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Figure 1. Visualization of traffic in a city with two “DragMagics” (white rectangles) showing one (left) and two (right) simulations associated with
different possible interventions on the traffic. The simulation visualizations use difference color maps to highlight differences with the real traffic.

ABSTRACT

Road traffic control centers are of vital importance to modern
cities. Interviews with controllers in two such centers identi-
fied the need to incorporate the visualization of results from
predictive traffic models with real traffic, to help operators
choose among different interventions on the network. We ex-
plore this idea in a prototype that runs on a wall display, and
supports direct touch and input from workstations and mobile
devices. Apart from basic functionality to manage the current
traffic such as changing traffic light duration or speed limits,
the prototype incorporates traffic simulations for forecasting
results of possible actions, highlighting their differences to
current traffic. Based on needs identified in our interviews,
we offer two techniques that visually combine simulated and
real situations, taking advantage of the large display space:
multiple independent views and DragMagic, a variation of
magic lenses. A preliminary laboratory experiment suggests
that both techniques are viable design options, even for mon-
itoring several simulations and areas of interest, contrary to
expectations from previous work. However DragMagics are
easier to master. An informal feedback session with our ex-
perts showed promising early feedback.
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INTRODUCTION

Traffic congestion in major cities and highways is a growing
problem in most countries. Perturbations such as accidents
and breakdowns, or exceptional events such as demonstra-
tions, can overload a road network that may already be oper-
ating at its limit, e.g. during rush hour. To prevent and to react
efficiently to incidents and perturbations, road traffic in cities
and highways is monitored in dedicated control centers.

Even for experienced operators, it is often challenging to eval-
uate the impact of an intervention on the network. While they
are equipped with predefined traffic plans (sets of compatible
interventions on a sector or area), it is still sometimes unclear
which plan will work best for the current state of the network,
in particular during exceptional events. This is where simu-
lation models of road-traffic can help operators better under-
stand and chose among possible intervention alternatives.

Road-traffic is a complex system with multiple agents (cars)
that can behave in a non-deterministic manner. Researchers
approximate road-traffic using methods from physics [16] or
statistics and machine learning [43]. Their simulations can
perform short-term traffic forecasting, identify problematic
sectors with high-risk of traffic-congestion, and test new con-
cepts to improve road-traffic such as dynamic adjustment of
speed limits. Nevertheless, there is little work that looks at
incorporating these results visually in traffic control centers.

Following interviews and observations of road-traffic control
centers, we extracted user needs and designed a prototype
system for road-traffic monitoring that runs on a touch en-
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abled ultra high-resolution wall display1. Taking advantage
of their high resolution and large real-estate, our prototype
extends the visualizations currently used in road-traffic con-
trol centers, to allow operators to concurrently explore and
visualize results from multiple simulations testing alternative
interventions on the network, both in a local and global scale.

We propose two techniques for viewing multiple simulations
in combination with real traffic: (i) multiple views [21, 41, 45]
to show the global state of the network; and (ii) DragMagic,
a combination of DragMags [46] and magic lenses [8], to vi-
sualize localized sectors (Figure 1). We adapt and combine
these techniques to visualize and compare several forecast vi-
sualizations using wall displays in control centers.

To better understand the performance of these techniques in
our context, we compared them in a lab experiment. Partici-
pants performed well in comparison tasks of up to 6 different
simulations, contrary to previous findings [30] that predicted
decreased performance with the increase of comparisons. Our
results also suggest that DragMagic is easier to master and
may be beneficial when the number of simulations to com-
pare is high, but that both techniques are viable alternatives.
Early feedback on our prototype from experts also indicates
a preference for DragMagic.

Our contributions are: (i) The user-centered design motivat-
ing a wall display prototype, building on interviews and ob-
servations of expert users, and the needs derived from them.
(ii) Combining interaction and visualization techniques to
present multiple simulated and real situations in the context
of traffic management, something not seen in previous work.
(iii) The first controlled study to evaluate these visualization
techniques using an adapted situation-awareness task.

BACKGROUND

We discuss wall displays and Multi-Display Environments
(MDE) for control rooms, and road traffic visualization.

Wall Displays & MDE for Control Rooms

Control rooms are used to monitor complex systems like tele-
scopes [28], power plants [26] or transportation networks
[39]. They are usually equipped with a large display show-
ing an overview of the situation and general information for
all operators, and with individual workstations where opera-
tors act on the system (Figure 2).

Designers of such systems have recognized early on the im-
portance of human factors and interaction in their work,
and in particular the benefit of visualization walls and other
shared displays. For instance, Smith et al. [38] study the con-
trol room of the London subway and highlight that a shared
visualization can improve group awareness and communica-
tion in the team. And later, Starke et al. [39] studied how op-
erators gathered and integrated information across displays in
a simulated ”object in the road” scenario.

Shared displays in control rooms are often treated as large
monitors, and interaction is done using mice and keyboards.

1 an earlier version of the prototype alone has been presented in
French as a Work in Progress (poster presentation) [31].

