The holonomy elements A s , A * s and B s , B * s of theorem 5.14 define elements in F(X) × . Now there is a map Im(d log ∧ Z log) : F(X) × ∧ Z F(X) × → Ω 1 (X) defined by:

Following Neumann-Zagier [START_REF] Walter | Volumes of hyperbolic three-manifolds[END_REF] we want to compute the variation of Vol(K) as we vary z ∈ X. Equivalently we compute dVol ∈ Ω 1 (X) in the following: 11.2. Proposition. We have:

Proof. The derivatives of D(z) are elementary functions: (11.2.1)

Assume that the parameter z ∈ C * is varying in dependence on a single variable t. Then:

In otherwords: dD = Im(d log ∧ Z log)(z ∧ Z (1 -z)). And proposition 11.2 follows from theorem 5.14 and (11.1.1).

Remark. Proposition 11.2 implies in particular that the variation of the volume only depends on the contribution of the boundary. Specializing to the hyperbolic case we recover the result of Neumann-Zagier [START_REF] Walter | Volumes of hyperbolic three-manifolds[END_REF], see also Bonahon [3,Theorem 3]. 

; it is a complex manifold. As above we may consider the field F(X Σ ) × ; we let Ω 2 hol (X Σ ) denote the space of holomorphic 2-forms on X Σ . The element z Σ defines an element in F(X Σ ) × . We still denote the projection of z

there is a group homomorphism:

In the hyperbolic case and when the decoration is unipotent, Fock and Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] prove that

) is the Weil-Petersson form. Although expected, the analogous statement in the SL(3)-case seems to be open. In any case theorem 5.14 implies that this form vanishes, equivalently the "Weil-Petersson forms" corresponding to the different components of Σ add up to zero.