More recent work has focused on direct interaction with
tabletops in crisis management [32, 13]. Others have com-
bined tabletops and tangible tools in power plant control cen-
ters [26], and tabletops and paper in air-traffic control [17].
Finally, recent work combined tabletops with shared vertical
screens present in most control centers. For example, Bader
et al. [5] combine a digital table map, a vertical screen with
additional information, and a tablet to overlay personal infor-
mation on the map. And Chokshi et al. [11] use tabletops to
perform actions collaboratively on a central wall display.

In the above work, operators interact with the wall display
indirectly, through mice/keyboards or tabletops. In few ap-
proaches, such as ours, interaction takes place directly on the
wall displays. For example, in a scenario of police officers
monitoring cars on a wall display, Ion et al. [19] use Drag-
Mags to focus on an area, with cut-offs of interesting items
outside it connected with a folded strip. Our approach differs
from previous work in control rooms. Beyond directly inter-
acting with the wall display [19], we further propose using the
wall display as a central interactive surface where operators
can solve problems, not just monitor situations.

Irrespective of interaction platform, this previous work often
relies on general purpose interaction and visualization tech-
niques related to focusing and monitoring one or more areas
of interest, such as space folding [14], magic lenses [8], Drag-
Mags [46] and multi-focus techniques [22, 25]. This is due
to the need in such contexts to monitor several specific areas
in detail, while still having an overview of the situation. For
example Ion et al. [19] use DragMags with attached cut-offs;
Schwarz et al. [37] use local semantic magnification with a
Manhattan lens or a deported view on the wall, and multiple
space-folds to visualize multiple areas with context-sensitive
information at higher resolution [9, 37].

Our work poses visualization challenges that go beyond those
seen in previous work, as it not only needs to allow operators
to monitor multiple areas of interest simultaneously, but it
also combines real data with simulation and forecasting visu-
alizations. Thus the progress and results of one or even more
simulations need to be viewed and understood concurrently
with the actual road traffic data on multiple areas of interest.

Road Traffic Visualization

Trajectory visualization [2] focuses often on vessel traffic,
marine [23, 34, 36] and air [18, 35], and on an a-posteriori
analysis of movement patterns over long time periods, using
sophisticated interaction and visualization mechanisms such
as aggregating paths, brushing and linking views, advanced
statistics on selections, etc.

Similarly, most work on road traffic focuses on a-posteriori
analysis and visualization of traffic patterns. For example,
Andrienko et al. [1] extract and visualize meaningful places
within movement data, and cluster spatio-temporal events or
trajectories. Tominski et al. [40] visualize trajectories at dif-
ferent points in time, by stacking them on the 3rd dimension.

For real time traffic data visualizations, Wang et al. [44] visu-
alize macro-traffic data recorded by transportation cells, us-
ing a combination of aggregated trajectories and of individ-



Figure 2. PC Lutèce and PC Berlier traffic control centers in Paris.

ual views for each cell showing vehicle animations. Never-
theless, the majority of modern traffic control centers, and
studies conducted around them (see previous section), visual-
ize real traffic data by coloring road segments based on traf-
fic density or average vehicle speed, similarly to tools like
Google Maps, Bing Maps, etc. As we saw, this visualization
is often coupled with techniques that aid monitoring of dif-
ferent locations on wall displays, most notably variations of
Magic lenses [8] and DragMags [30, 46].

We also use visualization lenses, but for a different purpose.
As our goal is to augment real time traffic with results of sim-
ulations, lenses are used to provide side-by-side comparisons
between the current situation and simulations in an area of
interest. As an alternative to lenses, we also provide multiple
juxtaposed views of the entire network [21, 41, 45], with real
or simulated data. Another approach taken by Andrienko et
al. [3] superimposed on a map the simulated results of road
traffic bands in a time cube. Nevertheless, they focused on
the simulation visualization and did not combine this visual-
ization with real-time traffic. More recently, they presented
a complete framework [4] to analyze road traffic, and model
how additional cars will influence the network. To compare
the impact of different possible interventions, they visualize
results using difference maps, time cubes and statistics. Our
work is orthogonal, as we focus on the user-centered design
of a system to be incorporated in the shared wall of a control
center, using visualizations to monitor multiple simulations
and points of interest at a given time.

OBSERVATIONS AND INTERVIEWS

To understand the tasks, tools and needs of traffic operators,
we visited two control centers: PC Lutèce that handles traffic
for the city of Paris (Figure 2 left), and PC Berlier (Figure 2
right) that monitors the Périphérique, a motorway surround-
ing Paris. We observed two operators in PC Lutèce and in-
terviewed one in depth (1h) as well as an operations engineer
(1h); and we observed another two operators in PC Berlier
and interviewed one (1/2h) and the operator supervisor (1h).

General Observations. Both control centers are furnished
with a large shared visualization wall showing the mon-
itored network, surrounded by smaller screens with live
camera feeds from the streets in PC Lutèce, and from the
Périphérique and its tunnels in PC Berlier. Road segments are
colored depending on traffic congestion from green (no con-
gestion), to yellow, orange, and red (high congestion). Gray is
used to indicate segments with faulty loop detectors. Arrows
are used to highlight areas in which an intervention was done,
either by the system (green arrow) or by an operator (yellow
arrow if the system agrees with the intervention and red if
it disagrees). Individual operator workstations are located in

front of the wall, also displaying the network visualization
(see Figure 2), alerts and other statistical information.

Due to the small scale and resolution of their monitors (w.r.t.
the scale of the monitored network), operators tend to focus
on localized areas of the network in their workstations, using
mouse and keyboard to navigate. While they look at their in-
dividual workstations more, they all use the wall as an aware-
ness monitor to acquire the “big picture” of the network state.

PC Lutèce. An automated system (SURF3) manages the
traffic lights for approximately 1500 Parisian intersections,
with more than 800.000 cars and 2.5 million pedestrian move-
ments daily. It includes a library of ”Traffic Light Plans” (a
collection of consistent traffic light durations), and automati-
cally choses the most appropriate plan, depending on the cur-
rent traffic situation, the day of the week and the time of day.
Under normal conditions (outside special events) the priority
is public transport and pedestrian flow.

Operators can switch plans for specific sectors, or change
traffic light duration of individual intersections for specific
events or when incidents occur. Our interviewees explained
that operators have a lot of experience in handling incidents
in the city and can very accurately predict the impact of their
actions and interventions in a local scale, such as a crossroad.
Nevertheless, they explained it is difficult to access the impact
of actions at a more global scale, e.g., it is often unclear how a
change in a crossroad will impact other connected crossroads
in the local sector or even the entire network.

PC Berlier. The center manages the traffic flow in the
Périphérique motorway (IPER-REPER system), that hosts
daily approximately 1.2 million car movements of commuters
between Paris and its suburbs (60% of traffic in the region,
2002). Operators have to constantly monitor traffic in the
motorway and its tunnels in order to spot incidents and con-
gestions. To optimize traffic flow, they can activate/deactivate
lanes and reroute drivers using variable message signs, in par-
ticular since they face almost daily maintenance of lanes that
requires reflow of traffic. To ensure safety in tunnels, opera-
tors can trigger and follow emergency plans, including evacu-
ation, activation of smoke control systems, or closing tunnels
in coordination with firefighter forces on the ground.

Our interviewees explained that a rerouting plan is in place
for closing off sections of the motorway or tunnels. But they
are hard pressed to apply it as it is difficult to assess the im-
pact of such a drastic measure in each traffic situation. They
described an incident with a tunnel flooded in both directions
for 11 hours, where they considered applying this plan but
could not risk it without a clear picture of potential global
effects on the rest of the network.

The operator supervisor organizes shifts, oversees the good
operation of the center and is involved in training new opera-
tors. She added that face the challenge of boredom: monitor-
ing traffic feeds and messages from the public to detect inci-
dents early is monotonous and operator attention can wander,
and she felt that occasional task switching, such as forecast
planning, could increase operator interest and focus.



Other Control Centers. Road-traffic control centers around
the world use different technologies and methods. In Paris,
the traffic light control cycle is controlled by timing plans,
while dynamic modification of the green light duration is not
allowed. Other centers, like in London (SCOOT system2)
allow such modifications. Interestingly, some centers started
using predictive modeling to assess the impact of incidents
and to help decision-making, such as in the Piemont Control
Center in Italy (PTV Optima3 software). However, to our
knowledge no control center combines forecasting and real-
time traffic visualizations.

Motivation and User Needs. Our interviews and knowledge
of existing centers suggest that: (i) It would be beneficial to
incorporate visualization of predictive models with real-time
monitoring tools, as the impact of actions is often hard to pre-
dict. (ii) Operators should be provided with likely outcomes
of their interventions both globally on the entire network, and
locally on specific sectors or intersections. (iii) Forecast visu-
alizations increase the amount of information to be displayed,
but are needed periodically, not on a constant basis. Given the
advances in wall displays, i.e., their interactive support and
their ability to display a large amount of information, wall
displays can be a good platform for the next generation of
road traffic systems, going beyond awareness monitors to also
incorporate forecast analysis and visualization when needed.

Current control center setups also suffer from divided atten-
tion issues [37], with operators monitoring live camera feeds,
the entire network on the visualization wall, and interacting
through their individual workstations. If we consider addi-
tionaly visually displaying the results of predictive models,
the already challenging task of monitoring real-time traffic
can become increasingly difficult. As such, for our prototype
we decided to show the visualization of the prediction mod-
els on the main visualization, and test the limits of how many
such prediction models users can comfortably monitor.

PROTOTYPE

In order to explore solutions for integrating the results of
forecasting models to real-time traffic monitoring, we im-
plemented a set of visualizations and interaction techniques
within a functional prototype. The prototype is developed
using Java and the ZVTM Cluster library [29] that allows it
to run simultaneously on desktops and on a wall driven by a
computer cluster. Several desktop computers can share the
view seen on the wall, but at different scales, as is currently
done in control centers. On desktops, operators interact with
mice and keyboard and their actions are mirrored on the wall.

On the wall we support two types of inputs: direct touch,
and indirect touch using mobiles and tablets via the Smar-
ties toolkit [10]. This dual input enables implicit zooming
and context switching through movement [6, 7], leverages
the benefits of wall displays in high information density tasks
[24], and provides new opportunities for collaborative data
analysis [20]. Such interaction requires physical navigation

2
http://www.scoot-utc.com/

3
http://vision-traffic.ptvgroup.com

Figure 3. View of ”Place de la Concorde” in Paris on our prototype.

[6], that could fatigue operators working long hours. We in-
stead envision they’ll be used occasionally: operators gener-
ally sit in front of their workstation, but when they address
critical incidents or conduct planning sessions, they get up
and interact with the wall. Focusing on a single shared screen
could better support group work and awareness [15], and re-
duce the visual attention switch that occurs in MDE [33].

Traffic data and modeling

In our prototype, we represent each road network as a directed
graph, with roads as links and intersections as nodes. The to-
pography of existing road networks is extracted from Open-
StreetMap data, or can be generated artificially (randomly)
given a number of intersections and a desired road density.

Our system can process and display real-time streaming
traffic-density data (e.g. data from the SURF3 system). To
predict the evolution of current traffic, or of possible oper-
ator interventions, our prototype also models traffic. Roads
are assigned speed limits, and intersection traffic-lights are
assigned a duration. The duration of multiple lights (e.g. on
a single road) can be synchronized as a group.

The current forecasting model is an extension of the Nagel
and Schreckenberg one [27] developed by Chrobrok et al.
[12]. It is based on cellular automata, and can model road
networks with several lanes. At each intersection cars have
a predefined probability of taking one of the available roads;
this probability is calculated using real data, or the network
topology favoring multi-lane roads.

A given state of the network can be cloned and used to run
a forecasting model (accelerated) to (i) see a likely outcome
of the current traffic, or (ii) see and compare the impact of
possible interventions that adjust different parameters of the
network (e.g. speed limit, lane closing, traffic light duration).

Our model is only a simplification of real road traffic, and
more complex models have been developed in the field of
traffic prediction using real-time data (e.g [4]). Nevertheless,
our goal is not to develop a more accurate model, but rather
to focus on the design of interaction and visualization tech-
niques that can combine real time data and data from (multi-
ple) forecasting simulations. Thus the traffic model is a plug-
in in our prototype, so as to be able to incorporate and test
different models in the future.

http://www.scoot-utc.com/
http://vision-traffic.ptvgroup.com


Figure 4. Context aware tool-palettes for modifying road (left) and in-
tersection settings (right).

Real Traffic, Visualization & Interaction

To visualize real-time data, we follow the conventions used
in traffic control that operators are familiar with. Traffic den-
sity is represented by a progressive color scale: green (fluid),
yellow, orange and red (saturated). Depending on data avail-
ability, individual cars can also be displayed as circles with a
line representing their direction and speed vector (Figure 3).

Operators can invoke context-aware tool palettes (left click
for mouse, long tap for touch) to manage roads or intersec-
tions. For a road they can alter the speed limit, open or close
individual (or all) lanes, and report accidents (Figure 4-left).
For an intersection, they can act on light duration: change
the proportion of red/green light time, change the cycle du-
ration, or change the current timing plan with another (Fig-
ure 4-right). These changes can either be applied immedi-
ately to the traffic, or clone the traffic and create a forecast
visualization (discussed next).

Operator interventions on real traffic are reported on the map
with arrows. By selecting an intervention arrow they can
undo the action, or ”lock” it so that it cannot be undone, sup-
pressing the marker.

Forecasts, Visualization & Interaction

We are interested in combining real traffic visualization, with
likely forecasts of the potential future of this traffic, or of the
impact of an intervention (e.g., closing a lane or changing
light duration), calculated by traffic models. When opera-
tors invoke the tool palette to intervene on real traffic, instead
of applying their changes, they can choose to instead start a
forecast simulation. This clones the state of the real traffic
and models the possible outcome of applying the changes, or
the predicted outcome of the current situation sped-up.

Operators can intervene further on a forecast visualization, by
changing road or intersection settings in the same way they
do in the real-time visualization. They can choose to apply
their changes to this particular forecast visualization, to the
real traffic, or even clone the forecast simulation and apply
the changes to the clone. Thus, they can generate multiple
branching alternative simulations if desired.

As operators often want to compare the result of forecasts to
the baseline traffic to see if there is an improvement, we use
difference maps (as Lampe et al. [23]): colors do not indicate
an absolute measure (e.g. density), but rather a positive or
negative distance from a baseline situation (real traffic). The
selection of an appropriate color map is important to highlight
differences [42]. We use a diverging color scheme, adapted

Figure 5. Global visualization of real traffic (bottom) and forecast (top)
using MultiViews. A difference color map is used in forecast (cutout).

to be clearly visible on a wall (Figure 5 top & Figure 6 Drag-
Magic views). Three blue hues indicate improvement, three
brown deterioration, and white color indicates a similar traffic
density. These 7 colors represent all the possible amplitudes
of the difference between real traffic and forecasts.

Based on our interviews, operators need to see two types of
forecast results: Global, that show the forecast for the en-
tire network; or Local, that are focused on a few neighboring
roads and intersections, that we call an ”area of interest”.

Global (MultiViews). When operators are interested in fore-
cast visualizations focusing on global outcomes, they can cre-
ate a new view of the entire network for each simulation, fol-
lowing the idea of small multiples [21]. One view always
represents the real time traffic, while the others are forecasts
calculated by the predictive model (Figure 5).

Apart from using the tool palette, operators can also create
new global forecast visualizations by tracing a vertical line
inside a simulation to ”split” its view, and create a perfect
clone of it. Simulations are laid out on the wall using a grid
optimization algorithm.

On the top left corner, global forecast visualizations have
a unique identification number based on the order in which
they were spawned, and a legend explaining the color range
used in the view. They also have a button for invoking a tool
palette, through which operators can change simulation set-
tings, such as setting the prediction time frame with a slider
from 0 to 30 minutes (a time duration considered to provide
reliable results for our forecasting algorithm).

Local (DragMagic). When operators want to focus on par-
ticular areas of interest, they can invoke a variation of magic
lenses [8, 25] that displays the forecast only for that area. This
local view is placed at an offset position to avoid obscuring
the real traffic at this area. A DragMagic can also be created
by tracing a corner shaped gesture to define the area to be
cloned in the DragMagic. As with a DragMag [46], the fore-
cast visualization can be dragged, and is linked visually to
the area of interest that is itself highlighted. Several forecast
visualizations of different intervention simulations, focusing
on the same area of interest, can be displayed side-by-side to
show the possible outcomes (Figure 6).

Similarly to the global forecast visualization, DragMagics
have a number identifying the simulation they are displaying,
and a button to invoke the settings palette (Figure 6). This can
be useful if operators want to monitor the results of a single
simulation on more than one area of interest. It can be used



Figure 6. A DragMagic with two forecast visualizations (top left) linked
to its area of focus (inside white rectangle), and its menu open (right).

for example to aid operators visualize the impact of an ac-
tion on critical areas not directly linked to the location of the
action, that may be far away. Such areas include vital path-
ways for access to hospitals, sensitive locations such as long
tunnels, or central traffic hubs.

MULTIPLE VIEWS VS. DRAGMAGIC

An important and novel functionality of our prototype is the
visualization of forecasts in combination with real traffic, us-
ing MultiViews to provide a global view of the models’ pre-
diction for the entire network, and DragMagic to visualize
locally the predictions for specific areas.

MultiViews are well adapted for situations where operators
need to see the impact for the entire network, as they show
global forecasts. When they are interested in a single small
area of the network, DragMagics are better for showing local
effects. However, the situation is more complex when opera-
tors need to consider several areas of interest (critical areas)
on the network. Due to the higher number and sparsity of
areas of interest, this task is neither clearly local nor global,
and thus it is unclear which technique fares best. DragMagic
likely works well for few areas of interest, but as their number
increases they approximate the entire network, and as such
MultiViews may be better. Moreover, it is unclear how hard it
is to follow multiple simulations running at the same time in
order to decide between alternatives, using either technique.
We thus designed an experiment to compare viewers’ perfor-
mance using DragMagic and MultiViews for this intermediate
case, varying the number of simulations and areas of interest.

Our factors are: two techniques TECH, DragMagic and Mul-
tiViews; number of simulations #SIMU, with 3 values {2, 4, 6}
(to simplify, we consider real-time traffic as a simulation);
and number of areas of interest #AOI, with 3 values {3, 5, 7}.

In a trial, we showed participants several traffic simulations,
where one (”simulation 0”) is considered the reality and is
coded with the classic red to green color coding. The rest use
difference maps with simulation 0 (see Prototype). In Multi-
Views, on each simulation the areas of interest are highlighted
using white rectangles. In DragMagic only simulation 0 is
shown fully, and a DragMagic per area of interest is used to
display the remaining simulations. For consistency, in the ex-

periment all areas of interest contained exactly two roads, and
simulations were updated every 10 seconds.

The layout of MultiViews was such that simulations had the
same size, and were as big as possible while fitting on the
wall. DragMagics were positioned such that they were as
close as possible of their area of interest, while not overlap-
ping with other areas of interest or DragMagic.

In each trial, participants were asked four questions, sepa-
rated by intervals of about 30 sec. Two questions were on
the present state of the areas of interest, and two on their past
history (inspired by tests accessing situation awareness that
alternate and repeat questions on present and past, as in [19]):

Qpres “At the present moment, which simulation is the best for
the areas of interest?”. Asked 1st and 3rd.

Qhist “From the beginning of this trial, which simulation was the
best for the areas of interest?”. Asked 2nd and 4th.

When it was time for a question, an alarm rung, the simu-
lations paused, and the question was displayed at the top of
the wall. Participants gave their answer (the simulation num-
ber) using a smartphone. They were instructed to be as fast
as possible while minimizing errors. We explicitly told par-
ticipants not to perform a detailed comparison, but to give us
their overall impression, especially for Qpres where a detailed
comparison is tedious but possible. Trials lasted 2 minutes
plus the time taken by participants to answer the questions.

Our first working hypothesis is that:

H1 DragMagic will perform better than MultiViews, as viewers
have to monitor a smaller area.

Following Plumlee and Ware [30] that link performance with
the number of visual comparisons in a task, it is reasonable to
hypothesize that increasing the number of simulations #SIMU

and areas of interest #AOI will decrease performance overall.
However, our experiment was not designed to evaluate the
effects of #SIMU and #AOI, but rather to evaluate a possi-
ble interaction of TECH with #SIMU and #AOI. According
to Plumlee and Ware [30] distance between comparisons can
also deteriorate performance:

H2 DragMagic will perform better with a larger number of
simulations #SIMU as the distance of the areas being com-
pared is reduced; while MultiViews will perform better with
more areas of interest #AOI, as its global view will be a
good approximation of all the #AOI’s.

Experimental Design

Participants. Sixteen volunteers took part in the experiment
(8 female, 8 male), aged 23 to 32, with normal or corrected-
to-normal vision. As participants needed to tell the difference
between several shades of the same color, they took the Ishi-
hara Color Blindness test before the experiment to ensure they
did not suffer from color-blindness. As our experiment is per-
ceptual in nature (tracking of color changes over time) with
no domain knowledge requirements, we believe that design-
ing with experts and experimenting initially with non-experts
is valid for measuring perceptual situation awareness (simi-
larly to previous work, e.g., [19]).



Effect for Time n, d Fn,d p
TECHORDER 1,14 2.48 0.137
TECH 1,14 5.28 0.038 ⋆
#SIMU 2,28 31.8 <0.001 ⋆
#AOI 2,28 3.77 0.036 ⋆
TECHORDER×TECH 1,14 6.44 0.024 ⋆
TECHORDER×#SIMU 2,28 4.20 0.025 ⋆
TECHORDER×#AOI 2,28 0.56 0.565
TECH×#SIMU 2,28 2.61 0.091 ·
TECH×#AOI 2,28 0.44 0.650
#SIMU×#AOI 4,56 5.38 <0.001 ⋆
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Figure 7. Time to answer for question Qpres: (a) Results of the degree 2 ANOVA in the mixed model TECHORDER × TECH × #SIMU × #AOI ×
Rand(PARTICIPANT) (there is no significant interaction of degree > 2, all p’s > 0.4); statistically significant results (p < .05) are starred, whereas a
dot marks statistical trends (p < .1). (b) Time by TECH depending on whether a technique was run in the 1st block or in the 2nd one. (c) Time for each
TECH by #SIMU. (d) Time for each TECH by #AOI. In (c) and (d), DM stands for DragMagic and MV for MultiViews.

Apparatus. We used an interactive wall (5.9m× 1.96m wide,
with a resolution of 14 400× 4800 pixels), made of 75 LCD
displays (21.6 inches, 3mm bezels each), seen in Figure 1.
The wall was driven by a rendering cluster of 10 computers.
The experimental software, built on our prototype, ran on a
master machine connected to the cluster through 1Gbit Eth-
ernet. Participants answered questions using a smartphone.

Procedure and Design. The experiment is a [2×3×3] within-
participants design with factors TECH (MultiViews and Drag-
Magic), #SIMU (2, 4 and 6) and #AOI (3, 5 and 7). We
blocked by TECH and the order was counter-balanced be-
tween participants: half started with DragMagic and half with
MultiViews. For each TECH, a first trial was used to explain
the task, questions and the visualization (e.g., color code, ar-
eas of interest, simulation). Then participants conducted 3
training trials before proceeding to the 9 (=3×3) measured tri-
als. For these 9 trials, the #SIMU increased gradually (first 2,
then 4 and 6). And for each simulation number condition, the
#AOI also increases gradually (3, then 5 and 7). We started
with the a-priori easier tasks to try to reduce learning effects.

The network used are the main roads in Paris city center. Us-
ing our prototype we built 13 sets of simulations (4 for the
training and 9 for the measured trials), by generating a large
number of 2 min simulations and selecting ones with a similar
number of color changes (about 1000 per simulation). Real
traffic (sim 0) was also generated this way for consistency. To
ensure a fair comparison across techniques, we took the orig-
inal simulation sets, and built another 13 ones by changing
the simulations order. TECH presentation order was counter-
balanced consistently with the sets.

Sessions lasted 1 hour, and at the end participants completed a
questionnaire on strategy, workload (customized NASA TLX
questionnaire) and preference.

Measures. We recorded the time to answer the questions
Time, and participants’ answers. Time is important in a con-
trol room context, as operators need to evaluate situations and
act quickly. In our experiment, slower answer times can in-
dicate that in some conditions assessing a situation is harder
and requires more reflection. When two or more simulations
are displayed, a given imperfect answer could be better than
another, as simulations have an order when it comes to im-
provement over the real situation. Thus, we define NError
as: (R − 1)/(#S imu − 1) where R is the rank of the simula-

tion when ordered from best to worst. Using #SIMU ensures
we normalize the error per number of simulations. We also
report on absolute number of errors per condition (Err).

Results

We first look at the results for Qpres, the results for Qhist are
similar and discussed next. We noticed that the presentation
order of TECH has an impact on the results, thus we report on
the between-subject factor TECHORDER. Error bars in our
images represent 95% CI computed with all the data points
using BCa bootstrapping. For post-hoc tests we use paired
t-test with Holm correction.

Time

Figure 7-a shows the detailed ANOVA for Time. TECH has
a significant effect on Time (DragMagic being faster), but
we also have a significant TECH × TECHORDER interaction.
A post-hoc test shows that DragMagic is significantly faster
than MultiViews (p = 0.007, a speed-up of 33%) for partici-
pants starting with MultiViews, but not for participants start-
ing with DragMagic (p = 0.753, almost the same mean Time).
See Figure 7-b. Thus, H1 is only satisfied when participants
are mastering the techniques and task.

Note that the Time for DragMagic for both TECHORDERs,
and for MultiViews when seen second are very similar, and
all three significantly faster than MultiViews when seen first
(p’s < 0.009). We see a positive learning transfer from Drag-
Magic to MultiViews, while the time for DragMagic is similar
irrespective of order indicating it is easier to master.

There is a significant effect of #SIMU and #AOI on Time, with
significant interactions TECHORDER × #SIMU and #SIMU ×

#AOI, but no significant interaction with TECH (next para-
graph). Post-hoc tests show that participants were overall
faster with 2 simulations than with 4 and 6 (p’s < 0.001, no sig-
nificant difference between 4 and 6 simulations, p = 0.648; see
Figure 7-c). When starting with MultiViews this difference
between 2 simulations and 4 or 6 simulations are bigger than
when starting with DragMagic (the TECHORDER × #SIMU

interaction). Surprisingly, when it comes to #AOI, partici-
pants were overall significantly slower with 3 AoIs than with
7 AoIs (p = 0.025; no other significant difference between the
AoIs; see Figure 7-d). This difference is mainly caused by
the case of 6 simulations (the #SIMU × #AOI interaction) and
suggests that participants were able to use the time in between
questions to select and focus on a few promising simulations,
reducing the number of comparisons at answer time.



The TECH × #SIMU interaction is not significant (p = 0.091).
However, the difference between the better performance of
DragMagic over MultiViews grows with #SIMU and becomes
significant with 6 simulations: 5.1s vs. 5.7s for 2 simulations
(p = 0.466), 9.9s vs. 11.7s for 4 (p = 0.146), and 9.3s vs. 13.1s for 6
simulations (p = 0.038). Thus, the first part of H2 is partially
confirmed. Results do not confirm the second part of H2, as
there is no effect of #AOI on TECH.

Normilized Errors

Regarding normalized errors, the only significant result is an
effect of #SIMU (F2,28 = 7.48, p = 0.002). Participants made
significantly more errors with 4 simulations (on average 0.13)
than with 2 simulations (on average 0.06, p = 0.02. And trend
for more errors with 4 simulations than with 6 simulations
(average of 0.08, p = 0.065). We note that statistical trends with
absolute number of errors are similar, with the additional dif-
ference between 2 and 6 simulations (p < .001). Mean absolute
error was 0.06, 0.27, 0.20 for 2,4, and 6 simulations respectively.

An important remark is that DragMagic and MultiViews ex-
hibit very similar average normalized error, overall (0.087 vs.
0.086), and also depending on whether they are seen first or
second (0.106 vs. 0.097 for block one and 0.068 vs. 0.076 for
block two). The same holds for absolute error (0.18 vs. 0.185).
Thus, the above results on Time cannot be attributed to a
speed-accuracy trade-off.

The Qhist Question vs. the Qpres Question

Result trends for Qhist are very similar to Qpres, we thus omit
a detailed presentation of the results. For instance, we have
a significant TECHORDER × TECH interaction (F1,14 = 5.43,

p = 0.035), DragMagic is significantly faster than MultiViews
for the participants starting with MultiViews (p = 0.002, a
26% speed-up), but not for the participants starting with
DragMagic. Moreover, the Time for DragMagic for both
TECHORDER and MultiViews for the participants starting
with DragMagic are very close. Average errors are almost
the same for the 4 conditions considered above.

Participants were overall significantly faster with Qpres than
with Qhist (p < 0.001, 6.5s vs. 9.2s), and made significantly less
errors (p < 0.001, 0.09 vs. 0.25). This is a reasonable result as
Qhist is more complex since it relies more heavily on memory.

Subjective Results

Eleven out of sixteen participants preferred to use DragMagic
over MultiViews, a slight – non significant – preference for
DragMagic (χ2

1,16
= 2.25, p = 0.134). Seven out of the eight par-

ticipants that started with MultiViews preferred DragMagic
(χ2

1,8
= 4.5, p = 0.034), while from the participants that started

with DragMagic, four indicate a preference for DragMagic
and four for MultiViews. Thus, TECH preference matches
closely the results on time.

Regarding subjective mental workload, a TECHORDER ×

TECH interaction is again present. Participants starting with
MultiViews reported a significantly higher mental workload
for MultiViews than for DragMagic (p = 0.008, 4.8 vs. 3.9 on a
1−7 scale). While for participants starting with DragMagic re-
ported mental workload was similar between MultiViews (4.2)
and DragMagic (4.1).

When reporting strategies, 10 participants explicitly men-
tioned they always chose 2-3 promising simulations to focus
on, even when more simulations were running.

Summary and Discussion

Participants starting with MultiViews were slower with this
technique (without making less errors): participants starting
with DragMagic were 33% faster with both DragMagic and
with MultiViews, when compared to participants that started
with MultiViews. The speed of DragMagic was fairly consis-
tent across ordering conditions. The subjective results (pref-
erence and mental workload) show a similar trend. Even if
there is a learning effect on MultiViews, there is no such effect
on DragMagic, which suggests that participants mastered the
use of DragMagic faster than MultiViews. Moreover, using
DragMagic has a positive learning impact on MultiViews.

DragMagic exhibits slightly better performance than Multi-
Views as the number of simulations increases, indicating that,
as expected, reducing the distance between the simulations
to be compared can be beneficial. Nevertheless, we did not
measure any difference between MultiViews and DragMagic
when the number of areas of interest increased.

Contrary to the model of Plumlee and Ware [30], we do not
have a clear growing relation between Time and the number
of comparisons needed to perform the task, in particular when
it comes to the increase of areas of interests and number of
simulations. This can be explained by the temporal nature of
our task. Based on their comments, participants continuously
compared simulations in the time between questions, not just
at question time, and were thus able to identify and ignore
ahead of time non-promising simulations, providing answers
more quickly. Thus, the Plumlee and Ware model does not
extend to tasks that have a temporal continuity.

When considering the traffic control context, our results in-
dicate that both techniques can be effective for compari-
son of simulation results of possible interventions, without
a strong performance difference once users become familiar
with them. We feel this shows both designs as viable alterna-
tives in terms of performance, and thus designers can choose
based on other criteria, like space requirements, positioning
of operators in the control room, areas to be monitored, etc.

Our study is perceptual in nature, thus we felt 16 non-expert
participants were appropriate. Nevertheless, a larger number
of participants could have provided more power to our results.
Moreover, our study did not evaluate the interactive aspect
of creating, managing and rearranging the DragMagic or the
MultiViews. Finally, to ensure a realistic experiment duration,
we fixed the time interval and changes between questions, but
verifying that our results hold under varying intervals would
strengthen our findings. These remain future work.

EARLY FEEDBACK FROM EXPERTS

A user feedback session was conducted with three of our orig-
inal users, using a combination of a desktop demo and a video
of the prototype used on the wall.

Our interviewees found the idea of interleaving the results of
real time traffic data and model predictions very useful. How-



ever, all explained that these visualizations would not be used
constantly, rather occasionally in situations when the results
of possible actions are hard to predict. Operators mentioned
they would most likely interact with them from their work-
stations. Nevertheless, the operations manager explained that
the setup of the walk-up and use wall (away from their work-
station) could benefit operators in two ways: first by helping
them focus on the task at hand without distractions such as
camera feeds, etc. And second it could shift their attention
away from the monotonous monitoring tasks, and thus allevi-
ating boredom and improving overall performance.

All interviewees seemed to be more interested in the Drag-
Magic visualization for comparing real and forecast data, as
they give operators the information they need in the areas of
interest ”and also the state of the traffic around it”.

Two operators thought separately of another use for our sys-
tem not envisioned before. They felt our techniques can help
them diagnose and predict problematic situations by compar-
ing ”benchmark” traffic data (past data recorded under nor-
mal conditions) with current traffic. As one explained, the
system could suggest to operators to open the comparative
visualizations when a big enough difference is detected. The
visualizations could then provide context and help operators
determine if the unusual behavior is a potential unreported
incident that requires further investigation, or if the traffic sit-
uation is deteriorating and requires intervention.

They also highlighted the need to incorporate some additional
functionality, such as the ability to update messages on elec-
tronic signs around the city and motorway for the public, and
to integrate multiple global traffic light timing plans used cur-
rently in the city that we did not have access to initially.

One operator and the operations engineer are currently in-
volved in the development of new systems that may include
predictive models (without visualization). Both explained
that our setup could also be very useful to their colleagues
that work on improving traffic modeling for control centers.
Their algorithms require careful tuning and they often need
to run multiple small variations of them, that are hard to visu-
alize concurrently on desktop screens.

CONCLUSION

We propose using interactive wall displays in road-traffic con-
trol centers for interacting with real-time and simulated traffic
data. After visiting two such centers, we designed a prototype
that allows to monitor and act on the traffic (or on simula-
tions) and, more importantly, to compare real traffic and sev-
eral forecast simulations. To this end we use two visualization
techniques: MultiViews and DragMagic, that we compared in
a lab experiment in terms of situation awareness.

The results show that DragMagic is easier to master, but that
both techniques are reasonable design options for control cen-
ters, even for several simulations and areas of interest. It
seems that the speed of monitoring tasks, that are temporal in
nature, is not drastically affected by the number of compar-
isons in multiple views (predicted by the Plumlee and Ware
model [30]). Viewers can identify and ignore non-promising

forecasts, reducing the number of effective comparisons. Re-
vising such models is interesting future work.

Expert users provided encouraging feedback and suggestions
after seeing the prototype, appreciating in particular the use
of DragMagic to follow forecast simulations while keeping
the context of real traffic. They also found the prototype use-
ful to compare real and past data to help identify possible
problematic situations.

We next plan to study collaboration in control centers, in par-
ticular the use of several DragMagics, and cases where some
operators interact with the wall and others with their worksta-
tion, a functionality we already support.
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